Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,266)

Search Parameters:
Keywords = pre-experimental research

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7321 KiB  
Article
Fault Diagnosis of Wind Turbine Gearbox Based on Mel Spectrogram and Improved ResNeXt50 Model
by Xiaojuan Zhang, Feixiang Jia and Yayu Chen
Appl. Sci. 2025, 15(15), 8563; https://doi.org/10.3390/app15158563 (registering DOI) - 1 Aug 2025
Abstract
In response to the problem of complex and variable loads on wind turbine gearbox bearing in working conditions, as well as the limited amount of sound data making fault identification difficult, this study focuses on sound signals and proposes an intelligent diagnostic method [...] Read more.
In response to the problem of complex and variable loads on wind turbine gearbox bearing in working conditions, as well as the limited amount of sound data making fault identification difficult, this study focuses on sound signals and proposes an intelligent diagnostic method using deep learning. By adding the CBAM module in ResNeXt to enhance the model’s attention to important features and combining it with the Arcloss loss function to make the model learn more discriminative features, the generalization ability of the model is strengthened. We used a fine-tuning transfer learning strategy, transferring pre-trained model parameters to the CBAM-ResNeXt50-ArcLoss model and training with an extracted Mel spectrogram of sound signals to extract and classify audio features of the wind turbine gearbox. Experimental validation of the proposed method on collected sound signals showed its effectiveness and superiority. Compared to CNN, ResNet50, ResNeXt50, and CBAM-ResNet50 methods, the CBAM-ResNeXt50-ArcLoss model achieved improvements of 13.3, 3.6, 2.4, and 1.3, respectively. Through comparison with classical algorithms, we demonstrated that the research method proposed in this study exhibits better diagnostic capability in classifying wind turbine gearbox sound signals. Full article
Show Figures

Figure 1

13 pages, 2629 KiB  
Article
Seed Germination Requirements of the Threatened Local Greek Endemic Campanula pangea Hartvig Facilitating Species-Specific Conservation Efforts
by Margarita Paradisiotis, Elias Pipinis, Stefanos Kostas, Georgios Tsoktouridis, Stefanos Hatzilazarou, Anna Mastrogianni, Ioannis Tsiripidis and Nikos Krigas
Conservation 2025, 5(3), 39; https://doi.org/10.3390/conservation5030039 (registering DOI) - 1 Aug 2025
Abstract
Ex situ conservation is a vital strategy of preserving plant species at risk, offering practical methods to obtain information regarding species-specific germination characteristics. Campanula pangea, a local endemic species of NE Greece, has been previously classified as vulnerable, partly due to the [...] Read more.
Ex situ conservation is a vital strategy of preserving plant species at risk, offering practical methods to obtain information regarding species-specific germination characteristics. Campanula pangea, a local endemic species of NE Greece, has been previously classified as vulnerable, partly due to the lack of knowledge about its biology. This study focused on the germination behaviour of C. pangea stored seeds by assessing their germination success under the effects of incubation temperature and gibberellic acid (GA3). To contextualize the experimental conditions, a bioclimatic profile of the species was developed using open-access temperature and precipitation data that characterize its natural habitat. The results showed that the optimal germination temperature range for C. pangea is 15–20 °C. Pre-treatment of seeds with GA3 solution (1000 mg L−1) widened the germination range of the seeds only at the low temperature of 10 °C. The experimentation results showed that the seeds of C. pangea exhibit dormancy. These findings contribute to the development of a species-specific germination protocol for ex situ propagation and conservation, enhance understanding of the species’ germination requirements, and thus support future conservation efforts and assessments of extinction risk, or other ornamental applications and/or targeted medicinal research. Full article
Show Figures

