JAK2 Inhibitors and Emerging Therapies in Graft-Versus-Host Disease: Current Perspectives and Future Directions
Abstract
1. Introduction
2. JAK2 Inhibitors in GVHD: Mechanisms and Clinical Applications
2.1. Mechanism of JAK2 Inhibition in GVHD
2.2. Clinical Trials and FDA Approvals
Comparison with Other JAK Inhibitors
3. Recent FDA-Approved Therapies in GVHD: Expanding Treatment Options
3.1. Axatilimab (Niktimvo): CSF-1R Inhibition
3.2. Remestemcel-L (Ryoncil): Mesenchymal Stromal Cell Therapy
4. Combination Strategies: JAK2 Inhibitors and Emerging Therapies
4.1. Synergistic Effects of JAK2 Inhibition with Immunomodulatory Agents
4.2. Combinatorial Approaches with Axatilimab or Remestemcel-L
4.3. Preserving Graft-vs.-Leukemia Effects in Combination Therapies
5. Safety, Adverse Effects, and Challenges
5.1. Comparative Analysis of Toxicities and Adverse Events
5.2. Management of Immune Dysregulation and Infection Risks
5.3. Considerations for Long-Term Therapy in Chronic GVHD
6. Future Perspectives and Unmet Needs
6.1. Ongoing Trials Evaluating Next-Generation JAK Inhibitors and Novel Biologics
6.2. Development of Biomarkers for Predicting Treatment Response
6.3. Personalized Approaches for GVHD Management
7. Conclusions
Funding
Conflicts of Interest
References
- De Togni, E.; Cole, O.; Abboud, R. Janus kinase inhibition in the treatment and prevention of graft-versus-host disease. Front. Immunol. 2024, 15, 1304065. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, M.A.; Choi, J.; Staser, K.; DiPersio, J.F. The role of Janus kinase signaling in graft-versus-host disease and graft versus leukemia. Biol. Blood Marrow Transplant. 2018, 24, 1125–1134. [Google Scholar] [CrossRef]
- Mehta, A.K.; Koreth, J. Toward improving initial therapy of acute graft-versus-host disease. Am. J. Hematol. 2025, 100, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Kurya, A.U.; Aliyu, U.; Tudu, A.I.; Usman, A.G.; Yusuf, M.; Gupta, S.; Ali, A.; Gulfishan, M.; Singh, S.K.; Hussain, I.; et al. Graft-versus-host disease: Therapeutic prospects of improving the long-term post-transplant outcomes. Transplant. Rep. 2022, 7, 100107. [Google Scholar] [CrossRef]
- Castelo-Soccio, L.; Kim, H.; Gadina, M.; Schwartzberg, P.L.; Laurence, A.; O’Shea, J.J. Protein kinases: Drug targets for immunological disorders. Nat. Rev. Immunol. 2023, 23, 787–806. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, J.J.; Holland, S.M.; Staudt, L.M. JAKs and STATs in immunity, immunodeficiency, and cancer. N. Engl. J. Med. 2013, 368, 161–170. [Google Scholar] [CrossRef]
- Ali, H.; Salhotra, A.; Modi, B.; Nakamura, R. Ruxolitinib for the treatment of graft-versus-host disease. Expert Rev. Clin. Immunol. 2020, 16, 347–359. [Google Scholar] [CrossRef]
- Choi, J.; Cooper, M.L.; Staser, K.; Ashami, K.; Vij, K.R.; Wang, B.; Marsala, L.; Niswonger, J.; Ritchey, J.; Alahmari, B.; et al. Baricitinib-induced blockade of interferon gamma receptor and interleukin-6 receptor for the prevention and treatment of graft-versus-host disease. Leukemia 2018, 32, 2483–2494. [Google Scholar] [CrossRef]
- Carniti, C.; Gimondi, S.; Vendramin, A.; Recordati, C.; Confalonieri, D.; Bermema, A.; Corradini, P.; Mariotti, J. Pharmacologic inhibition of JAK1/JAK2 signaling reduces experimental murine acute GVHD while preserving GVT effects. Clin. Cancer Res. 2015, 21, 3740–3749. [Google Scholar] [CrossRef]
