Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,755)

Search Parameters:
Keywords = pressure–volume

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4538 KiB  
Article
Structural Optimization of Numerical Simulation for Spherical Grid-Structured Microporous Aeration Reactor
by Yipeng Liu, Hui Nie, Yangjiaming He, Yinkang Xu, Jiale Sun, Nan Chen, Saihua Huang, Hao Chen and Dongfeng Li
Water 2025, 17(15), 2302; https://doi.org/10.3390/w17152302 (registering DOI) - 2 Aug 2025
Abstract
As the core equipment for efficient wastewater treatment, the internal structure of microporous aeration bioreactors directly determines the mass transfer efficiency and treatment performance. Based on Computational Fluid Dynamics (CFD) technology, this study explores the optimization mechanism of a Spherical Grid-Structured on the [...] Read more.
As the core equipment for efficient wastewater treatment, the internal structure of microporous aeration bioreactors directly determines the mass transfer efficiency and treatment performance. Based on Computational Fluid Dynamics (CFD) technology, this study explores the optimization mechanism of a Spherical Grid-Structured on the internal flow field of the reactor through a 3D numerical simulation system, aiming to improve the aeration efficiency and resource utilization. This study used a combination of experimental and numerical simulations to compare and analyze different configurations of the Spherical Grid-Structure. The simulation results show that the optimal equilibrium of the flow field inside the reactor is achieved when the diameter of the grid sphere is 2980 mm: the average flow velocity is increased by 22%, the uniformity of the pressure distribution is improved by 25%, and the peak turbulent kinetic energy is increased by 30%. Based on the Kalman vortex street theory, the periodic vortex induced by the grid structure refines the bubble size to 50–80 microns, improves the oxygen transfer efficiency by 20%, increases the spatial distribution uniformity of bubbles by 35%, and significantly reduces the dead zone volume from 28% to 16.8%, which is a decrease of 40%. This study reveals the quantitative relationship between the structural parameters of the grid and the flow field characteristics through a pure numerical simulation, which provides a theoretical basis and quantifiable optimization scheme for the structural design of the microporous aeration bioreactor, which is of great significance in promoting the development of low-energy and high-efficiency wastewater treatment technology. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

19 pages, 4045 KiB  
Article
Response Surface Optimization Design for High-Speed Ball Bearing Double-Lip Seals Considering Wear Characteristics
by Hengdi Wang, Yulu Yue, Yongcun Cui, Lina Lou and Chang Li
Lubricants 2025, 13(8), 343; https://doi.org/10.3390/lubricants13080343 (registering DOI) - 1 Aug 2025
Abstract
This paper focuses on the sealing failure problem of double-lip seal rings for high-speed ball bearings used in unmanned aerial vehicles. By using ANSYS 2023R1 software, a thermal–stress–wear coupled finite element model was established. Taking the contact pressure and volume loss due to [...] Read more.
This paper focuses on the sealing failure problem of double-lip seal rings for high-speed ball bearings used in unmanned aerial vehicles. By using ANSYS 2023R1 software, a thermal–stress–wear coupled finite element model was established. Taking the contact pressure and volume loss due to wear as indicators to evaluate sealing performance, this study analyzed the influence of lip seal structural parameters on sealing performance, performed response surface optimization of the seal structure parameters and conducted a comparative test on lip seals before and after optimization. The research results show that the contact pressure at the main lip of the lip seal was the greatest, which was 0.79 MPa, and the volume loss due to wear lip seal was 7.94 × 10−7 mm3. Optimal sealing performance is achieved when the seal lip inclination angle is 41.68°, the middle width of the lip seal is 0.153 mm, the main lip height is 0.179 mm, the spring center distance is 0.37 mm and the radial interference is 0.0034 mm. After optimization, the grease leakage rate of the sealing ring decreased by 48% compared to before optimization. Full article
Show Figures