Figure 1

26 pages, 685 KiB  
Article
Novel Research Regarding Topical Use of Diclofenac in Dermatology—Non-Clinical and Clinical Data
by Diana Ana-Maria Nițescu, Horia Păunescu, Mihnea Costescu, Bogdan Nițescu, Laurențiu Coman, Ion Fulga and Oana Andreia Coman
Sci. Pharm. 2025, 93(3), 34; https://doi.org/10.3390/scipharm93030034 - 30 Jul 2025
Viewed by 125
Abstract
Diclofenac, an aryl-acetic acid derivative from the non-steroidal anti-inflammatory drug class, is the subject of multiple non-clinical and clinical studies regarding its usefulness in treating some dermatologic pathologies with an inflammatory, auto-immune, or proliferative component. Diclofenac is now approved for the topical treatment [...] Read more.
Diclofenac, an aryl-acetic acid derivative from the non-steroidal anti-inflammatory drug class, is the subject of multiple non-clinical and clinical studies regarding its usefulness in treating some dermatologic pathologies with an inflammatory, auto-immune, or proliferative component. Diclofenac is now approved for the topical treatment of actinic keratoses (AK), pre-malignant entities that have the risk of transformation into skin carcinomas. The hypothesis that diclofenac increases granular layer development in the mice tail model, having an anti-psoriatic effect, was demonstrated in a previous study in which 1% and 2% diclofenac ointment was evaluated. The aim of the present study was to perform experimental research on the topical effect of diclofenac in the mice tail model, by testing 4% and 8% diclofenac ointment, which is presented in the first part of the manuscript. In the second part of the manuscript, we also aimed to conduct a literature review regarding topical diclofenac uses in specific dermatological entities by evaluating the articles published in PubMed and Scopus databases during 2014–2025. The studies regarding the efficacy of topical diclofenac in dermatological diseases such as AK and field cancerization, actinic cheilitis, basal cell carcinoma, Bowen disease, Darier disease, seborrheic keratoses, and porokeratosis, were analyzed. The results of the experimental work showed a significant effect of 4% and 8% diclofenac ointment on orthokeratosis degree when compared to the negative control groups. Diclofenac in the concentration of 4% and 8% significantly increased the orthokeratosis degree compared to the negative control with untreated mice (p = 0.006 and p = 0.011, respectively, using the Kruskal–Wallis test) and to the negative control with vehicle (p = 0.006 and p = 0.011, respectively, using the Kruskal–Wallis test). The mean epidermal thickness was increased for the diclofenac groups, but not significantly when compared to the control groups. The results are concordant with our previous experiment, emphasizing the need for future clinical trials on the use of topical diclofenac in psoriasis. Full article
Show Figures

Graphical abstract

10 pages, 4976 KiB  
Article
Investigating the Effects of Hydraulic Shear on Scenedesmus quadricauda Growth at the Cell Scale Using an Algal-Cell Dynamic Continuous Observation Platform
by Yao Qu, Jiahuan Qian, Zhihua Lu, Ruihong Chen, Sheng Zhang, Jingyuan Cui, Chenyu Song, Haiping Zhang and Yafei Cui
Microorganisms 2025, 13(8), 1776; https://doi.org/10.3390/microorganisms13081776 - 30 Jul 2025
Viewed by 123
Abstract
Hydraulic shear has been widely accepted as one of the essential factors modulating phytoplankton growth. Previous experimental studies of algal growth have been conducted at the macroscopic level, and direct observation at the cell scale has been lacking. In this study, an algal-cell [...] Read more.
Hydraulic shear has been widely accepted as one of the essential factors modulating phytoplankton growth. Previous experimental studies of algal growth have been conducted at the macroscopic level, and direct observation at the cell scale has been lacking. In this study, an algal-cell dynamic continuous observation platform (ACDCOP) is proposed with a parallel-plate flow chamber (PPFC) to capture cellular growth images which are then used as input to a computer vision algorithm featuring a pre-trained backpropagation neural network to quantitatively evaluate the volumes and volumetric growth rates of individual cells. The platform was applied to investigate the growth of Scenedesmus quadricauda cells under different hydraulic shear stress conditions. The results indicated that the threshold shear stress for the development of Scenedesmus quadricauda cells was 270 µL min−1 (5.62 × 10−5 m2 s−3). Cellular growth was inhibited at very low and very high intensities of hydraulic shear. Among all the experimental groups, the longest growth period for a cell, from attachment to PPFC to cell division, was 5.7 days. Cells with larger initial volumes produced larger volumes at division. The proposed platform could provide a novel approach for algal research by enabling direct observation of algal growth at the cell scale, and could potentially be applied to investigate the impacts of various environmental stressors such as nutrient, temperature, and light on cellular growth in different algal species. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