- Choi, J.; Cooper, M.L.; Alahmari, B.; Ritchey, J.; Collins, L.; Holt, M.; DiPersio, J.F. Pharmacologic blockade of JAK1/JAK2 reduces GvHD and preserves the graft-versus-leukemia effect. PLoS ONE 2014, 9, e109799. [Google Scholar] [CrossRef]
- Betts, B.C.; Abdel-Wahab, O.; Curran, S.A.; St Angelo, E.T.; Koppikar, P.; Heller, G.; Levine, R.L.; Young, J.W. Janus kinase-2 inhibition induces durable tolerance to alloantigen by human dendritic cell–stimulated T cells yet preserves immunity to recall antigen. Blood J. Am. Soc. Hematol. 2011, 118, 5330–5339. [Google Scholar]
- Zeiser, R.; von Bubnoff, N.; Butler, J.; Mohty, M.; Niederwieser, D.; Or, R.; Szer, J.; Wagner, E.M.; Zuckerman, T.; Mahuzier, B.; et al. Ruxolitinib for glucocorticoid-refractory acute GVHD. N. Engl. J. Med. 2020, 382, 1800–1810. [Google Scholar] [CrossRef]
- Mahmoudjafari, Z.; Kintsch, E.; Xue, Z.; Bhatt, V.; Galvin, J.; Locatelli, F.; Zeiser, R. Effects of Concomitant Azoles on Ruxolitinib Treatment in Patients with Chronic Graft-Versus-Host Disease: A Post Hoc Analysis from the Randomized Phase 3 REACH3 Study. Transplant. Cell. Ther. 2024, 30, S287. [Google Scholar] [CrossRef]
- Murray, A.; Linn, S.M.; Yu, B.; Novitzky-Basso, I.; Mattsson, J.; Kennah, M.; Elemary, M.; White, J.; Lemieux, C.; Jamani, K.; et al. Real-world experience with ruxolitinib therapy for steroid-refractory acute graft versus host disease. Bone Marrow Transplant. 2024, 59, 759–764. [Google Scholar] [CrossRef]
- Kim, S.; Ashami, K.; Lim, S.; Staser, K.; Vij, K.; Santhanam, S.; Ritchey, J.; Peterson, S.; Gao, F.; Ciorba, M.A.; et al. Baricitinib prevents GvHD by increasing Tregs via JAK3 and treats established GvHD by promoting intestinal tissue repair via EGFR. Leukemia. 2022, 36, 292–295. [Google Scholar] [CrossRef]
- Zeiser, R.; Socié, G.; Schroeder, M.A.; Abhyankar, S.; Vaz, C.P.; Kwon, M.; Clausen, J.; Volodin, L.; Giebel, S.; Chacon, M.J.; et al. Efficacy and safety of itacitinib versus placebo in combination with corticosteroids for initial treatment of acute graft-versus-host disease (GRAVITAS-301): A randomised, multicentre, double-blind, phase 3 trial. Lancet Haematol. 2022, 9, e14–e25. [Google Scholar] [CrossRef] [PubMed]
- Pidala, J.; Walton, K.; Elmariah, H.; Kim, J.; Mishra, A.; Bejanyan, N.; Nishihori, T.; Khimani, F.; Perez, L.; Faramand, R.G.; et al. Pacritinib combined with sirolimus and low-dose tacrolimus for GVHD prevention after allogeneic hematopoietic cell transplantation: Preclinical and phase I trial results. Clin. Cancer Res. 2021, 27, 2712–2722. [Google Scholar] [CrossRef] [PubMed]
- Mohty, M. CSF1R blockade for refractory chronic graft-versus-host disease. N. Engl. J. Med. 2024, 391, 1055–1059. [Google Scholar] [CrossRef]
- Wolff, D.; Cutler, C.; Lee, S.J.; Pusic, I.; Bittencourt, H.; White, J.; Hamadani, M.; Arai, S.; Salhotra, A.; Perez-Simon, J.A.; et al. Axatilimab in recurrent or refractory chronic graft-versus-host disease. N. Engl. J. Med. 2024, 391, 1002–1014. [Google Scholar] [CrossRef]
- Alexander, K.A.; Flynn, R.; Lineburg, K.E.; Kuns, R.D.; Teal, B.E.; Olver, S.D.; Lor, M.; Raffelt, N.C.; Koyama, M.; Leveque, L.; et al. CSF-1–dependent donor-derived macrophages mediate chronic GVHD. J. Clin. Investig. 2014, 124, 4266–4280. [Google Scholar] [CrossRef]
- Kitko, C.L.; Arora, M.; DeFilipp, Z.; Zaid, M.A.; Di Stasi, A.; Radojcic, V.; Betts, C.B.; Coussens, L.M.; Meyers, M.L.; Qamoos, H.; et al. Axatilimab for chronic graft-versus-host disease after failure of at least two prior systemic therapies: Results of a phase I/II study. J. Clin. Oncol. 2023, 41, 1864–1875. [Google Scholar] [CrossRef] [PubMed]