Figure 1

22 pages, 1788 KiB  
Article
Multi-Market Coupling Mechanism of Offshore Wind Power with Energy Storage Participating in Electricity, Carbon, and Green Certificates
by Wenchuan Meng, Zaimin Yang, Jingyi Yu, Xin Lin, Ming Yu and Yankun Zhu
Energies 2025, 18(15), 4086; https://doi.org/10.3390/en18154086 (registering DOI) - 1 Aug 2025
Viewed by 30
Abstract
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To [...] Read more.
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To address these critical issues, this paper proposes a multi-market coupling trading model integrating energy storage-equipped offshore wind power into electricity–carbon–green certificate markets for large-scale grid networks. Firstly, a day-ahead electricity market optimization model that incorporates energy storage is established to maximize power revenue by coordinating offshore wind power generation, thermal power dispatch, and energy storage charging/discharging strategies. Subsequently, carbon market and green certificate market optimization models are developed to quantify Chinese Certified Emission Reduction (CCER) volume, carbon quotas, carbon emissions, market revenues, green certificate quantities, pricing mechanisms, and associated economic benefits. To validate the model’s effectiveness, a gradient ascent-optimized game-theoretic model and a double auction mechanism are introduced as benchmark comparisons. The simulation results demonstrate that the proposed model increases market revenues by 17.13% and 36.18%, respectively, compared to the two benchmark models. It not only improves wind power penetration and comprehensive profitability but also effectively alleviates government subsidy pressures through coordinated carbon–green certificate trading mechanisms. Full article
Show Figures

Figure 1

19 pages, 1070 KiB  
Review
Nasal Irrigations: A 360-Degree View in Clinical Practice
by Luca Pecoraro, Elisabetta Di Muri, Gianluca Lezzi, Silvia Picciolo, Marta De Musso, Michele Piazza, Mariangela Bosoni and Flavia Indrio
Medicina 2025, 61(8), 1402; https://doi.org/10.3390/medicina61081402 (registering DOI) - 1 Aug 2025
Viewed by 45
Abstract
Nasal irrigation (NI) is an effective, safe, low-cost strategy for treating and preventing upper respiratory tract diseases. High-volume, low-pressure saline irrigations are the most efficient method for removing infectious agents, allergens, and inflammatory mediators. This article reviews clinical evidence supporting NI use in [...] Read more.
Nasal irrigation (NI) is an effective, safe, low-cost strategy for treating and preventing upper respiratory tract diseases. High-volume, low-pressure saline irrigations are the most efficient method for removing infectious agents, allergens, and inflammatory mediators. This article reviews clinical evidence supporting NI use in various conditions: nasal congestion in infants, recurrent respiratory infections, acute and chronic rhinosinusitis, allergic and gestational rhinitis, empty nose syndrome, and post-endoscopic sinus surgery care. NI improves symptoms, reduces recurrence, enhances the efficacy of topical drugs, and decreases the need for antibiotics and decongestants. During the COVID-19 pandemic, NI has also been explored as a complementary measure to reduce viral load. Due to the safe profile and mechanical cleansing action on inflammatory mucus, nasal irrigations represent a valuable adjunctive treatment across a wide range of sinonasal conditions. Full article
Show Figures

Figure 1

20 pages, 3582 KiB  
Article
Design and Development of a Real-Time Pressure-Driven Monitoring System for In Vitro Microvasculature Formation
by Gayathri Suresh, Bradley E. Pearson, Ryan Schreiner, Yang Lin, Shahin Rafii and Sina Y. Rabbany
Biomimetics 2025, 10(8), 501; https://doi.org/10.3390/biomimetics10080501 (registering DOI) - 1 Aug 2025
Viewed by 34
Abstract
Microfluidic platforms offer a powerful approach for ultimately replicating vascularization in vitro, enabling precise microscale control and manipulation of physical parameters. Despite these advances, the real-time ability to monitor and quantify mechanical forces—particularly pressure—within microfluidic environments remains constrained by limitations in cost [...] Read more.
Microfluidic platforms offer a powerful approach for ultimately replicating vascularization in vitro, enabling precise microscale control and manipulation of physical parameters. Despite these advances, the real-time ability to monitor and quantify mechanical forces—particularly pressure—within microfluidic environments remains constrained by limitations in cost and compatibility across diverse device architectures. Our work presents an advanced experimental module for quantifying pressure within a vascularizing microfluidic platform. Equipped with an integrated Arduino microcontroller and image monitoring, the system facilitates real-time remote monitoring to access temporal pressure and flow dynamics within the device. This setup provides actionable insights into the hemodynamic parameters driving vascularization in vitro. In-line pressure sensors, interfaced through I2C communication, are employed to precisely record inlet and outlet pressures during critical stages of microvasculature tubulogenesis. Flow measurements are obtained by analyzing changes in reservoir volume over time (dV/dt), correlated with the change in pressure over time (dP/dt). This quantitative assessment of various pressure conditions in a microfluidic platform offers insights into their impact on microvasculature perfusion kinetics. Data acquisition can help inform and finetune functional vessel network formation and potentially enhance the durability, stability, and reproducibility of engineered in vitro platforms for organoid vascularization in regenerative medicine. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

