Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (244)

Search Parameters:
Keywords = pro-fibrotic signaling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2024 KiB  
Article
Oxy210 Inhibits Hepatic Expression of Senescence-Associated, Pro-Fibrotic, and Pro-Inflammatory Genes in Mice During Development of MASH and in Hepatocytes In Vitro
by Feng Wang, Simon T. Hui, Frank Stappenbeck, Dorota Kaminska, Aldons J. Lusis and Farhad Parhami
Cells 2025, 14(15), 1191; https://doi.org/10.3390/cells14151191 - 2 Aug 2025
Viewed by 308
Abstract
Background: Senescence, a state of permanent cell cycle arrest, is a complex cellular phenomenon closely affiliated with age-related diseases and pathological fibrosis. Cellular senescence is now recognized as a significant contributor to organ fibrosis, largely driven by transforming growth factor beta (TGF-β) signaling, [...] Read more.
Background: Senescence, a state of permanent cell cycle arrest, is a complex cellular phenomenon closely affiliated with age-related diseases and pathological fibrosis. Cellular senescence is now recognized as a significant contributor to organ fibrosis, largely driven by transforming growth factor beta (TGF-β) signaling, such as in metabolic dysfunction-associated steatohepatitis (MASH), idiopathic pulmonary fibrosis (IPF), chronic kidney disease (CKD), and myocardial fibrosis, which can lead to heart failure, cystic fibrosis, and fibrosis in pancreatic tumors, to name a few. MASH is a progressive inflammatory and fibrotic liver condition that has reached pandemic proportions, now considered the largest non-viral contributor to the need for liver transplantation. Methods: We previously studied Oxy210, an anti-fibrotic and anti-inflammatory, orally bioavailable, oxysterol-based drug candidate for MASH, using APOE*3-Leiden.CETP mice, a humanized hyperlipidemic mouse model that closely recapitulates the hallmarks of human MASH. In this model, treatment of mice with Oxy210 for 16 weeks caused significant amelioration of the disease, evidenced by reduced hepatic inflammation, lipid deposition, and fibrosis, atherosclerosis and adipose tissue inflammation. Results: Here we demonstrate increased hepatic expression of senescence-associated genes and senescence-associated secretory phenotype (SASP), correlated with the expression of pro-fibrotic and pro-inflammatorygenes in these mice during the development of MASH that are significantly inhibited by Oxy210. Using the HepG2 human hepatocyte cell line, we demonstrate the induced expression of senescent-associated genes and SASP by TGF-β and inhibition by Oxy210. Conclusions: These findings further support the potential therapeutic effects of Oxy210 mediated in part through inhibition of senescence-driven hepatic fibrosis and inflammation in MASH and perhaps in other senescence-associated fibrotic diseases. Full article
Show Figures

Graphical abstract

17 pages, 659 KiB  
Review
Insights into the Molecular Mechanisms and Novel Therapeutic Strategies of Stenosis Fibrosis in Crohn’s Disease
by Yuan Zhou, Huiping Chen, Qinbo Wang, Guozeng Ye, Yingjuan Ou, Lihong Huang, Xia Wu and Jiaxi Fei
Biomedicines 2025, 13(7), 1777; https://doi.org/10.3390/biomedicines13071777 - 21 Jul 2025
Viewed by 435
Abstract
Crohn’s disease (CD), characterized by chronic gastrointestinal inflammation, is complicated by intestinal stenosis resulting from dysregulated fibrogenesis and is marked by excessive extracellular matrix (ECM) deposition, fibroblast activation, and luminal obstruction. While biologics control inflammation, their failure to halt fibrosis underscores a critical [...] Read more.
Crohn’s disease (CD), characterized by chronic gastrointestinal inflammation, is complicated by intestinal stenosis resulting from dysregulated fibrogenesis and is marked by excessive extracellular matrix (ECM) deposition, fibroblast activation, and luminal obstruction. While biologics control inflammation, their failure to halt fibrosis underscores a critical therapeutic void. Emerging evidence highlights the multifactorial nature of stenosis-associated fibrosis, driven by profibrotic mediators and dysregulated crosstalk among immune, epithelial, and mesenchymal cells. Key pathways, including transforming growth factor (TGF-β), drosophila mothers against decapentaplegic protein (Smad) signaling, Wnt/β-catenin activation, epithelial–mesenchymal transition (EMT), and matrix metalloproteinase (MMP) and tissue inhibitors of metalloproteinase (TIMP)-mediated ECM remodeling, orchestrate fibrotic progression. Despite the current pharmacological, endoscopic, and surgical interventions for fibrostenotic CD, their palliative nature and inability to reverse fibrosis highlight an unmet need for disease-modifying therapies. This review synthesizes mechanistic insights, critiques therapeutic limitations with original perspectives, and proposes a translational roadmap prioritizing biomarker-driven stratification, combinatorial biologics, and mechanistically targeted antifibrotics. Full article
Show Figures