- Keam, S.J. Axatilimab: First approval. Drugs 2024, 84, 1475–1480. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Guidelines: Hematopoietic Cell Transplantation. Version 2.2024; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA, 2024. [Google Scholar]
- Ordentlich, P.; Wolfreys, A.; Da Costa, A. Targeting colony stimulating factor-1 receptor (CSF-1R) with SNDX-6352, a novel anti-CSF-1R targeted antibody. J. Immunother. Cancer 2016, 4, P402. [Google Scholar]
- Le Blanc, K.; Dazzi, F.; English, K.; Farge, D.; Galipeau, J.; Horwitz, E.M.; Kadri, N.; Krampera, M.; Lalu, M.M.; Nolta, J.; et al. ISCT MSC Committee Statement on the US FDA Approval of Allogenic Bone-Marrow Mesenchymal Stromal Cells. Cytotherapy 2025, 27, 413–416. [Google Scholar] [CrossRef]
- Olivieri, A.; Mancini, G. Current approaches for the prevention and treatment of acute and chronic GVHD. Cells 2024, 13, 1524. [Google Scholar] [CrossRef]
- Fernández-Maqueda, C.; Gonzalo-Daganzo, R.; Regidor, C.; Martín-Donaire, T.; Sánchez, R.; Bueno, J.L.; Bautista, G.; De Liglesia, A.; Gutiérrez, Y.; García-Berciano, M.; et al. Mesenchymal stromal cells for steroid-refractory acute GvHD. Bone Marrow Transplant. 2017, 52, 1577–1579. [Google Scholar] [CrossRef]
- Kurtzberg, J.; Abdel-Azim, H.; Carpenter, P.; Chaudhury, S.; Horn, B.; Mahadeo, K.; Nemecek, E.; Neudorf, S.; Prasad, V.; Prockop, S.; et al. A Phase 3, Single-Arm, Prospective Study of Remestemcel-L, Ex Vivo Culture-Expanded Adult Human Mesenchymal Stromal Cells for the Treatment of Pediatric Patients Who Failed to Respond to Steroid Treatment for Acute Graft-versus-Host Disease. Biol. Blood Marrow Transplant. 2020, 26, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Kebriaei, P.; Hayes, J.; Daly, A.; Uberti, J.; Marks, D.I.; Soiffer, R.; Waller, E.K.; Burke, E.; Skerrett, D.; Shpall, E.; et al. A Phase 3 Randomized Study of Remestemcel-L versus Placebo Added to Second-Line Therapy in Patients with Steroid-Refractory Acute Graft-versus-Host Disease. Biol. Blood Marrow Transplant. 2020, 26, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Muroi, K.; Miyamura, K.; Okada, M.; Yamashita, T.; Murata, M.; Ishikawa, T.; Uike, N.; Hidaka, M.; Kobayashi, R.; Imamura, M.; et al. BM-MSCs for steroid-refractory grade III/IV aGVHD: Phase II/III study. Int. J. Hematol. 2016, 103, 243–250. [Google Scholar] [CrossRef]
- Choi, J.; Cooper, M.L.; Staser, K.; Ashami, K.; Vij, K.R.; Wang, B.; Marsala, L.; Niswonger, N.; Ritchey, J.; Alahmari, B. Baricitinib-induced Treg enhancement prevents GVHD while preserving GvL. PLoS ONE 2014, 9, e109799. [Google Scholar]
- Braun, L.M.; Zeiser, R. Kinase inhibition as treatment for acute and chronic graft-versus-host disease. Front. Immunol. 2021, 12, 760199. [Google Scholar] [CrossRef]
- Ashami, K.; DiPersio, J.F.; Choi, J. Targeting IFNGR/IL6R for GVHD control. Oncotarget 2018, 9, 35721–35722. [Google Scholar] [CrossRef]
- Weiss-Haug, A.V.; Haraszti, R.A.; Hug, S.; Faul, C.; Bethge, W.A.; Lengerke, C. Allogeneic Hemopoietic Cell Transplantation as a Paradigm for Cellular Immunotherapy. Oncol. Res. Treat. 2025, 48, 280–293. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, J.; Liu, B.; Shao, C.; Shi, Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell 2022, 29, 1515–1530. [Google Scholar] [CrossRef]
- Conroy, R. FDA Issues CRL for Remestemcel-L in Pediatric Steroid-Refractory Acute GVHD. Cancer Netw. 2023. [Google Scholar]
