Investigating the Effects of Hydraulic Shear on Scenedesmus quadricauda Growth at the Cell Scale Using an Algal-Cell Dynamic Continuous Observation Platform
Abstract
1. Introduction
2. Materials and Methods
2.1. Algae Cultivation
2.2. Algal-Cell Dynamic Continuous Observation Platform
2.2.1. Equipment Configuration of ACDCOP
2.2.2. Image Processing and Computer Vision Algorithm
2.3. Experimental Conditions
3. Results
3.1. The Volume Growth Model of Individual Cells
3.2. Effect of Hydraulic Shear on Scenedesmus quadricauda
3.2.1. Effect on Cell Growth
3.2.2. Effect on Cell Volume at Division
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitsuhashi, S.; Hosaka, K.; Tomonaga, E.; Muramatsu, H.; Tanishita, K. Effects of Shear-Flow on Photosynthesis in a Dilute Suspension of Microalgae. Appl. Microbiol. Biotechnol. 1995, 42, 744–749. [Google Scholar] [CrossRef]
- Vinayagam, R.; Dave, N.; Varadavenkatesan, T.; Rajamohan, N.; Sillanpaa, M.; Nadda, A.K.; Govarthanan, M.; Selvaraj, R. Artificial neural network and statistical modeling of biosorption removal of hexavalent chromium using macroalgal spent biomass. Chemosphere 2022, 296, 133965. [Google Scholar] [CrossRef]
- Zhang, H.P.; Cui, Y.F.; Zhang, Y.H.; Xu, H.L.; Li, F.P. Experimental Study of the Quantitative Impact of Flow Turbulence on Algal Growth. Water 2021, 13, 659. [Google Scholar] [CrossRef]
- Cui, Y.F.; Mu, Q.; Zhang, H.P.; Li, F.P. Interaction of flow turbulence and nitrogen nutrients on the growth of Scenedesmu quadricanda. Environ. Technol. Innov. 2022, 27, 102449. [Google Scholar] [CrossRef]
- Li, H.; Yang, G.F.; Ma, J.R.; Wei, Y.Y.; Kang, L.; He, Y.X.; He, Q. The role of turbulence in internal phosphorus release: Turbulence intensity matters. Environ. Pollut. 2019, 252, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ma, H.; Song, G.; Ding, Y.; Guo, S. Experimental investigation on the mechanism of the effect of flow velocity on Cyclotella meneghiniana. Sci. Rep. 2025, 15, 9846. [Google Scholar] [CrossRef]
- KarpBoss, L.; Boss, E.; Jumars, P.A. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Ocean. Mar. Biol. 1996, 34, 71–107. [Google Scholar] [CrossRef]
- Wu, X.Q.; Noss, C.; Liu, L.; Lorke, A. Effects of small-scale turbulence at the air-water interface on microcystis surface scum formation. Water Res. 2019, 167, 115091. [Google Scholar] [CrossRef]
- Shakur, M.S.; Lazarus, E.; Wang, C.; Du, K.; Rivero, I.V.; Ramesh, S. Effect of hydrodynamic shear stress on algal cell fate in 3d extrusion bioprinting. Adv. Eng. Mater. 2025, 27, 2401768. [Google Scholar] [CrossRef]
- Li, M.; Xiao, M.; Zhang, P.; Hamilton, D.P. Morphospecies-dependent disaggregation of colonies of the cyanobacterium Microcystis under high turbulent mixing. Water Res. 2018, 141, 340–348. [Google Scholar] [CrossRef]
- Papoutsakis, E.T. Fluid-Mechanical Damage of Animal-Cells in Bioreactors. Trends Biotechnol. 1991, 9, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Camacho, F.; Lopez-Rosales, L.; Sanchez-Miron, A.; Belarbi, E.H.; Chisti, Y.; Molina-Grima, E. Artificial neural network modeling for predicting the growth of the microalga Karlodinium benefice. Algal Res. 2016, 14, 58–64. [Google Scholar] [CrossRef]