20 pages, 16348 KiB  
Article
The Recent Extinction of the Carihuairazo Volcano Glacier in the Ecuadorian Andes Using Multivariate Analysis Techniques
by Pedro Vicente Vaca-Cárdenas, Eduardo Antonio Muñoz-Jácome, Maritza Lucia Vaca-Cárdenas, Diego Francisco Cushquicullma-Colcha and José Guerrero-Casado
Earth 2025, 6(3), 86; https://doi.org/10.3390/earth6030086 (registering DOI) - 1 Aug 2025
Viewed by 141
Abstract
Climate change has accelerated the retreat of Andean glaciers, with significant recent losses in the tropical Andes. This study evaluates the extinction of the Carihuairazo volcano glacier (Ecuador), quantifying its area from 1312.5 m2 in September 2023 to 101.2 m2 in [...] Read more.
Climate change has accelerated the retreat of Andean glaciers, with significant recent losses in the tropical Andes. This study evaluates the extinction of the Carihuairazo volcano glacier (Ecuador), quantifying its area from 1312.5 m2 in September 2023 to 101.2 m2 in January 2024, its thickness (from 2.5 m to 0.71 m), and its volume (from 2638.85 m3 to 457.18 m3), before its complete deglaciation in February 2024; this rapid melting and its small size classify it as a glacierette. Multivariate analyses (PCA and biclustering) were performed to correlate climatic variables (temperature, solar radiation, precipitation, relative humidity, vapor pressure, and wind) with glacier surface and thickness. The PCA explained 70.26% of the total variance, with Axis 1 (28.01%) associated with extreme thermal conditions (temperatures up to 8.18 °C and radiation up to 16.14 kJ m−2 day−1), which probably drove its disappearance. Likewise, Axis 2 (21.56%) was related to favorable hydric conditions (precipitation between 39 and 94 mm) during the initial phase of glacier monitoring. Biclustering identified three groups of variables: Group 1 (temperature, solar radiation, and vapor pressure) contributed most to deglaciation; Group 2 (precipitation, humidity) apparently benefited initial stability; and Group 3 (wind) played a secondary role. These results, validated through in situ measurements, provide scientific evidence of the disappearance of the Carihuairazo volcano glacier by February 2024. They also corroborate earlier projections that anticipated its extinction by the middle of this decade. The early disappearance of this glacier highlights the vulnerability of small tropical Andean glaciers and underscores the urgent need for water security strategies focused on management, adaptation, and resilience. Full article
Show Figures