17 pages, 8482 KiB  
Article
The Optimization of Culture Conditions for the Cellulase Production of a Thermostable Cellulose-Degrading Bacterial Strain and Its Application in Environmental Sewage Treatment
by Jiong Shen, Konglu Zhang, Yue Ren and Juan Zhang
Water 2025, 17(15), 2225; https://doi.org/10.3390/w17152225 - 25 Jul 2025
Viewed by 229
Abstract
A novel cellulose-degrading bacterial strain, D3-1, capable of degrading cellulose under medium- to high-temperature conditions, was isolated from soil samples and identified as Staphylococcus caprae through 16SrRNA gene sequencing. The strain’s cellulase production was optimized by controlling different factors, such as pH, temperature, [...] Read more.
A novel cellulose-degrading bacterial strain, D3-1, capable of degrading cellulose under medium- to high-temperature conditions, was isolated from soil samples and identified as Staphylococcus caprae through 16SrRNA gene sequencing. The strain’s cellulase production was optimized by controlling different factors, such as pH, temperature, incubation period, substrate concentration, nitrogen and carbon sources, and response surface methods. The results indicated that the optimal conditions for maximum cellulase activity were an incubation time of 91.7 h, a temperature of 41.8 °C, and a pH of 4.9, which resulted in a maximum cellulase activity of 16.67 U/mL, representing a 165% increase compared to pre-optimization levels. The above experiment showed that, when maize straw flour was utilized as a natural carbon source, strain D3-1 exhibited relatively high cellulase production. Furthermore, gas chromatography–mass spectrometry (GC-MS) analysis of products in the degradation liquid revealed the presence of primary sugars. The results indicated that, in the denitrification of simulated sewage, supplying maize straw flour degradation liquid (MSFDL) as the carbon source resulted in a carbon/nitrogen (C/N) ratio of 6:1 after a 24 h reaction with the denitrifying strain WH-01. The total nitrogen (TN) reduction was approximately 70 mg/L, which is equivalent to the removal efficiency observed in the glucose-fed denitrification process. Meanwhile, during a 4 h denitrification reaction in urban sewage without any denitrifying bacteria, but with MSFDL supplied as the carbon source, the TN removal efficiency reached 11 mg/L, which is approximately 70% of the efficiency of the glucose-fed denitrification process. Furthermore, experimental results revealed that strain D3-1 exhibits some capacity for nitrogen removal; when the cellulose-degrading strain D3-1 is combined with the denitrifying strain WH-01, the resulting TN removal rate surpasses that of a single denitrifying bacterium. In conclusion, as a carbon source in municipal sewage treatment, the degraded maize straw flour produced by strain D3-1 holds potential as a substitute for the glucose carbon source, and strain D3-1 has a synergistic effect with the denitrifying strain WH-01 on TN elimination. Thus, this research offers new insights and directions for advancement in environmental sewage treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