- Latiffi, N.A.A.; Mohamed, R.M.S.R.; Al-Gheethi, A.; Tajuddin, R.M.; Al-Shaibani, M.M.; Vo, D.V.N.; Rupani, P.F. Nutrient elimination from meat processing wastewater using Scenedesmus sp.; optimizations; Artificial neural network and kinetics models. Environ. Technol. Innov. 2022, 26, 102535. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, J.; Yang, S.; Gao, N. Removal of Microcystis aeruginosa and algal organic matter by bisulfite-activated permanganate (BS/PM) pre-oxidation: Performance, mechanism, and artificial neural networks (ANN) model. J. Water Process Eng. 2025, 76, 108257. [Google Scholar] [CrossRef]
- Manian, V.; Alfaro-Mejia, E.; Tokars, R.P. Hyperspectral Image Labeling and Classification Using an Ensemble Semi-Supervised Machine Learning Approach. Sensors 2022, 22, 1623. [Google Scholar] [CrossRef]
- Chen, Y.; Duan, W.L.; Yang, Y.; Liu, Z.; Zhang, Y.B.; Liu, J.F.; Li, S.H. Rapid measurements of brown tide algae cell concentrations using fluorescence spectrometry and generalized regression neural network. Spectrochim. Acta A 2022, 272, 120967. [Google Scholar] [CrossRef]
- Fraisse, S.; Bormans, M.; Lagadeuc, Y. Turbulence effects on phytoplankton morphofunctional traits selection. Limnol. Ocean. 2015, 60, 872–884. [Google Scholar] [CrossRef]
- Kellogg, D.R.; Levin, P.A. Nutrient availability as an arbiter of cell size. Trends Cell Biol. 2022, 32, 908–919. [Google Scholar] [CrossRef]
- Hondzo, M.; Lyn, D. Quantified small-scale turbulence inhibits the growth of a green alga. Freshw. Biol. 1999, 41, 51–61. [Google Scholar] [CrossRef]
- Warnaars, T.A.; Hondzo, M. Small-scale fluid motion mediates the growth and nutrient uptake of Selenastrum capricornutum. Freshw. Biol. 2006, 51, 999–1015. [Google Scholar] [CrossRef]
- Hondzo, M.M.; Kapur, A.; Lembi, C.A. The effect of small-scale fluid motion on the green alga Scenedesmus quadricauda. Hydrobiologia 1998, 364, 225–235. [Google Scholar] [CrossRef]
- Hondzo, M.; Warnaars, T.A. Coupled Effects of Small-Scale Turbulence and Phytoplankton Biomass in a Small Stratified Lake. J. Environ. Eng. ASCE 2008, 134, 954–960. [Google Scholar] [CrossRef]
- Hondzo, M.; Haider, Z. Boundary mixing in a small stratified lake. Water Resour. Res. 2004, 40, 2700–2710. [Google Scholar] [CrossRef]
- Peters, F.; Marrase, C. Effects of turbulence on plankton: An overview of experimental evidence and some theoretical considerations. Mar. Ecol. Prog. Ser. 2000, 205, 291–306. [Google Scholar] [CrossRef]
- Celis, J.E. Cell Biology: A Laboratory Handbook; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar] [CrossRef]
- Jorgensen, S.E.; Fath, B.D. Volume 23—Fundamentals of Ecological Modelling. In Developments in Environmental Modeling, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 1–399. [Google Scholar] [CrossRef]
- You, J.; Mallery, K.; Hong, J.; Hondzo, M. Temperature effects on growth and buoyancy of Microcystis aeruginosa. J. Plankton Res. 2018, 40, 16–28. [Google Scholar] [CrossRef]
- Acuna-Alonso, C.; Lorenzo, O.; Alvarez, X.; Cancela, A.; Valero, E.; Sanchez, A. Influence of Microcystis sp. and freshwater algae on pH: Changes in their growth associated with sediment. Environ. Pollut. 2020, 263, 114435. [Google Scholar] [CrossRef] [PubMed]