Figure 1

10 pages, 479 KiB  
Article
Evaluation of a Simplified Upper Arm Device for Vacuum-Assisted Collection of Capillary Blood Specimens
by Ulrich Y. Schaff, Bradley B. Collier, Gabriella Iacovetti, Mitchell Peevler, Jason Ragar, Nicolas Tokunaga, Whitney C. Brandon, Matthew R. Chappell, Russell P. Grant and Greg J. Sommer
Diagnostics 2025, 15(15), 1935; https://doi.org/10.3390/diagnostics15151935 - 31 Jul 2025
Viewed by 168
Abstract
Background/Objectives: Conventional blood collection can be challenging in a non-clinical or home-based setting. In response, vacuum-assisted lancing devices for capillary blood collection (typically from the upper arm) have gained popularity to broaden access to diagnostic testing. However, these devices are often costly relative [...] Read more.
Background/Objectives: Conventional blood collection can be challenging in a non-clinical or home-based setting. In response, vacuum-assisted lancing devices for capillary blood collection (typically from the upper arm) have gained popularity to broaden access to diagnostic testing. However, these devices are often costly relative to the reimbursement rate for common laboratory testing panels. This study describes the design and evaluation of Comfort Draw™, a simplified and economical vacuum-assisted capillary blood collection device. Methods: Comfort Draw™ was evaluated by 12 participants in a preliminary study and by 42 participants in a follow-up study. Metrics assessed included the following: vacuum pressure of the device, skin temperature generated by the Comfort Draw prep warmer, blood collection volume, and analytical accuracy (for 19 common serum-based analytes). Results: Acceptable blood volume (>400 µL) and serum volume (>100 µL) were collected by Comfort Draw in 85.5% and 95.1% of cases, respectively. Seventeen of the nineteen analytes examined were within CLIA acceptance limits compared to matched venous samples. Self-reported pain scores associated with Comfort Draw collection averaged 0.39 on a scale from 0 to 10. Conclusions: In this preliminary clinical study, Comfort Draw was found to be a valid and relatively painless method for collecting capillary blood specimens. The device’s simple design and lower cost could enable broader applications compared to more complex alternative capillary blood collection devices. Full article
(This article belongs to the Section Point-of-Care Diagnostics and Devices)
Show Figures

Figure 1

13 pages, 13107 KiB  
Article
Ceramic Isolated High-Torque Permanent Magnet Coupling for Deep-Sea Applications
by Liying Sun, Xiaohui Gao and Yongguang Liu
J. Mar. Sci. Eng. 2025, 13(8), 1474; https://doi.org/10.3390/jmse13081474 - 31 Jul 2025
Viewed by 115
Abstract
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This [...] Read more.
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This study presents a novel permanent magnet coupling featuring a ceramic isolation sleeve engineered for deep-sea cryogenic ammonia submersible pumps. The ceramic sleeve eliminates eddy current losses and provides exceptional corrosion resistance in acidic/alkaline environments. To withstand 3.5 MPa hydrostatic pressure, a 6-mm-thick sleeve necessitates a 10 mm operational air gap, challenging magnetic circuit efficiency. To address this limitation, an improved 3D magnetic equivalent circuit (MEC) model was developed that explicitly accounts for flux leakage and axial end-effects, enabling the accurate characterization of large air gap fields. Leveraging this model, a Taguchi method-based optimization framework was implemented by balancing key parameters to maximize the torque density. This co-design strategy achieved a 21% increase in torque density, enabling higher torque transfer per unit volume. Experimental validation demonstrated a maximum torque of 920 Nm, with stable performance under simulated deep-sea conditions. This design establishes a new paradigm for high-power leak-free transmission in corrosive, high-pressure marine environments, advancing applications from deep-sea propulsion to offshore energy systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 2616 KiB  
Article
Structural Analysis of Joints Made of Titanium Alloy TI-6AL-4V and Stainless Steel AISI 321 with Developed Conical Contact Surfaces Obtained by Diffusion Welding
by Olena Karpovych, Ivan Karpovych, Oleksii Fedosov, Denys Zhumar, Yevhen Karakash, Miroslav Rimar, Jan Kizek and Marcel Fedak
Materials 2025, 18(15), 3596; https://doi.org/10.3390/ma18153596 (registering DOI) - 31 Jul 2025
Viewed by 154
Abstract
The object of this study is welded joints of AISI 321 and Ti-6Al-4V, obtained by diffusion welding on developed conical surfaces. The problem of creating bimetallic joints of AISI 321 and Ti-6Al-4V with developed conical contact surfaces, using diffusion welding through an intermediate [...] Read more.
The object of this study is welded joints of AISI 321 and Ti-6Al-4V, obtained by diffusion welding on developed conical surfaces. The problem of creating bimetallic joints of AISI 321 and Ti-6Al-4V with developed conical contact surfaces, using diffusion welding through an intermediate Electrolytic Tough Pitch Copper (Cu-ETP) copper layer, was solved. The joints were studied using micro-X-ray spectral analysis, microstructural analysis, and mechanical tests. High mutual diffusion of copper and titanium, along with increased concentrations of Cr and V in copper, was detected. The shear strength of the obtained welded joints is 250 MPa and 235 MPa at 30 min and 15 min, respectively, which is higher than the copper layer’s strength (180 MPa). The obtained results are explained by the dislocation diffusion mechanism in the volume of grains and beyond, due to thermal deformations during welding. Under operating conditions of internal pressure and cryogenic temperatures, the strength of the connection is ensured by the entire two-layer structure, and tightness is ensured by a vacuum-tight diffusion connection. The obtained strength of the connection (250 MPa) is sufficient under the specified operating conditions. Analysis of existing solutions in the literature review indicates that industrial application of technology for manufacturing bimetallic adapters from AISI 321 stainless steel and Ti-6Al-4V titanium alloy is limited to butt joints with small geometric dimensions. Studies of the transition zone structure and diffusion processes in bimetallic joints with developed conical contact surfaces enabled determination of factors affecting joint structure and diffusion coefficients. The obtained bimetallic adapters, made of Ti-6Al-4V titanium alloy and AISI 321 stainless steel, can be used to connect titanium high-pressure vessels with stainless steel pipelines. Full article
Show Figures