Figure 1

21 pages, 3526 KiB  
Article
Prenatal Bisphenol A Exposure Impairs Fetal Heart Development: Molecular and Structural Alterations with Sex-Specific Differences
by Alessandro Marrone, Anna De Bartolo, Vittoria Rago, Francesco Conforti, Lidia Urlandini, Tommaso Angelone, Rosa Mazza, Maurizio Mandalà and Carmine Rocca
Antioxidants 2025, 14(7), 863; https://doi.org/10.3390/antiox14070863 - 14 Jul 2025
Viewed by 439
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide, with increasing evidence suggesting that their origins may lie in prenatal life. Endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), have been implicated in the alteration of fetal programming mechanisms that [...] Read more.
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide, with increasing evidence suggesting that their origins may lie in prenatal life. Endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), have been implicated in the alteration of fetal programming mechanisms that cause a predisposition to long-term cardiovascular vulnerability. However, the impact of prenatal endocrine disruption on fetal heart development and its sex-specific nature remains incompletely understood. This study investigates the molecular and structural effects of low-dose prenatal BPA exposure on fetal rat hearts. Our results reveal that BPA disrupts estrogen receptor (ER) signaling in a sex-dependent manner, with distinct alterations in ERα, ERβ, and GPER expression. BPA exposure also triggers significant inflammation, oxidative stress, and ferroptosis; this is evidenced by elevated NF-κB, IL-1β, TNF-α, and NLRP3 inflammasome activation, as well as impaired antioxidant defenses (SOD1, SOD2, CAT, and SELENOT), increased lipid peroxidation (MDA) and protein oxidation, decreased GPX4, and increased ACSL4 levels. These alterations are accompanied by increased markers of cardiac distension (ANP, BNP), extracellular matrix remodeling mediators, and pro-fibrotic regulators (Col1A1, Col3A1, TGF-β, and CTGF), with a more pronounced response in males. Histological analyses corroborated these molecular findings, revealing structural alterations as well as glycogen depletion in male fetal hearts, consistent with altered cardiac morphogenesis and metabolic stress. These effects were milder in females, reinforcing the notion of sex-specific vulnerability. Moreover, prenatal BPA exposure affected myocardial fiber architecture and vascular remodeling in a sex-dependent manner, as evidenced by reduced expression of desmin alongside increased levels of CD34 and Ki67. Overall, our findings provide novel insights into the crucial role of prenatal endocrine disruption during fetal heart development and its contribution to the early origins of CVD, underscoring the urgent need for targeted preventive strategies and further research into the functional impact of BPA-induced alterations on postnatal cardiac function and long-term disease susceptibility. Full article
Show Figures

Graphical abstract

20 pages, 2891 KiB  
Review
MAPK, PI3K/Akt Pathways, and GSK-3β Activity in Severe Acute Heart Failure in Intensive Care Patients: An Updated Review
by Massimo Meco, Enrico Giustiniano, Fulvio Nisi, Pierluigi Zulli and Emiliano Agosteo
J. Cardiovasc. Dev. Dis. 2025, 12(7), 266; https://doi.org/10.3390/jcdd12070266 - 10 Jul 2025
Viewed by 657
Abstract
Acute heart failure (AHF) is a clinical syndrome characterized by the sudden onset or rapid worsening of heart failure signs and symptoms, frequently triggered by myocardial ischemia, pressure overload, or cardiotoxic injury. A central component of its pathophysiology is the activation of intracellular [...] Read more.
Acute heart failure (AHF) is a clinical syndrome characterized by the sudden onset or rapid worsening of heart failure signs and symptoms, frequently triggered by myocardial ischemia, pressure overload, or cardiotoxic injury. A central component of its pathophysiology is the activation of intracellular signal transduction cascades that translate extracellular stress into cellular responses. Among these, the mitogen-activated protein kinase (MAPK) pathways have received considerable attention due to their roles in mediating inflammation, apoptosis, hypertrophy, and adverse cardiac remodeling. The canonical MAPK cascades—including extracellular signal-regulated kinases (ERK1/2), p38 MAPK, and c-Jun N-terminal kinases (JNK)—are activated by upstream stimuli such as angiotensin II (Ang II), aldosterone, endothelin-1 (ET-1), and sustained catecholamine release. Additionally, emerging evidence highlights the role of receptor-mediated signaling, cellular stress, and myeloid cell-driven coagulation events in linking MAPK activation to fibrotic remodeling following myocardial infarction. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling cascade plays a central role in regulating cardiomyocyte survival, hypertrophy, energy metabolism, and inflammation. Activation of the PI3K/Akt pathway has been shown to confer cardioprotective effects by enhancing anti-apoptotic and pro-survival signaling; however, aberrant or sustained activation may contribute to maladaptive remodeling and progressive cardiac dysfunction. In the context of AHF, understanding the dual role of this pathway is crucial, as it functions both as a marker of compensatory adaptation and as a potential therapeutic target. Recent reviews and preclinical studies have linked PI3K/Akt activation with reduced myocardial apoptosis and attenuation of pro-inflammatory cascades that exacerbate heart failure. Among the multiple signaling pathways involved, glycogen synthase kinase-3β (GSK-3β) has emerged as a key regulator of apoptosis, inflammation, metabolic homeostasis, and cardiac remodeling. Recent studies underscore its dual function as both a negative regulator of pathological hypertrophy and a modulator of cell survival, making it a compelling therapeutic candidate in acute cardiac settings. While earlier investigations focused primarily on chronic heart failure and long-term remodeling, growing evidence now supports a critical role for GSK-3β dysregulation in acute myocardial stress and injury. This comprehensive review discusses recent advances in our understanding of the MAPK signaling pathway, the PI3K/Akt cascade, and GSK-3β activity in AHF, with a particular emphasis on mechanistic insights, preclinical models, and emerging therapeutic targets. Full article
(This article belongs to the Topic Molecular and Cellular Mechanisms of Heart Disease)
Show Figures