- Shahir, M.; Mahmoud Hashemi, S.; Asadirad, A.; Varahram, M.; Kazempour-Dizaji, M.; Folkerts, G.; Garssen, J.; Adcock, I.; Mortaz, E. Effect of mesenchymal stem cell-derived exosomes on the induction of mouse tolerogenic dendritic cells. J. Cell. Physiol. 2020, 235, 7043–7055. [Google Scholar] [CrossRef]
- Wang, Y.C.; Chen, R.F.; Liu, K.F.; Chen, W.Y.; Lee, C.C.; Kuo, Y.R. Adipose-derived stem cell modulate tolerogenic dendritic cell-induced T cell regulation is correlated with activation of Notch-NFκB signaling. Cytotherapy 2024, 26, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Sun, X.; Lin, R.; Wang, Y.; Xuan, L.; Yao, H.; Zhang, Y.; Mo, X.; Lv, M.; Zheng, F.; et al. Mesenchymal stromal cells plus basiliximab improve the response of steroid-refractory acute graft-versus-host disease as a second-line therapy: A multicentre, randomized, controlled trial. BMC Med. 2024, 22, 85. [Google Scholar] [CrossRef]
- Watkins, B.; Qayed, M.; Bratrude, B.; Betz, K.; Brown, M.; Rhodes, J.; Sinclair, S.; Suessmuth, Y.; Yu, A.; Hebert, K.; et al. T cell costimulation blockade with abatacept nearly eliminates early severe acute graft versus host disease after HLA-mismatched (7/8 HLA matched) unrelated donor transplant, with a favorable impact on disease-free and overall survival. Blood 2017, 130, 212. [Google Scholar]
- El Jurdi, N.; Blazar, B.R.; Pavletic, S.Z. Chronic Graft-versus-host Disease, Part 2: Clinical Success and Roadmap to the Future. Transplantation 2025. [Google Scholar] [CrossRef] [PubMed]
- Giden, A.O.; Erkurt, M.A.; Hindilerden, I.Y.; Hidayet, E.; Berber, I.; Tiryaki, T.O.; Zorlu, T.; Namdaroglu, S.; Sarici, A.; Aksoy, E.; et al. Long-term use of ruxolitinib in cGVHD. Transfus. Apher. Sci. 2025, 64, 104053. [Google Scholar] [CrossRef] [PubMed]
- Gooptu, M.; Antin, J.H. GVHD prophylaxis 2020. Front. Immunol. 2021, 12, 605726. [Google Scholar] [CrossRef] [PubMed]
- Molander, V.; Bower, H.; Frisell, T.; Delcoigne, B.; Di Giuseppe, D.; Askling, J.; Alenius, G.M.; Baecklund, E.; Chatzidionysiou, K.; Feltelius, N.; et al. Venous thromboembolism with JAK inhibitors and other immune-modulatory drugs: A Swedish comparative safety study among patients with rheumatoid arthritis. Ann. Rheum. Dis. 2023, 82, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Penack, O.; Marchetti, M.; Aljurf, M.; Arat, M.; Bonifazi, F.; Duarte, R.F.; Giebel, S.; Greinix, H.; Hazenberg, M.D.; Kröger, N.; et al. Prophylaxis and management of graft-versus-host disease after stem-cell transplantation for haematological malignancies: Updated consensus recommendations of the European Society for Blood and Marrow Transplantation. Lancet Haematol. 2024, 11, e147–e159. [Google Scholar] [CrossRef]
- Smallbone, P.; Mehta, R.S.; Alousi, A. Steroid Refractory Acute GVHD: The Hope for a Better Tomorrow. Am. J. Hematol. 2025, 100, 14–29. [Google Scholar] [CrossRef]
- Yanir, A.; Schulz, A.; Lawitschka, A.; Nierkens, S.; Eyrich, M. Immune reconstitution after allogeneic haematopoietic cell transplantation: From observational studies to targeted interventions. Front. Pediatr. 2022, 9, 786017. [Google Scholar] [CrossRef]