Figure 1

20 pages, 576 KiB  
Article
Effectiveness of a Physiotherapy Stress-Management Protocol on Cardiorespiratory, Metabolic and Psychological Indicators of Children and Adolescents with Morbid Obesity
by Pelagia Tsakona, Alexandra Hristara-Papadopoulou, Thomas Apostolou, Ourania Papadopoulou, Ioannis Kitsatis, Eleni G. Paschalidou, Christos Tzimos, Maria G. Grammatikopoulou and Kyriaki Tsiroukidou
Children 2025, 12(8), 1010; https://doi.org/10.3390/children12081010 - 31 Jul 2025
Viewed by 104
Abstract
Background: Chronic stress in childhood and adolescence leads to excessive cortisol secretion, adipokines production and obesity with all the negative mental and physical effects on the health of individuals and adulthood. Objectives: The aim of the present non-randomized controlled trial was to investigate [...] Read more.
Background: Chronic stress in childhood and adolescence leads to excessive cortisol secretion, adipokines production and obesity with all the negative mental and physical effects on the health of individuals and adulthood. Objectives: The aim of the present non-randomized controlled trial was to investigate the effect of a stress management protocol with diaphragmatic breathing (DB) and physiotherapy exercise on stress, body composition, cardiorespiratory and metabolic markers of children and adolescents with morbid obesity. Methods: The study included 31 children and adolescents (5–18 years old) with morbid obesity (22 in the intervention arm and 9 controls). All participants completed anxiety questionnaires and a self-perception scale. Forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), blood pressure (BP) and SpO2 were measured. Fasting glucose, uric acid, triglycerides, HbA1c, (AST/SGOT), (ALT/SGPT), HDL, LDL, insulin, ACTH, cortisol, HOMA-IR, 17-OH, S-DHEA, SHBG were assessed, and anthropometric measurements were also performed. Results: In the intervention group, 4 months after the treatment, an improvement was noted in the BMI, BMI z-score, waist-to-height ratio, FEV1, SpO2, pulse and systolic BP. HDL increased, ALT/SGPT and insulin resistance improved. Positive changes were observed in temporary and permanent stress and self-esteem of children in the intervention group, including anxiety, self-perception, physical appearance, etc. Conclusions: A combined exercise and DB protocol has a positive effect on stress, by improving body composition, reducing insulin resistance, and ameliorating physical and mental health and quality of life of pediatric patients with morbid obesity. Full article
(This article belongs to the Special Issue Childhood Obesity: Prevention, Intervention and Treatment)
Show Figures