27 pages, 16278 KiB  
Article
Optimization of the Archimedean Spiral Hydrokinetic Turbine Design Using Response Surface Methodology
by Juan Rengifo, Laura Velásquez, Edwin Chica and Ainhoa Rubio-Clemente
Sci 2025, 7(3), 100; https://doi.org/10.3390/sci7030100 - 21 Jul 2025
Viewed by 280
Abstract
This research investigates enhancing the performance of an Archimedes screw-type hydrokinetic turbine (ASHT). A 3D transient computational model employing the six degrees of freedom (6-DOF) methodology within the ANSYS Fluent software 2022 R1, was selected for this purpose. A central composite design (CCD) [...] Read more.
This research investigates enhancing the performance of an Archimedes screw-type hydrokinetic turbine (ASHT). A 3D transient computational model employing the six degrees of freedom (6-DOF) methodology within the ANSYS Fluent software 2022 R1, was selected for this purpose. A central composite design (CCD) methodology was applied within the response surface methodology (RSM) to enhance the turbine’s power coefficient (Cp). Key independent factors, including blade length (L), blade inclination angle (γ), and external diameter (De), were systematically varied to determine their optimal values. The optimization process yielded a maximum Cp of 0.337 for L, γ, and De values of 168.921 mm, 51.341°, and 245.645 mm, respectively. Experimental validation was conducted in a hydraulic channel, yielding results that demonstrated a strong correlation with the numerical predictions. This research underscores the importance of geometric design optimization in improving the energy capture efficiency of the ASHT, contributing to its potential viability as a competitive renewable energy solution in the pre-commercial phase of development. Full article
Show Figures

Figure 1

21 pages, 2852 KiB  
Article
Innovative Hands-On Approach for Magnetic Resonance Imaging Education of an Undergraduate Medical Radiation Science Course in Australia: A Feasibility Study
by Curtise K. C. Ng, Sjoerd Vos, Hamed Moradi, Peter Fearns, Zhonghua Sun, Rebecca Dickson and Paul M. Parizel
Educ. Sci. 2025, 15(7), 930; https://doi.org/10.3390/educsci15070930 - 21 Jul 2025
Viewed by 248
Abstract
As yet, no study has investigated the use of a research magnetic resonance imaging (MRI) scanner to support undergraduate medical radiation science (MRS) students in developing their MRI knowledge and practical skills (competences). The purpose of this study was to test an innovative [...] Read more.
As yet, no study has investigated the use of a research magnetic resonance imaging (MRI) scanner to support undergraduate medical radiation science (MRS) students in developing their MRI knowledge and practical skills (competences). The purpose of this study was to test an innovative program for a total of 10 s- and third-year students of a MRS course to enhance their MRI competences. The study involved an experimental, two-week MRI learning program which focused on practical MRI scanning of phantoms and healthy volunteers. Pre- and post-program questionnaires and tests were used to evaluate the competence development of these participants as well as the program’s educational quality. Descriptive statistics, along with Wilcoxon signed-rank and paired t-tests, were used for statistical analysis. The program improved the participants’ self-perceived and actual MRI competences significantly (from an average of 2.80 to 3.20 out of 5.00, p = 0.046; and from an average of 34.87% to 62.72%, Cohen’s d effect size: 2.53, p < 0.001, respectively). Furthermore, they rated all aspects of the program’s educational quality highly (mean: 3.90–4.80 out of 5.00) and indicated that the program was extremely valuable, very effective, and practical. Nonetheless, further evaluation should be conducted in a broader setting with a larger sample size to validate the findings of this feasibility study, given the study’s small sample size and participant selection bias. Full article
(This article belongs to the Special Issue Technology-Enhanced Nursing and Health Education)
Show Figures

Figure 1

25 pages, 1330 KiB  
Review
Cardioprotection Reloaded: Reflections on 40 Years of Research
by Pasquale Pagliaro, Giuseppe Alloatti and Claudia Penna
Antioxidants 2025, 14(7), 889; https://doi.org/10.3390/antiox14070889 - 18 Jul 2025
Viewed by 646
Abstract
Over the past four decades, cardioprotective research has revealed an extraordinary complexity of cellular and molecular mechanisms capable of mitigating ischemia/reperfusion injury (IRI). Among these, ischemic conditioning has emerged as one of the most influential discoveries: brief episodes of ischemia followed by reperfusion [...] Read more.
Over the past four decades, cardioprotective research has revealed an extraordinary complexity of cellular and molecular mechanisms capable of mitigating ischemia/reperfusion injury (IRI). Among these, ischemic conditioning has emerged as one of the most influential discoveries: brief episodes of ischemia followed by reperfusion activate protective programs that reduce myocardial damage. These effects can be elicited locally (pre- or postconditioning) or remotely (remote conditioning), acting mainly through paracrine signaling and mitochondria-linked kinase pathways, with both early and delayed windows of protection. We have contributed to clarifying the roles of mitochondria, oxidative stress, prosurvival kinases, connexins, extracellular vesicles, and sterile inflammation, particularly via activation of the NLRP3 inflammasome. Despite robust preclinical evidence, clinical translation of these approaches has remained disappointing. The challenges largely stem from experimental models that poorly reflect real-world clinical settings—such as advanced age, comorbidities, and multidrug therapy—as well as the reliance on surrogate endpoints that do not reliably predict clinical outcomes. Nevertheless, interest in multi-target protective strategies remains strong. New lines of investigation are focusing on emerging mediators—such as gasotransmitters, extracellular vesicles, and endogenous peptides—as well as targeted modulation of inflammatory responses. Future perspectives point toward personalized cardioprotection tailored to patient metabolic and immune profiles, with special attention to high-risk populations in whom IRI continues to represent a major clinical challenge. Full article
Show Figures