- Chow, E.J.; Anderson, L.; Baker, K.S.; Bhatia, S.; Guilcher, G.M.; Huang, J.T.; Pelletier, W.; Perkins, J.L.; Rivard, L.S.; Schechter, T.; et al. Late Effects Surveillance Recommendations among Survivors of Childhood Hematopoietic Cell Transplantation: A Children’s Oncology Group Report. Biol. Blood Marrow Transplant. 2016, 22, 782–795. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buxbaum, N.P.; Socié, G.; Hill, G.R.; MacDonald, K.P.; Tkachev, V.; Teshima, T.; Lee, S.J.; Ritz, J.; Sarantopoulos, S.; Luznik, L.; et al. Chronic GvHD NIH consensus project biology task force: Evolving path to personalized treatment of chronic GvHD. Blood Adv. 2023, 7, 4886–4902. [Google Scholar] [CrossRef]
- Schroeder, M.A.; Khoury, H.J.; Jagasia, M.; Ali, H.; Schiller, G.J.; Staser, K.; Choi, J.; Gehrs, L.; Arbushites, M.C.; Yan, Y.; et al. A phase 1 trial of itacitinib, a selective JAK1 inhibitor, in patients with acute graft-versus-host disease. Blood Adv. 2020, 4, 1656–1669. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ponce, D.M.; Alousi, A.M.; Nakamura, R.; Slingerland, J.; Calafiore, M.; Sandhu, K.S.; Barker, J.N.; Devlin, S.; Shia, J.; Giralt, S.; et al. A phase 2 study of interleukin-22 and systemic corticosteroids as initial treatment for acute GVHD of the lower GI tract. Blood 2023, 141, 1389–1401. [Google Scholar] [CrossRef]
- Pérez-Jeldres, T.; Alvarez-Lobos, M.; Rivera-Nieves, J. Targeting sphingosine-1-phosphate signaling in immune-mediated diseases: Beyond multiple sclerosis. Drugs 2021, 81, 985–1002. [Google Scholar] [CrossRef] [PubMed]
- Wiendl, M.; Becker, E.; Müller, T.M.; Voskens, C.J.; Neurath, M.F.; Zundler, S. Targeting immune cell trafficking–insights from research models and implications for future IBD therapy. Front. Immunol. 2021, 12, 656452. [Google Scholar] [CrossRef]
- Smith, A.L.; Skupa, S.A.; Eiken, A.P.; Reznicek, T.E.; Schmitz, E.; Williams, N.; Moore, D.Y.; D’Angelo, C.R.; Kallam, A.; Lunning, M.A.; et al. BET inhibition reforms the immune microenvironment and alleviates T cell dysfunction in chronic lymphocytic leukemia. JCI Insight 2024, 9, e177054. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Q.; Deng, L.; Ma, X.; Gong, Y.; Wang, Y.; Zhou, F. The roles of epigenetic regulation in graft-versus-host disease. Biomed. Pharmacother. 2024, 175, 116652. [Google Scholar] [CrossRef]
- Reikvam, H.; Hatfield, K.; Sandnes, M.; Bruserud, Ø. Future biomarkers for acute graft-versus-host disease: Potential roles of nucleic acids, metabolites, and immune cell markers. Expert Rev. Clin. Immunol. 2025, 21, 305–321. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.E. Prediction and Prognostication of Acute Graft-Versus-Host Disease by MAGIC Biomarkers. Am. J. Hematol. 2025, 100, 5–13. [Google Scholar] [CrossRef]
- Qayed, M.; Kapoor, U.; Gillespie, S.; Westbrook, A.; Aguayo-Hiraldo, P.; Ayuk, F.A.; Aziz, M.; Baez, J.; Choe, H.; DeFilipp, Z.; et al. A Validated Risk Stratification That Incorporates MAGIC Biomarkers Predicts Long-Term Outcomes in Pediatric Patients with Acute GVHD. Transplant. Cell. Ther. 2024, 30, 603-e1. [Google Scholar] [CrossRef]
- Al Malki, M.M.; London, K.; Baez, J.; Akahoshi, Y.; Hogan, W.J.; Etra, A.; Choe, H.; Hexner, E.; Langston, A.; Abhyankar, S.; et al. Phase 2 study of natalizumab plus standard corticosteroid treatment for high-risk acute graft-versus-host disease. Blood Adv. 2023, 7, 5189–5198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ion, D.; Trowbridge, R. Grading and treatment of acute graft-versus-host disease. In Atlas of Graft-Versus-Host Disease; Springer: Berlin/Heidelberg, Germany, 2017; pp. 109–120. Available online: https://plasticsurgerykey.com/grading-and-treatment-of-acute-graft-versus-host-disease/ (accessed on 20 May 2025).