Figure 1

18 pages, 5892 KiB  
Article
CXCL12 Drives Reversible Fibroimmune Remodeling in Androgenetic Alopecia Revealed by Single-Cell RNA Sequencing
by Seungchan An, Mei Zheng, In Guk Park, Leegu Song, Jino Kim, Minsoo Noh and Jong-Hyuk Sung
Int. J. Mol. Sci. 2025, 26(14), 6568; https://doi.org/10.3390/ijms26146568 - 8 Jul 2025
Viewed by 643
Abstract
Androgenetic alopecia (AGA) is a common form of hair loss characterized by androgen-driven tissue remodeling, including progressive follicular miniaturization and dermal fibrosis, which is accompanied by low-grade immune activation. However, the molecular mechanisms underlying this fibroimmune dysfunction remain poorly understood. Dermal fibroblasts (DFs) [...] Read more.
Androgenetic alopecia (AGA) is a common form of hair loss characterized by androgen-driven tissue remodeling, including progressive follicular miniaturization and dermal fibrosis, which is accompanied by low-grade immune activation. However, the molecular mechanisms underlying this fibroimmune dysfunction remain poorly understood. Dermal fibroblasts (DFs) have been suggested as androgen-responsive stromal cells and a potential source of CXCL12, a chemokine implicated in fibroimmune pathology, but their precise role in AGA has not been fully established. In this study, we performed single-cell transcriptomic profiling of a testosterone-induced mouse model of AGA, with or without treatment of CXCL12-neutralizing antibody, to elucidate the pathological role of CXCL12 in mediating stromal-immune interactions. Our analysis suggested that DFs are the primary androgen-responsive population driving CXCL12 expression. Autocrine CXCL12-ACKR3 signaling in DFs activated TGF-β pathways and promoted fibrotic extracellular matrix deposition. In parallel, paracrine CXCL12-CXCR4 signaling reprogrammed Sox2+Twist1+ dermal papilla cells (DPCs) and promoted the accumulation of pro-fibrotic Trem2+ macrophages, contributing to impaired hair follicle regeneration. Notably, CXCL12 blockade attenuated these stromal and immune alterations, restored the regenerative capacity of DPCs, reduced pro-fibrotic macrophage infiltration, and promoted hair regrowth. Together, these findings identify CXCL12 as a central mediator of androgen-induced fibroimmune remodeling and highlight its potential as a therapeutic target in AGA. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