Figure 1

17 pages, 798 KiB  
Article
Efficacy of Compression Stockings in Prophylaxis of Lower Limb Lymphedema in Women Undergoing Treatment for Gynecological Malignancies: A Prospective Randomized Study
by Joanna Kurpiewska-Pieniążek, Katarzyna Ochałek, Tomasz Grądalski and Andrzej Szuba
Cancers 2025, 17(15), 2530; https://doi.org/10.3390/cancers17152530 - 31 Jul 2025
Viewed by 159
Abstract
Background: Lower limb lymphedema (LLL) is a frequent complication after gynecological cancer treatment, with a significant impact on quality of life. Despite the common use of compression therapy in managing established lymphedema, its role in prevention remains insufficiently explored. Methods: In this prospective [...] Read more.
Background: Lower limb lymphedema (LLL) is a frequent complication after gynecological cancer treatment, with a significant impact on quality of life. Despite the common use of compression therapy in managing established lymphedema, its role in prevention remains insufficiently explored. Methods: In this prospective randomized study, 64 women treated for gynecological malignancies were assigned to either a compression group (CG) using medium-pressure stockings (23–32 mmHg) or a no-compression group (NCG). All participants received standard education and physical activity guidance. Limb volume, symptom burden, and quality of life were assessed over 12 months. Results: The incidence of LLL was significantly lower in the CG (3.4%) compared to the NCG (38%, p = 0.003). Compression use resulted in significant reductions in limb volume and symptom severity, as well as improved physical functioning. Compliance with compression therapy was high, and patients reported good comfort and usability. Conclusions: Medium-pressure compression stockings combined with education and physical activity are effective and well-tolerated in preventing LLL following gynecological cancer treatment. Full article
(This article belongs to the Special Issue Perioperative Care in Gynecologic Oncology: 2nd Edition)
Show Figures

Figure 1

17 pages, 2612 KiB  
Article
Pressure Response of Crystalline Fluoranthene Probed by Raman Spectroscopy
by Olga Karabinaki, Stylianos Papastylianos, Nayra Machín Padrón, Antonios Hatzidimitriou, Dimitrios Christofilos and John Arvanitidis
Crystals 2025, 15(8), 697; https://doi.org/10.3390/cryst15080697 (registering DOI) - 30 Jul 2025
Viewed by 131
Abstract
The pressure response and structural stability of fluoranthene crystals up to 8 GPa are investigated using Raman spectroscopy. The vast majority of the Raman peaks upshift with pressure, either sublinearly (intermolecular modes) or quasilinearly (intramolecular modes), reflecting the bond hardening upon volume contraction. [...] Read more.
The pressure response and structural stability of fluoranthene crystals up to 8 GPa are investigated using Raman spectroscopy. The vast majority of the Raman peaks upshift with pressure, either sublinearly (intermolecular modes) or quasilinearly (intramolecular modes), reflecting the bond hardening upon volume contraction. The frequency shifts, accompanied by intensity redistribution among the Raman peaks, are by far larger for the former than those for the latter vibrations, compatible with their nature: weak intermolecular van der Waals interactions and strong intramolecular covalent bonds. For pressures higher than 2 GPa, changes in the linear pressure coefficients of the Raman peak frequencies, mainly towards lower values, are observed. These are more pronounced for intermolecular and C–H stretching vibrations. For P > 4.7 GPa, the pressure coefficients are further reduced, while all the observed pressure-induced changes are fully reversible upon pressure release. These changes may be interpreted either as two structural transitions at ~2 and ~4.7 GPa or as a single, but sluggish, structural phase transition in the pressure range 2–4.7 GPa, featuring the reorientation and different stacking of the molecules. From the high-pressure Raman data in the low-pressure phase, a bulk modulus of ~7 GPa at ambient pressure is estimated for solid fluoranthene. Full article
Show Figures