- Cuvelier, G.D.; Ng, B.; Abdossamadi, S.; Nemecek, E.R.; Melton, A.; Kitko, C.L.; Lewis, V.A.; Schechter, T.; Jacobsohn, D.A.; Harris, A.C.; et al. Diagnostic classifier for pediatric cGVHD. Blood Adv. 2023, 7, 3612–3623. [Google Scholar] [CrossRef]
- Inamoto, Y.; Martin, P.J.; Lee, S.J.; Momin, A.A.; Tabellini, L.; Onstad, L.E.; Pidala, J.; Flowers, M.E.D.; Lawler, R.L.; Katayama, H.; et al. Dickkopf-related protein 3 is a novel biomarker for chronic GVHD after allogeneic hematopoietic cell transplantation. Blood Adv. 2020, 4, 2409–2417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zeiser, R.; Ringden, O.; Sadeghi, B.; Gonen-Yaacovi, G.; Segurado, O.G. Novel therapies for graft versus host disease with a focus on cell therapies. Front. Immunol. 2023, 14, 1241068. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wright, S.; Hennessy, C.; Hester, J.; Issa, F. Chimeric antigen receptors and regulatory T cells: The potential for HLA-specific immunosuppression in transplantation. Engineering 2022, 10, 30–43. [Google Scholar] [CrossRef]
- Pacini, C.P.; Soares, M.V.; Lacerda, J.F. The impact of regulatory T cells on the graft-versus-leukemia effect. Front. Immunol. 2024, 15, 1339318. [Google Scholar] [CrossRef]
- Hadjis, A.D.; McCurdy, S.R. The role and novel use of natural killer cells in graft-versus-leukemia reactions after allogeneic transplantation. Front. Immunol. 2024, 15, 1358668. [Google Scholar] [CrossRef] [PubMed]
- Rafei, H.; Daher, M.; Rezvani, K. Chimeric antigen receptor (CAR) natural killer (NK)-cell therapy: Leveraging the power of innate immunity. Br. J. Haematol. 2021, 193, 216–230. [Google Scholar] [CrossRef] [PubMed]
- Lindemans, C.A.; Calafiore, M.; Mertelsmann, A.M.; O’connor, M.H.; Dudakov, J.A.; Jenq, R.R.; Velardi, E.; Young, L.F.; Smith, O.M.; Lawrence, G.; et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 2015, 528, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Luu, L.D.; Pandey, A.; Paramsothy, S.; Ngo, C.; Castaño-Rodríguez, N.; Liu, C.; Kamm, M.A.; Borody, T.J.; Man, S.M.; Kaakoush, N.O. Profiling the colonic mucosal response to fecal microbiota transplantation identifies a role for GBP5 in colitis in humans and mice. Nat. Commun. 2024, 15, 2645. [Google Scholar] [CrossRef]
- Varayathu, H.; Sarathy, V.; Thomas, B.E.; Mufti, S.S.; Naik, R. Combination strategies to augment immune check point inhibitors efficacy-implications for translational research. Front. Oncol. 2021, 11, 559161. [Google Scholar] [CrossRef]
- Braun, L.M.; Zeiser, R. Immunomodulatory Therapies for the Treatment of Graft-versus-host Disease. Hemasphere 2021, 5, e581. [Google Scholar] [CrossRef]
- Ramzi, M.; Dehghani, M.; Hajimaghsoodi, M.; Golmoghaddam, H.; Arandi, N. The impact of PD-1/PD-L1, CTLA-4, TIM-3 and LAG-3 immune checkpoint receptor expression in the development of acute graft versus host disease (aGVHD) and disease recurrence after allogeneic hematopoietic stem cell transplantation. Hum. Immunol. 2025, 86, 111225. [Google Scholar] [CrossRef]