15 pages, 1864 KiB  
Article
Administration of Purified Alpha-1 Antitrypsin in Salt-Loaded Hypertensive 129Sv Mice Attenuates the Expression of Inflammatory Associated Proteins in the Kidney
by Van-Anh L. Nguyen, Yunus E. Dogan, Niharika Bala, Erika S. Galban, Sihong Song and Abdel A. Alli
Biomolecules 2025, 15(7), 951; https://doi.org/10.3390/biom15070951 - 30 Jun 2025
Viewed by 389
Abstract
Background: Alpha-1 antitrypsin (AAT) is a multifunctional protease inhibitor that has been shown to have anti-inflammatory properties in various diseases. AAT has been reported to protect against renal injury via anti-apoptotic, anti-fibrotic, and anti-inflammatory effects. However, its role in mitigating renal inflammation and [...] Read more.
Background: Alpha-1 antitrypsin (AAT) is a multifunctional protease inhibitor that has been shown to have anti-inflammatory properties in various diseases. AAT has been reported to protect against renal injury via anti-apoptotic, anti-fibrotic, and anti-inflammatory effects. However, its role in mitigating renal inflammation and reducing high blood pressure induced by salt-loading has never been studied. Methods: In this study, we salt-loaded 129Sv mice to induce hypertension and then administered purified human AAT (hAAT) or the vehicle to investigate whether renal inflammation and associated inflammatory/signaling pathways are mitigated. Results: Western blotting and densitometric analysis showed administration of hAAT attenuated protein expression of kidney injury molecule-1 (KIM1), CD93, CD36, and the toll-like receptor 2 and 4 (TLR-2/4) in kidney lysates. Similarly, protein expression of two key inflammatory transcription factors, signal transducer and activator of transcription 3 (STAT3) and NF-Kappa B were shown to be attenuated in the kidneys of 129Sv mice that received hAAT. Conversely, hAAT treatment upregulated the expression of heat shock protein 70 (HSP70) and immunohistochemistry confirmed these findings. Conclusions: Purified hAAT administration may be efficacious in mitigating renal inflammation associated with the development of hypertension from salt-loading, potentially through a mechanism involving the reduction of pro-inflammatory and injury-associated proteins. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

11 pages, 647 KiB  
Review
Understanding the Role of Epithelial Cells in the Pathogenesis of Systemic Sclerosis
by Lydia Nagib, Anshul Sheel Kumar and Richard Stratton
Cells 2025, 14(13), 962; https://doi.org/10.3390/cells14130962 - 24 Jun 2025
Viewed by 614
Abstract
Systemic sclerosis (SSc) is an autoimmune fibrotic disorder affecting the skin and internal organs, categorized as either limited cutaneous SSc, where distal areas of skin are involved, or diffuse cutaneous SSc, where more extensive proximal skin involvement is seen. Vascular remodelling and internal [...] Read more.
Systemic sclerosis (SSc) is an autoimmune fibrotic disorder affecting the skin and internal organs, categorized as either limited cutaneous SSc, where distal areas of skin are involved, or diffuse cutaneous SSc, where more extensive proximal skin involvement is seen. Vascular remodelling and internal organ involvement are frequent complications in both subsets. Multiple pathogenic mechanisms have been demonstrated, including production of disease-specific autoantibodies, endothelial cell damage at an early stage, infiltration of involved tissues by immune cells, as well as environmental factors triggering the onset such as solvents and viruses. Although not strongly familial, susceptibility to SSc is associated with multiple single nucleotide polymorphisms in immunoregulatory genes relevant to antigen presentation, T cell signalling and adaptive immunity, as well as innate immunity. In addition, several lines of evidence demonstrate abnormalities within the epithelial cell layer in SSc. Macroscopically, the SSc epidermis is pigmented, thickened and stiff and strongly promotes myofibroblasts in co-culture. Moreover, multiple activating factors and pathways have been implicated in the disease epidermis, including wound healing responses, induction of damage associated molecular patterns (DAMPS) and the release of pro-fibrotic growth factors and cytokines. Similar to SSc, data from studies of cutaneous wound healing indicate a major role for epidermal keratinocytes in regulating local fibroblast responses during repair of the wound defect. Since the epithelium is strongly exposed to environmental factors and richly populated with protective immune cells, it is possible that disease-initiating mechanisms in SSc involve dysregulated immunity and tissue repair within this cell layer. Treatments designed to restore epithelial homeostasis or else disrupt epithelial–fibroblast cross-talk could be of benefit in this severe and resistant disease. Accordingly, single cell analysis has confirmed an active signature in SSc keratinocytes, which was partially reversed following a period of JAK inhibitor therapy. Full article
(This article belongs to the Special Issue The Role of Epithelial Cells in Scleroderma—Second Edition)
Show Figures