Figure 1

19 pages, 2239 KiB  
Article
Experimental Study on Mechanical Differences Between Prefabricated and Cast-In Situ Tunnel Linings Based on a Load-Structure Model
by Li-Ming Wu, Hong-Kun Li, Feng Gao, Zi-Jian Wang, Bin Zhang, Wen-Jie Luo and Jun-Jie Li
Buildings 2025, 15(14), 2522; https://doi.org/10.3390/buildings15142522 - 18 Jul 2025
Viewed by 256
Abstract
With the accelerated development of urban underground spaces, prefabricated tunnel linings have become a research focus due to their advantages in construction efficiency and cost effectiveness. However, issues such as stress concentration at joints and insufficient overall stability hinder their broader application. This [...] Read more.
With the accelerated development of urban underground spaces, prefabricated tunnel linings have become a research focus due to their advantages in construction efficiency and cost effectiveness. However, issues such as stress concentration at joints and insufficient overall stability hinder their broader application. This study investigates a cut-and-cover prefabricated tunnel project in the Chongqing High-Tech Zone through scale model tests and numerical simulations to systematically compare the mechanical behaviors of cast-in situ linings and three-segment prefabricated linings under surrounding rock loads. The experimental results show that the ultimate bearing capacity of the prefabricated lining is 15.3% lower than that of the cast-in situ lining, with asymmetric failure modes and cracks concentrated near joint regions. Numerical simulations further reveal the influence of joint stiffness on structural performance: when the joint stiffness is 30 MN·m/rad, the bending moment of the segmented lining decreases by 37.7% compared to the cast-in situ lining, while displacement increments remain controllable. By optimising joint pre-tightening forces and stiffness parameters, prefabricated linings can achieve stability comparable to cast-in situ structures while retaining construction efficiency. This research provides theoretical and technical references for the design and construction of open-cut prefabricated tunnel linings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 4185 KiB  
Article
The Reactivated Residual Strength: Laboratory Tests and Practical Considerations
by Paolo Carrubba
Appl. Sci. 2025, 15(14), 7976; https://doi.org/10.3390/app15147976 - 17 Jul 2025
Viewed by 177
Abstract
As is already known, some currently stable landslides may have been activated in the past along a pre-existing sliding surface and reached the residual strength there, as a consequence of high-cumulative displacements. After a fairly long period of quiescence, these landslides can reactivate [...] Read more.
As is already known, some currently stable landslides may have been activated in the past along a pre-existing sliding surface and reached the residual strength there, as a consequence of high-cumulative displacements. After a fairly long period of quiescence, these landslides can reactivate due to a temporary increase in destabilising forces capable of mobilising the residual strength along the same sliding surface again. Some recent studies have suggested that, under certain conditions, the strength mobilised upon reactivation may slightly exceed the residual value and then decay towards the latter as the displacement progresses. Regarding this matter, many previous studies have hypothesised that some geotechnical variables could affect the recovered strength more significantly: the length of the ageing time, the vertical stress, the stress history, and the speed with which the reactivation occurs. The aim of this research is to confirm whether such recovery of strength upon reactivation is possible and which geotechnical parameters have the greatest influence on the process. To this end, laboratory tests were carried out with the Bromhead ring shear apparatus on normally consolidated saturated samples of both natural soils and clays provided by industry (bentonite and kaolin). The coupling effect of the ageing time, the vertical stress, and the reactivation speed on the mobilised strength upon reactivation were investigated, starting from a pre-existing residual state of these samples. Within the limits of this research, the results seem to confirm that all three geotechnical variables are influential, with a greater impact on the reactivation speed and, subordinately, on the ageing time for long quiescence periods. Therefore, it is concluded that a quiescent landslide could show a reactivated strength slightly higher than the residual value if the destabilising action could arise with a certain rapidity. Conversely, if the destabilising action occurs very slowly, the mobilised strength could correspond to the residual value. The experimental results of this research may find some application in the design of strengthening works for a stable quiescent landslide that could experience a fairly rapid increase in destabilising actions, such as in the case of seismic stress, morphological modification of the slope, or a rising water table. Full article
(This article belongs to the Topic Geotechnics for Hazard Mitigation, 2nd Edition)
Show Figures