- Hondzo, M.; Wüest, A. Do microscopic organisms feel turbulent flows? Environ. Sci. Technol. 2009, 43, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Q.; Xiao, Y.; Li, Z.; Wang, S.; Guo, J.S.; Lu, L.H. Turbulence exerts nutrients uptake and assimilation of bloom-forming Dolichospermum through modulating morphological traits: Field and chemostat culture studies. Sci. Total Environ. 2019, 671, 329–338. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, L.L.; Li, J.; Chen, M.; Zhang, Y.W. Mechanism of the influence of hydrodynamics on Microcystis aeruginosa, a dominant bloom species in reservoirs. Sci. Total Environ. 2018, 636, 230–239. [Google Scholar] [CrossRef]
- Yang, G.J.; Zhong, C.N.; Pan, W.W.; Rui, Z.; Tang, X.M.; Yu, R.P.; Qiu, W.J.; Guo, Y. Continuous hydrodynamic mixing weakens the dominance of Microcystis: Evidence from microcosm and lab experiments. Environ. Sci. Pollut. Res. 2022, 29, 15631–15641. [Google Scholar] [CrossRef]
Flow Rates (µL Min−1) | a (×10−10) | b (×10−3) | c (×10−2) | d | R2 |
---|---|---|---|---|---|
0 | −0.10 0.32 | 3.7 3.9 | −1.0 0.80 | 53 10 | 0.989 0.012 |
30 | −2.0 3.2 | 3.9 3.6 | 0.20 0.20 | 50 19 | 0.993 0.003 |
60 | 0.80 2.1 | 1.7 1.6 | 0.00 0.60 | 37 6 | 0.996 0.001 |
90 | 1.0 1.7 | 0.90 1.4 | 0.20 0.20 | 28 8 | 0.997 0.001 |
120 | 3.4 1.8 | −1.5 0.22 | 0.40 0.40 | 24 6 | 0.987 0.005 |
150 | 2.0 0.60 | 0.22 0.80 | 0.00 0.40 | 27 6 | 0.997 0.002 |
180 | 0.40 3.6 | 1.3 1.8 | 0.40 0.40 | 32 7 | 0.998 0.000 |
210 | 0.80 1.4 | 0.68 1.4 | 0.20 0.20 | 21 2 | 0.995 0.005 |
240 | 1.6 2.2 | −1.1 2.0 | 0.40 0.40 | 26 2 | 0.993 0.001 |
270 | 1.6 1.4 | 1.0 1.0 | 0.80 0.40 | 25 11 | 0.999 0.001 |
300 | 4.2 1.8 | −0.10 1.5 | 1.2 0.80 | 34 14 | 0.999 0.001 |
360 | 3.2 1.4 | −2.0 ± 1.4 | 0.60 0.40 | 37 5 | 0.975 0.026 |
420 | −0.20 1.3 | 1.7 ± 1.3 | −0.40 0.40 | 28 4 | 0.994 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Qian, J.; Lu, Z.; Chen, R.; Zhang, S.; Cui, J.; Song, C.; Zhang, H.; Cui, Y. Investigating the Effects of Hydraulic Shear on Scenedesmus quadricauda Growth at the Cell Scale Using an Algal-Cell Dynamic Continuous Observation Platform. Microorganisms 2025, 13, 1776. https://doi.org/10.3390/microorganisms13081776
Qu Y, Qian J, Lu Z, Chen R, Zhang S, Cui J, Song C, Zhang H, Cui Y. Investigating the Effects of Hydraulic Shear on Scenedesmus quadricauda Growth at the Cell Scale Using an Algal-Cell Dynamic Continuous Observation Platform. Microorganisms. 2025; 13(8):1776. https://doi.org/10.3390/microorganisms13081776
Chicago/Turabian StyleQu, Yao, Jiahuan Qian, Zhihua Lu, Ruihong Chen, Sheng Zhang, Jingyuan Cui, Chenyu Song, Haiping Zhang, and Yafei Cui. 2025. "Investigating the Effects of Hydraulic Shear on Scenedesmus quadricauda Growth at the Cell Scale Using an Algal-Cell Dynamic Continuous Observation Platform" Microorganisms 13, no. 8: 1776. https://doi.org/10.3390/microorganisms13081776
APA StyleQu, Y., Qian, J., Lu, Z., Chen, R., Zhang, S., Cui, J., Song, C., Zhang, H., & Cui, Y. (2025). Investigating the Effects of Hydraulic Shear on Scenedesmus quadricauda Growth at the Cell Scale Using an Algal-Cell Dynamic Continuous Observation Platform. Microorganisms, 13(8), 1776. https://doi.org/10.3390/microorganisms13081776