Figure 1

14 pages, 3481 KiB  
Article
Effect of 3-HBI on Liver Fibrosis via the TGF-β/SMAD2/3 Pathway on the Human Hepatic Stellate Cell Model
by Chavisa Khongpiroon, Watunyoo Buakaew, Paul J. Brindley, Saranyapin Potikanond, Krai Daowtak, Yordhathai Thongsri, Pachuenp Potup and Kanchana Usuwanthim
Int. J. Mol. Sci. 2025, 26(13), 6022; https://doi.org/10.3390/ijms26136022 - 23 Jun 2025
Viewed by 802
Abstract
Liver fibrosis can progress to irreversible cirrhosis if the underlying causes remain, and this can in turn develop into hepatocellular carcinoma (HCC). Despite these adverse outcomes, liver fibrosis can be reversed. Consequently, research has focused on substances that target liver fibrosis to prevent [...] Read more.
Liver fibrosis can progress to irreversible cirrhosis if the underlying causes remain, and this can in turn develop into hepatocellular carcinoma (HCC). Despite these adverse outcomes, liver fibrosis can be reversed. Consequently, research has focused on substances that target liver fibrosis to prevent or reduce its progression. This study deals with the potential anti-fibrotic action of 3-hydroxy-β-ionone (3-HBI), a bioactive compound found in many plants. To assess the putative effects of 3-HBI, pro-inflammatory cytokine production and the expression of genes and proteins associated with the TGF-β/SMAD2/3 pathway were monitored following exposure to 3-HBI. Initially, cells of the human hepatic stellate cell line LX-2 were treated with TGF-β1 to simulate fibrogenesis. Following the exposure of activated LX-2 cells to 3-HBI, the production of pro-fibrotic substances was significantly reduced. Molecular docking studies revealed that 3-HBI exhibited a high binding affinity for key proteins in the TGF-β/SMAD2/3 pathway. Analyses using qRT-PCR and Western blotting revealed that 3-HBI suppressed the expression of TIMP1, MMP2, MMP9, COL1A1, COL4A1, SMAD2, SMAD3, SMAD4, MMP2, and ACTA2. Together, these findings demonstrate that 3-HBI inhibited the activation of LX-2 cells and significantly reduced the proinflammatory responses triggered by TGF-β1. Accordingly, we confirmed the noteworthy potential of 3-HBI as a therapeutic agent to prevent and treat liver fibrosis, effected by its modulation of the TGF-β/SMAD2/3 signaling pathway. Full article
(This article belongs to the Special Issue Molecular Advances in Liver Fibrosis)
Show Figures

Figure 1

13 pages, 612 KiB  
Review
JAK2 Inhibitors and Emerging Therapies in Graft-Versus-Host Disease: Current Perspectives and Future Directions
by Behzad Amoozgar, Ayrton Bangolo, Abdifitah Mohamed, Charlene Mansour, Daniel Elias, Christina Cho and Siddhartha Reddy
Biomedicines 2025, 13(7), 1527; https://doi.org/10.3390/biomedicines13071527 - 23 Jun 2025
Viewed by 690
Abstract
Graft-versus-host disease (GVHD) remains a significant barrier to the success of allogeneic hematopoietic stem cell transplantation (allo-HSCT), contributing to long-term morbidity and non-relapse mortality in both pediatric and adult populations. Central to GVHD pathophysiology is the Janus kinase (JAK)-signal transducer and activator of [...] Read more.
Graft-versus-host disease (GVHD) remains a significant barrier to the success of allogeneic hematopoietic stem cell transplantation (allo-HSCT), contributing to long-term morbidity and non-relapse mortality in both pediatric and adult populations. Central to GVHD pathophysiology is the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, where JAK2 mediates key pro-inflammatory cytokines, including IL-6, IFN-γ, and GM-CSF. These cytokines promote donor T cell activation, effector differentiation, and target organ damage. The introduction of ruxolitinib, a selective JAK1/2 inhibitor, has transformed the treatment landscape for steroid-refractory acute and chronic GVHD, leading to improved response rates and durable symptom control. However, its limitations—such as cytopenias, infectious complications, and incomplete responses—have catalyzed the development of next-generation agents. In 2024, the FDA approved axatilimab, a CSF-1R inhibitor that targets monocyte-derived macrophages in fibrotic chronic GVHD, and remestemcel-L, an allogeneic mesenchymal stromal cell therapy, for pediatric steroid-refractory acute GVHD. Both agents offer mechanistically distinct and clinically meaningful additions to the therapeutic armamentarium. In parallel, emerging combination strategies involving JAK2 inhibitors and novel biologics show promise in enhancing immune tolerance while preserving graft-versus-leukemia (GvL) effects. Recent advances in biomarker development, such as the MAGIC Algorithm Probability (MAP), are enabling early risk stratification and response prediction. The integration of these tools with organ-specific and personalized approaches marks a shift toward more precise, durable, and tolerable GVHD therapy. This review highlights the current state and future direction of JAK2 inhibition and complementary therapies in the evolving GVHD treatment paradigm. Full article
(This article belongs to the Special Issue An Update on Transplantation Immunology)
Show Figures