Figure 1

18 pages, 2056 KiB  
Systematic Review
Effectiveness of Nature-Based Interventions in Reducing Agitation Among Older Adults with Dementia: A Systematic Review and Meta-Analysis
by Eun Yeong Choe, Jennifer Yoohyun Lee and Jed Montayre
Healthcare 2025, 13(14), 1727; https://doi.org/10.3390/healthcare13141727 - 17 Jul 2025
Viewed by 334
Abstract
Background/Objectives: The role of environmental modifications and design in mitigating behavioural symptoms is increasingly being recognised as a way to address the psychosocial needs of individuals with dementia. This study aims to investigate various nature-based interventions for reducing agitation in people with [...] Read more.
Background/Objectives: The role of environmental modifications and design in mitigating behavioural symptoms is increasingly being recognised as a way to address the psychosocial needs of individuals with dementia. This study aims to investigate various nature-based interventions for reducing agitation in people with dementia in long-term residential care environments. Methods: Database searches were conducted on MEDLINE, PsycINFO, Scopus, and Web of Science. A literature search was conducted with the following inclusion criteria: (i) peer-reviewed journal publication written in English; (ii) random controlled trials (RCTs) and quasi-experimental design with results for pre- and post-testing reported; (iii) interventions using natural elements, where the effectiveness of the reduction in agitation was measured using a validated instrument; and (iv) participants aged 65 and older with dementia residing in long-term care facilities. Results: This meta-analysis included 29 studies with 733 participants. The results showed that such interventions had a significant negative mean effect on lowering agitation in this population. Additionally, intervention settings (indoor vs. outdoor) and the presence of social interaction were significant predictors of the effect size for agitation reduction. At the same time, no significant differences in effect size were observed between the types of experiences with nature (indirect vs. direct) or the duration of the interventions. Conclusions: This study demonstrates that, when thoughtfully applied, nature-based interventions can significantly alleviate agitation in patients with dementia residing in long-term residential care facilities. This review lays the groundwork for future research aimed at developing design guidelines and planning strategies to integrate natural elements into dementia-friendly environments effectively. Full article
Show Figures