Graphical abstract

13 pages, 8060 KiB  
Article
Microstructural, Mechanical, and Thermal Properties of Textured Si3N4/BN Composite Ceramics Prepared Using Two-Step Sintering
by Dexiang Gong, Yi Zhou, Yunwei Shi and Qianglong He
Materials 2025, 18(15), 3573; https://doi.org/10.3390/ma18153573 - 30 Jul 2025
Viewed by 179
Abstract
Textured Si3N4/BN composite ceramics were successfully fabricated using two-step sintering, combining pseudo-hot isostatic pressing (PHIP) and gas pressure sintering. The grain size of h-BN platelets had a significant influence on densification and mechanical and thermal properties. With an increase [...] Read more.
Textured Si3N4/BN composite ceramics were successfully fabricated using two-step sintering, combining pseudo-hot isostatic pressing (PHIP) and gas pressure sintering. The grain size of h-BN platelets had a significant influence on densification and mechanical and thermal properties. With an increase in h-BN grain size, the volume density of the composite ceramics gradually decreased, while flexural strength gradually increased. Meanwhile, larger h-BN platelets were more likely to trigger toughening mechanisms like large-angle deflection and greatly increase fracture toughness. Through proper selection of h-BN grain size, textured ceramics, with the addition of h-BN platelets of 1–2 μm, showed high thermal conductivity (∼92 W∙m−1∙K−1) and reliable mechanical properties (∼540 MPa, ∼7.5 MPa∙m1/2, ∼11.1 GPa). Therefore, texture control is an effective means of improving the overall performance of ceramic materials. Novel textured composite ceramics thus have great potential in large-scale fabrication and directional heat dissipation applications. Full article
Show Figures

Graphical abstract

15 pages, 9440 KiB  
Proceeding Paper
Mold Flow Analysis and Method of Injection Molding Technology of Safety Belt Outlet Cover
by Hao Jia, Yang Yang, Yi Li, Chengsi Shu and Jie You
Eng. Proc. 2025, 98(1), 42; https://doi.org/10.3390/engproc2025098042 - 30 Jul 2025
Viewed by 110
Abstract
We have improved the efficiency of the protection of occupants of cars by effectively reducing the injury and mortality rate caused by accidents when using safety belts. To ensure the protection efficiency of the safety belt outlet cover, we tested and adjusted the [...] Read more.
We have improved the efficiency of the protection of occupants of cars by effectively reducing the injury and mortality rate caused by accidents when using safety belts. To ensure the protection efficiency of the safety belt outlet cover, we tested and adjusted the following parameters: the filling time, flow-front temperature and switching pressure, injection position pressure, locking force, shear rate, shear force, air hole, melting mark, material flow freezing-layer factor, volume shrinkage rate during jacking out, coolant temperature and flow rate in the cooling stage, part temperature, mold temperature difference, deflection stage, warping deformation analysis, differential cooling, differential shrinkage, and directional effect. Full article
Show Figures

Figure 1

16 pages, 899 KiB  
Article
Public Funding, ESG Strategies, and the Risk of Greenwashing: Evidence from Greek Financial and Public Institutions
by Kyriaki Efthalitsidou, Vasileios Kanavas, Paschalis Kagias and Nikolaos Sariannidis
Risks 2025, 13(8), 143; https://doi.org/10.3390/risks13080143 - 29 Jul 2025
Viewed by 173
Abstract
The increasing pressure for environmental, social, and governance (ESG) accountability in publicly funded institutions has raised concerns about the authenticity and efficiency of ESG implementation. This study investigates the relationship between public ESG funding, disclosure quality, and organizational efficiency across Greek public and [...] Read more.
The increasing pressure for environmental, social, and governance (ESG) accountability in publicly funded institutions has raised concerns about the authenticity and efficiency of ESG implementation. This study investigates the relationship between public ESG funding, disclosure quality, and organizational efficiency across Greek public and financial entities. Using a mixed-methods approach—data envelopment analysis (DEA), qualitative ESG content scoring, and bibliometric mapping—we reveal that symbolic compliance remains prevalent, often decoupled from actual sustainability outcomes. Our DEA findings show that technical efficiency is strongly associated with reporting clarity, the use of verifiable metrics, and governance integration, rather than the mere volume of funding. The qualitative analysis further confirms that many disclosures reflect reputational signaling rather than impact-oriented transparency. Bibliometric results highlight a systemic underrepresentation of the public sector in ESG scholarship, particularly in Southern Europe, underscoring the need for regionally grounded empirical studies. This study provides practical implications for improving ESG accountability in publicly funded institutions and contributes a novel approach that integrates efficiency, content, and bibliometric analysis in the ESG context. Full article
(This article belongs to the Special Issue ESG and Greenwashing in Financial Institutions: Meet Risk with Action)
Show Figures

Figure 1

Back to TopTop