Figure 1

11 pages, 2775 KiB  
Article
Pyridostigmine Mitigates Methotrexate-Induced Liver Fibrosis in Rats: Association with Changes in BMP-9, SIRT1, and Endoglin Expression
by Mehmet Ulusan, Mumin Alper Erdogan, Ozkan Simsek, Hilal Ustundag, Zafer Dogan, Bertug Bekir Ciftci, Mesih Kocamuftuoglu, Imdat Orhan and Oytun Erbas
Biomedicines 2025, 13(6), 1502; https://doi.org/10.3390/biomedicines13061502 - 19 Jun 2025
Viewed by 530
Abstract
Background and Objectives: Methotrexate (MTX) is a widely utilised pharmaceutical agent in the treatment of various malignancies and inflammatory diseases. However, its clinical utility is often constrained by its potential for hepatotoxicity. Although pyridostigmine is a well-established reversible acetylcholinesterase inhibitor, its potential therapeutic [...] Read more.
Background and Objectives: Methotrexate (MTX) is a widely utilised pharmaceutical agent in the treatment of various malignancies and inflammatory diseases. However, its clinical utility is often constrained by its potential for hepatotoxicity. Although pyridostigmine is a well-established reversible acetylcholinesterase inhibitor, its potential therapeutic role in preventing hepatic injury remains incompletely defined. The present study aimed to investigate whether pyridostigmine provides protective effects against MTX-triggered liver damage in a rat model. Methods: Thirty-six female Wistar albino rats randomly assigned to three groups: control (n = 12), MTX + saline (n = 12), and MTX + pyridostigmine (n = 12). Hepatotoxicity was induced by a single-dose MTX injection (20 mg/kg), followed by daily oral administration of either pyridostigmine (5 mg/kg) or saline for ten consecutive days. Hepatic function markers, oxidative stress parameters, fibrosis-associated mediators, and histopathological changes were assessed. Results: Pyridostigmine significantly attenuated MTX-induced elevations in plasma alanine aminotransferase (p < 0.05) and cytokeratin-18 levels (p < 0.001), and reduced liver and plasma malondialdehyde (MDA) levels (p < 0.05). Additionally, pyridostigmine treatment resulted in reduced levels of transforming growth factor-beta (p < 0.05), bone morphogenetic protein-9 (p < 0.001), and endoglin levels (p < 0.05), as well as increased sirtuin 1 level (p < 0.05). Histopathological examination revealed that pyridostigmine treatment significantly reduced MTX-induced hepatocyte necrosis, fibrosis, and cellular infiltration. Conclusions: Pyridostigmine exerted hepatoprotective effects against MTX-induced liver injury by attenuating oxidative stress, restoring SIRT1 expression, and suppressing pro-fibrotic signaling. These findings indicate that pyridostigmine may hold therapeutic potential for the prevention of MTX-associated hepatotoxicity. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

15 pages, 529 KiB  
Review
The Dual Role of TRADD in Liver Disease: From Cell Death Regulation to Inflammatory Microenvironment Remodeling
by Xueling Wang, Qiwen Tan, Di Zhang, Huan Cao, Shenghe Deng and Yu Zhang
Int. J. Mol. Sci. 2025, 26(12), 5860; https://doi.org/10.3390/ijms26125860 - 19 Jun 2025
Viewed by 684
Abstract
The global burden of liver diseases continues to rise, encompassing diverse pathologies such as viral hepatitis, alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and hepatocellular carcinoma (HCC). In recent years, TNFR1-associated death domain protein (TRADD), a pivotal adaptor molecule in [...] Read more.
The global burden of liver diseases continues to rise, encompassing diverse pathologies such as viral hepatitis, alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and hepatocellular carcinoma (HCC). In recent years, TNFR1-associated death domain protein (TRADD), a pivotal adaptor molecule in the TNF signaling pathway, has been found to play a dual regulatory role in the pathogenesis of liver diseases. Through its death domain, TRADD binds to TNFR1 and dynamically recruits downstream factors (e.g., TRAF2, RIPK1, FADD) to form Complex I or IIa, thereby activating pro-survival or pro-apoptotic signals that dictate hepatocyte fate and modulate the inflammatory microenvironment. This review systematically summarizes the molecular structure and functional networks of TRADD, along with its mechanistic roles in liver diseases: in HCC, TRADD expression correlates with tumor differentiation and is regulated by miRNA targeting; in ALD and MASLD, TRADD-mediated apoptosis is closely linked to fibrotic progression; and in acute liver injury, TRADD signaling is modulated by factors such as HO-1 to mitigate damage. Furthermore, TRADD inhibitors and antisense oligonucleotides demonstrate therapeutic potential. This review highlights the clinical translational value of TRADD as a diagnostic, therapeutic, and prognostic biomarker for liver diseases, providing a theoretical foundation for future precision medicine strategies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 2622 KiB  
Article
SIRT1-Mediated Epigenetic Protective Mechanisms of Phytosome-Encapsulated Zea mays L. var. ceratina Tassel Extract in a Rat Model of PM2.5-Induced Cardiovascular Inflammation
by Wipawee Thukham-Mee, Jintanaporn Wattanathorn and Nut Palachai
Int. J. Mol. Sci. 2025, 26(12), 5759; https://doi.org/10.3390/ijms26125759 - 16 Jun 2025
Viewed by 465
Abstract
Cardiovascular injury caused by fine particulate matter (PM2.5) exposure is an escalating public health concern due to its role in triggering systemic inflammation and oxidative stress. This study elucidates the sirtuin 1 (SIRT1)-mediated epigenetic mechanisms underlying the protective effects of phytosome-encapsulated Zea mays [...] Read more.
Cardiovascular injury caused by fine particulate matter (PM2.5) exposure is an escalating public health concern due to its role in triggering systemic inflammation and oxidative stress. This study elucidates the sirtuin 1 (SIRT1)-mediated epigenetic mechanisms underlying the protective effects of phytosome-encapsulated Zea mays L. var. ceratina tassel extract (PZT) in a rat model of PM2.5-induced cardiovascular inflammation. Male Wistar rats were pretreated with PZT (100, 200, and 400 mg/kg body weight) for 21 days before and throughout a 27-day PM2.5 exposure period. SIRT1 expression and associated inflammatory and oxidative stress markers were evaluated in cardiac and vascular tissues. The findings revealed that PZT significantly upregulated SIRT1 expression, a key epigenetic regulator known to modulate inflammatory and antioxidant pathways. The activation of SIRT1 inhibited the nuclear factor-kappa B (NF-κB) signaling pathway, leading to a reduction in pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) within cardiac tissue. In vascular tissue, treatment with PZT reduced the levels of tumor necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β), thereby mitigating inflammatory and fibrotic responses. Furthermore, SIRT1 activation by PZT enhanced the antioxidant defense system by upregulating superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), which was associated with a decrease in malondialdehyde (MDA), a marker of lipid peroxidation. Collectively, these results demonstrate that PZT confers cardiovascular protection through SIRT1-dependent epigenetic modulation, mitigating PM2.5-induced inflammation, oxidative stress, and tissue remodeling. The dual anti-inflammatory and antioxidant actions of PZT via SIRT1 activation highlight its potential as a functional food-based preventative agent for reducing cardiovascular risk in polluted environments. Full article
Show Figures