Figure 1

16 pages, 2355 KiB  
Article
Generalising Stock Detection in Retail Cabinets with Minimal Data Using a DenseNet and Vision Transformer Ensemble
by Babak Rahi, Deniz Sagmanli, Felix Oppong, Direnc Pekaslan and Isaac Triguero
Mach. Learn. Knowl. Extr. 2025, 7(3), 66; https://doi.org/10.3390/make7030066 - 16 Jul 2025
Viewed by 288
Abstract
Generalising deep-learning models to perform well on unseen data domains with minimal retraining remains a significant challenge in computer vision. Even when the target task—such as quantifying the number of elements in an image—stays the same, data quality, shape, or form variations can [...] Read more.
Generalising deep-learning models to perform well on unseen data domains with minimal retraining remains a significant challenge in computer vision. Even when the target task—such as quantifying the number of elements in an image—stays the same, data quality, shape, or form variations can deviate from the training conditions, often necessitating manual intervention. As a real-world industry problem, we aim to automate stock level estimation in retail cabinets. As technology advances, new cabinet models with varying shapes emerge alongside new camera types. This evolving scenario poses a substantial obstacle to deploying long-term, scalable solutions. To surmount the challenge of generalising to new cabinet models and cameras with minimal amounts of sample images, this research introduces a new solution. This paper proposes a novel ensemble model that combines DenseNet-201 and Vision Transformer (ViT-B/8) architectures to achieve generalisation in stock-level classification. The novelty aspect of our solution comes from the fact that we combine a transformer with a DenseNet model in order to capture both the local, hierarchical details and the long-range dependencies within the images, improving generalisation accuracy with less data. Key contributions include (i) a novel DenseNet-201 + ViT-B/8 feature-level fusion, (ii) an adaptation workflow that needs only two images per class, (iii) a balanced layer-unfreezing schedule, (iv) a publicly described domain-shift benchmark, and (v) a 47 pp accuracy gain over four standard few-shot baselines. Our approach leverages fine-tuning techniques to adapt two pre-trained models to the new retail cabinets (i.e., standing or horizontal) and camera types using only two images per class. Experimental results demonstrate that our method achieves high accuracy rates of 91% on new cabinets with the same camera and 89% on new cabinets with different cameras, significantly outperforming standard few-shot learning methods. Full article
(This article belongs to the Section Data)
Show Figures

Figure 1

20 pages, 4820 KiB  
Article
Sem-SLAM: Semantic-Integrated SLAM Approach for 3D Reconstruction
by Shuqi Liu, Yufeng Zhuang, Chenxu Zhang, Qifei Li and Jiayu Hou
Appl. Sci. 2025, 15(14), 7881; https://doi.org/10.3390/app15147881 - 15 Jul 2025
Viewed by 392
Abstract
Under the upsurge of research on the integration of Simultaneous Localization and Mapping (SLAM) and neural implicit representation, existing methods exhibit obvious limitations in terms of environmental semantic parsing and scene understanding capabilities. In response to this, this paper proposes a SLAM system [...] Read more.
Under the upsurge of research on the integration of Simultaneous Localization and Mapping (SLAM) and neural implicit representation, existing methods exhibit obvious limitations in terms of environmental semantic parsing and scene understanding capabilities. In response to this, this paper proposes a SLAM system that integrates a full attention mechanism and a multi-scale information extractor. This system constructs a more accurate 3D environmental model by fusing semantic, shape, and geometric orientation features. Meanwhile, to deeply excavate the semantic information in images, a pre-trained frozen 2D segmentation algorithm is employed to extract semantic features, providing a powerful support for 3D environmental reconstruction. Furthermore, a multi-layer perceptron and interpolation techniques are utilized to extract multi-scale features, distinguishing information at different scales. This enables the effective decoding of semantic, RGB, and Truncated Signed Distance Field (TSDF) values from the fused features, achieving high-quality information rendering. Experimental results demonstrate that this method significantly outperforms the baseline-based methods in terms of mapping and tracking accuracy on the Replica and ScanNet datasets. It also shows superior performance in semantic segmentation and real-time semantic mapping tasks, offering a new direction for the development of SLAM technology. Full article
(This article belongs to the Special Issue Applications of Data Science and Artificial Intelligence)
Show Figures