Drug/Therapy | Target(s) | Indication | Mechanism | Key Trial/Study | FDA Approval | Phase | Route | Clinical Efficacy | Toxicity Profile |
---|---|---|---|---|---|---|---|---|---|
Ruxolitinib | JAK1/2 Inhibitor | Steroid-refractory aGVHD and cGVHD | Blocks JAK1/2, reduces IFN-γ, IL-6 | REACH2, REACH3 | Yes (2019/2021) | Approved | Oral | High ORR in both aGVHD and cGVHD; durable responses | Cytopenias (anemia, thrombocytopenia), infections |
Baricitinib | JAK1/2 Inhibitor (JAK3 sparing) | Investigational GVHD therapy | Effective Treg preservation and Th1/Th17 suppression; promotes epithelial healing | Preclinical, early-phase | No | Preclinical | Oral | Effective in preclinical models; improved Treg:Teff ratio | Thrombotic risk, lipid alterations (preclinical) |
Itacitinib | JAK1-selective Inhibitor | Frontline aGVHD (modest effect) | Selective JAK1 blockade | GRAVITAS-301 | No | Phase III | Oral | Modest ORR; failed to meet primary endpoint | Less cytopenia; GI toxicity, infections |
Pacritinib | JAK2/FLT3 Inhibitor | Investigational GVHD therapy | Suppresses STAT3+ CD4+ T cells; preserves GvL effect | Preclinical + Phase I | No | Phase I | Oral | Promising preclinical efficacy; early clinical data emerging | GI upset, cytopenias, potential QTc prolongation |
Axatilimab | CSF-1R Monoclonal Antibody | Refractory cGVHD | Depletes CSF-1R–dependent profibrotic macrophages | AGAVE-201 | Yes (2024) | Approved | IV | ORR 50–74% in r/r cGVHD; improvement in fibrotic symptoms | Mild transaminitis, periorbital edema |
Remestemcel-L | Mesenchymal Stromal Cell Therapy | Pediatric steroid-refractory aGVHD | Promotes Tregs, suppresses Th1/Th17, secretes IL-10, TGF-β | GVHD001 (Phase III) | Yes (2024) | Approved | IV | ORR 70.4% at day 28; durable through day 100 | Excellent safety; no grade ≥ 3 infusion reactions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amoozgar, B.; Bangolo, A.; Mohamed, A.; Mansour, C.; Elias, D.; Cho, C.; Reddy, S. JAK2 Inhibitors and Emerging Therapies in Graft-Versus-Host Disease: Current Perspectives and Future Directions. Biomedicines 2025, 13, 1527. https://doi.org/10.3390/biomedicines13071527
Amoozgar B, Bangolo A, Mohamed A, Mansour C, Elias D, Cho C, Reddy S. JAK2 Inhibitors and Emerging Therapies in Graft-Versus-Host Disease: Current Perspectives and Future Directions. Biomedicines. 2025; 13(7):1527. https://doi.org/10.3390/biomedicines13071527
Chicago/Turabian StyleAmoozgar, Behzad, Ayrton Bangolo, Abdifitah Mohamed, Charlene Mansour, Daniel Elias, Christina Cho, and Siddhartha Reddy. 2025. "JAK2 Inhibitors and Emerging Therapies in Graft-Versus-Host Disease: Current Perspectives and Future Directions" Biomedicines 13, no. 7: 1527. https://doi.org/10.3390/biomedicines13071527
APA StyleAmoozgar, B., Bangolo, A., Mohamed, A., Mansour, C., Elias, D., Cho, C., & Reddy, S. (2025). JAK2 Inhibitors and Emerging Therapies in Graft-Versus-Host Disease: Current Perspectives and Future Directions. Biomedicines, 13(7), 1527. https://doi.org/10.3390/biomedicines13071527