Figure 1

21 pages, 823 KiB  
Review
Inflammasomes in Cardiovascular Diseases: Current Knowledge and Future Perspectives
by Mario Caldarelli, Laura Franza, Sebastiano Cutrupi, Martina Menegolo, Francesco Franceschi, Antonio Gasbarrini, Giovanni Gambassi and Rossella Cianci
Int. J. Mol. Sci. 2025, 26(12), 5439; https://doi.org/10.3390/ijms26125439 - 6 Jun 2025
Cited by 1 | Viewed by 693
Abstract
Chronic inflammation is an important contributor to the development of cardiovascular disorders, and inflammasomes, especially the NOD-like receptor protein 3 (NLRP3), are emerging as crucial mediators in this context. Inflammasomes are activated through receptor-mediated danger signals, such as cholesterol crystals and cellular damage [...] Read more.
Chronic inflammation is an important contributor to the development of cardiovascular disorders, and inflammasomes, especially the NOD-like receptor protein 3 (NLRP3), are emerging as crucial mediators in this context. Inflammasomes are activated through receptor-mediated danger signals, such as cholesterol crystals and cellular damage products, thereby stimulating the secretion of pro-inflammatory cytokines, which sustains inflammation. This mechanism drives atherosclerosis (via plaque formation and destabilization), heart failure (via fibrotic remodeling), and pericarditis (via exacerbation of pericardial inflammation). Therapeutic approaches seek to block inflammasome activation or their pro-inflammatory pathways. Colchicine, interleukin-1 inhibitors (anakinra, canakinumab), and Sodium-Glucose Transport Protein 2 (SGLT2) inhibitors have a positive impact on cardiovascular inflammation. Various new compounds, such as MCC950, have been described as novel specific inhibitors of NLRP3. Further studies are needed to validate the effectiveness and safety of these treatments. Further elucidating the role of inflammasomes in cardiovascular disease could open the way to achieving more effective therapies, allowing for better management of high-risk cardiovascular patients. Full article
Show Figures