Figure 1

21 pages, 4856 KiB  
Article
Mechanical Properties of Recycled Concrete with Carbide Slag Slurry Pre-Immersed and Carbonated Recycled Aggregate
by Xiangfei Wang, Guoliang Guo, Jinglei Liu, Chun Lv and Mingyan Bi
Materials 2025, 18(14), 3281; https://doi.org/10.3390/ma18143281 - 11 Jul 2025
Viewed by 256
Abstract
This research focuses on improving the characteristics of recycled concrete and utilizing solid waste resources through the combination of industrial waste pre-impregnation and the carbonation process. A novel pre-impregnation–carbonation aggregate method is proposed to increase the content of carbonatable components in the surface-bonded [...] Read more.
This research focuses on improving the characteristics of recycled concrete and utilizing solid waste resources through the combination of industrial waste pre-impregnation and the carbonation process. A novel pre-impregnation–carbonation aggregate method is proposed to increase the content of carbonatable components in the surface-bonded mortar of recycled coarse aggregate by pre-impregnating it with carbide slag slurry (CSS). This approach enhances the subsequent carbonation effect and thus the properties of recycled aggregates. The experimental results showed that the method significantly improved the water absorption, crushing value, and apparent density of the recycled aggregate. Additionally, it enhanced the compressive strength, split tensile strength, and flexural strength of the recycled concrete produced using the aggregate improved by this method. Microanalysis revealed that CO2 reacts with calcium hydroxide and hydrated calcium silicate (C-S-H) to produce calcite-type calcium carbonate and amorphous silica gel. These reaction products fill microcracks and pores on the aggregate and densify the aggregate–paste interfacial transition zone (ITZ), thereby improving the properties of recycled concrete. This study presents a practical approach for the high-value utilization of construction waste and the production of low-carbon building materials by enhancing the quality of recycled concrete. Additionally, carbon sequestration demonstrates broad promise for engineering applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

32 pages, 11521 KiB  
Article
Ultimate Capacity of a GFRP-Reinforced Concrete Bridge Barrier–Deck Anchorage Subjected to Transverse Loading
by Gledis Dervishhasani, Khaled Sennah, Hamdy M. Afefy and Ahmed Diab
Appl. Sci. 2025, 15(14), 7771; https://doi.org/10.3390/app15147771 - 10 Jul 2025
Viewed by 392
Abstract
This paper outlines a structural qualification process to assess the use of newly developed high-modulus (HM) glass fiber-reinforced polymer (GFRP) bars with headed ends in the joint between concrete bridge barriers and decks. The main goals of the study are to evaluate the [...] Read more.
This paper outlines a structural qualification process to assess the use of newly developed high-modulus (HM) glass fiber-reinforced polymer (GFRP) bars with headed ends in the joint between concrete bridge barriers and decks. The main goals of the study are to evaluate the structural performance of GFRP-reinforced TL-5 barrier–deck systems under transverse loading and to determine the pullout capacity of GFRP anchorage systems for both new construction and retrofit applications. The research is divided into two phases. In the first phase, six full-scale Test-Level 5 (TL-5) barrier wall–deck specimens, divided into three systems, were constructed and tested up to failure. The first system used headed-end GFRP bars to connect the barrier wall to a non-deformable thick deck slab. The second system was similar to the first but had a deck slab overhang for improved anchorage. The third system utilized postinstalled GFRP bars in a non-deformable thick deck slab, bonded with a commercial epoxy adhesive as a solution for deteriorated barrier replacement. The second phase involves an experimental program to evaluate the pullout strength of the GFRP bar anchorage in normal-strength concrete. The experimental results from the tested specimens were then compared to the factored applied moments in existing literature based on traffic loads in the Canadian Highway Bridge Design Code. Experimental results confirmed that GFRP-reinforced TL-5 barrier–deck systems exceeded factored design moments, with capacity-to-demand ratios above 1.38 (above 1.17 with the inclusion of an environmental reduction factor of 0.85). A 195 mm embedment length proved sufficient for both pre- and postinstalled bars. Headed-end GFRP bars improved pullout strength compared to straight-end bars, especially when bonded. Failure modes occurred at high loads, demonstrating structural integrity. Postinstalled bars bonded with epoxy performed comparably to preinstalled bars. A design equation for the barrier resistance due to a diagonal concrete crack at the barrier–deck corner was developed and validated using experimental findings. This equation offers a conservative and safe design approach for evaluating barrier–deck anchorage. Full article
Show Figures

Figure 1

Back to TopTop