Figure 1

22 pages, 2570 KiB  
Article
Tacrolimus Modulates TGF-β Signaling–Related Genes and MicroRNAs in Human Retinal Pigment Epithelial Cells Activated by Lipopolysaccharide
by Aleksandra Kiełbasińska, Katarzyna Krysik, Dominika Janiszewska-Bil, Martyna Machaj, Zuzanna Lelek, Joanna Sułkowska, Olga Nawotny-Czupryna and Beniamin Oskar Grabarek
Int. J. Mol. Sci. 2025, 26(11), 5402; https://doi.org/10.3390/ijms26115402 - 4 Jun 2025
Viewed by 609
Abstract
The retinal pigment epithelium (RPE) plays a crucial role in maintaining retinal homeostasis, and dysregulation of the transforming growth factor-beta (TGF-β) signaling pathways contributes to retinal fibrosis and inflammatory diseases, including proliferative vitreoretinopathy (PVR). Tacrolimus (FK506), an immunosuppressant, has shown potential antifibrotic properties, [...] Read more.
The retinal pigment epithelium (RPE) plays a crucial role in maintaining retinal homeostasis, and dysregulation of the transforming growth factor-beta (TGF-β) signaling pathways contributes to retinal fibrosis and inflammatory diseases, including proliferative vitreoretinopathy (PVR). Tacrolimus (FK506), an immunosuppressant, has shown potential antifibrotic properties, but its effects on TGF-β-related genes and microRNAs (miRNAs) in RPE cells remain unclear. Human RPE (H-RPE) cells were treated with lipopolysaccharide (LPS) to induce inflammation and subsequently exposed to tacrolimus. Gene and miRNA expression profiling related to TGF-β signaling pathways were conducted using microarrays, followed by Quantitative Reverse-Transcription Polymerase Chain Reaction (RT-qPCR) validation. Protein levels were assessed via enzyme-linked immunosorbent assay (ELISA), and interactions were analyzed using STRING database network analysis. Tacrolimus modulated key components of the TGF-β pathway, upregulating TGF-β2, TGF-β3, SMAD2, and SMAD4 while downregulating TGF-βR1 and SMAD7. JAK/STAT and MAPK pathways were also affected, indicating broad regulatory effects. miRNA profiling identified hsa-miR-200a-3p, hsa-miR-589-3p, hsa-miR-21, and hsa-miR-27a-5p as key regulators. STRING analysis confirmed strong functional interactions within the TGF-β network. In conclusion, tacrolimus modulates both canonical (upregulation of SMAD2/4 and downregulation of SMAD7) and non-canonical (JAK/STAT and MAPK) TGF-β signaling pathways in LPS-stimulated RPE cells. These changes collectively suggest a dual anti-inflammatory and anti-fibrotic effect. The increased TGF-β2 and decreased SMAD7 levels, alongside altered miRNA expression (e.g., downregulation of miR-200a-3p), indicate that tacrolimus may inhibit key profibrotic mechanisms underlying PVR. These findings support the potential therapeutic repurposing of tacrolimus in PVR and warrant further in vivo validation. Full article
(This article belongs to the Special Issue Eye Diseases: From Pathophysiology to Novel Therapeutic Approaches)
Show Figures

Figure 1

18 pages, 19397 KiB  
Article
Myofibroblast-like Cells and Junctional Complex Development Play a Role in Mouse Pubic Symphysis Remodeling During Pregnancy and Postpartum
by Viviane Souza Rosa, Bianca Gazieri Castelucci, Monica Moreira, Paulo Pinto Joazeiro and Sílvio Roberto Consonni
Int. J. Mol. Sci. 2025, 26(11), 5307; https://doi.org/10.3390/ijms26115307 - 31 May 2025
Viewed by 536
Abstract
During mouse pregnancy, the pubic symphysis (PS) undergoes a gradual transitioning into an interpubic ligament (IpL) for a successful delivery. After birth, this IpL is rapidly remodeled, returning to the non-pregnant morphology. The PS fibrocartilaginous cells acquire a myofibroblast-like phenotype, characterized by extracellular [...] Read more.
During mouse pregnancy, the pubic symphysis (PS) undergoes a gradual transitioning into an interpubic ligament (IpL) for a successful delivery. After birth, this IpL is rapidly remodeled, returning to the non-pregnant morphology. The PS fibrocartilaginous cells acquire a myofibroblast-like phenotype, characterized by extracellular matrix (ECM) secretion, expression of α-smooth muscle actin (α-SMA), and vimentin. While the presence of myofibroblast-like cells during the IpL remodeling is well described, cell–cell interactions and how this might contribute to the delivery remains poorly understood. This study uses ultrastructure and molecular approaches to investigate cell–cell and cell–ECM junctions during mouse pregnancy and postpartum. Our findings reveal that the intercellular contacts between adjacent IpL myofibroblast-like cells, particularly at late pregnancy stages, are characterized as adherens and GAP junctions. The acquisition of contractile elements by IpL cells, coupled with neighboring cells and the surrounding ECM via junctional complexes, suggests an important role in supporting changes in the mechanical forces generated by pubic bone movements during mouse pregnancy and also in tying the pelvic bones together, which may help the birth canal closure after delivery. Further studies in PS biology may investigate fibroblast to myofibroblast differentiation signaling cascades, which regulate the expression of pro-fibrotic proteins and may provide new insights for preterm labor. Full article
(This article belongs to the Special Issue Latest Advances in Reproduction Biology)
Show Figures

Figure 1

Back to TopTop