Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = power-electronic converter (PEC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 11318 KiB  
Article
Addressing Challenges in Rds,on Measurement for Cloud-Connected Condition Monitoring in WBG Power Converter Applications
by Farzad Hosseinabadi, Sachin Kumar Bhoi, Hakan Polat, Sajib Chakraborty and Omar Hegazy
Electronics 2025, 14(15), 3093; https://doi.org/10.3390/electronics14153093 - 2 Aug 2025
Viewed by 143
Abstract
This paper presents the design, implementation, and experimental validation of a Condition Monitoring (CM) circuit for SiC-based Power Electronics Converters (PECs). The paper leverages in situ drain–source resistance (Rds,on) measurements, interfaced with cloud connectivity for data processing and lifetime assessment, [...] Read more.
This paper presents the design, implementation, and experimental validation of a Condition Monitoring (CM) circuit for SiC-based Power Electronics Converters (PECs). The paper leverages in situ drain–source resistance (Rds,on) measurements, interfaced with cloud connectivity for data processing and lifetime assessment, addressing key limitations in current state-of-the-art (SOTA) methods. Traditional approaches rely on expensive data acquisition systems under controlled laboratory conditions, making them unsuitable for real-world applications due to component variability, time delay, and noise sensitivity. Furthermore, these methods lack cloud interfacing for real-time data analysis and fail to provide comprehensive reliability metrics such as Remaining Useful Life (RUL). Additionally, the proposed CM method benefits from noise mitigation during switching transitions by utilizing delay circuits to ensure stable and accurate data capture. Moreover, collected data are transmitted to the cloud for long-term health assessment and damage evaluation. In this paper, experimental validation follows a structured design involving signal acquisition, filtering, cloud transmission, and temperature and thermal degradation tracking. Experimental testing has been conducted at different temperatures and operating conditions, considering coolant temperature variations (40 °C to 80 °C), and an output power of 7 kW. Results have demonstrated a clear correlation between temperature rise and Rds,on variations, validating the ability of the proposed method to predict device degradation. Finally, by leveraging cloud computing, this work provides a practical solution for real-world Wide Band Gap (WBG)-based PEC reliability and lifetime assessment. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

13 pages, 958 KiB  
Article
Modeling and Simulation of Autonomous DC Microgrid with Variable Droop Controller
by Rekha P. Nair and Kanakasabapathy Ponnusamy
Appl. Sci. 2025, 15(9), 5080; https://doi.org/10.3390/app15095080 - 2 May 2025
Cited by 1 | Viewed by 808
Abstract
The emergence of highly efficient and cost-effective power converters, coupled with the growing diversity of DC loads, has elevated the importance of DC microgrids to a level comparable with AC microgrids in the modern power industry. DC microgrids are free from synchronization and [...] Read more.
The emergence of highly efficient and cost-effective power converters, coupled with the growing diversity of DC loads, has elevated the importance of DC microgrids to a level comparable with AC microgrids in the modern power industry. DC microgrids are free from synchronization and reactive power dynamics, making them more reliable and cost-effective. In autonomous mode, achieving effective voltage regulation and satisfactory power sharing is critical to ensuring the overall stability of the microgrid. As the common DC bus of the microgrid connects distributed generators (DGs), storage devices, and loads through power electronic converters (PECs), the controllers of these PECs must regulate the bus voltage effectively, track reference signals to meet power demands, and enable satisfactory load sharing. In this work, a real time decentralized droop controller is implemented for an islanded DC microgrid to enhance the voltage regulation at the DC bus and current sharing efficacy between the sources subject to load transients. A novel control strategy is presented in which the conventional droop control is modified considering the load dynamics. The performance of the proposed control strategy is compared with the conventional voltage droop control strategy. The fluctuations in the DC bus voltage, which is the major cause of voltage instability of the DC microgrid is effectively reduced by the proposed strategy. The proposed strategy is validated by comparing it with the conventional fixed droop control method on the MATLAB Simulink platform. The variable droop control strategy outperforms the fixed droop method by addressing sudden voltage fluctuations in the DC bus, which occur due to the inherent load current dependency of the fixed droop approach. This technique achieves enhanced voltage regulation, which is crucial for microgrid stability. Full article
(This article belongs to the Special Issue Challenges for Power Electronics Converters, 2nd Edition)
Show Figures

Figure 1

21 pages, 4124 KiB  
Article
Enhanced Models for Wind, Solar Power Generation, and Battery Energy Storage Systems Considering Power Electronic Converter Precise Efficiency Behavior
by Binxin Zhu, Junliang Liu, Shusheng Wang and Zhe Li
Energies 2025, 18(6), 1320; https://doi.org/10.3390/en18061320 - 7 Mar 2025
Cited by 2 | Viewed by 715
Abstract
The large-scale integration of wind, solar, and battery energy storage is a key feature of the new power system based on renewable energy sources. The optimization results of wind turbine (WT)–photovoltaic (PV)–battery energy storage (BES) hybrid energy systems (HESs) can influence the economic [...] Read more.
The large-scale integration of wind, solar, and battery energy storage is a key feature of the new power system based on renewable energy sources. The optimization results of wind turbine (WT)–photovoltaic (PV)–battery energy storage (BES) hybrid energy systems (HESs) can influence the economic performance and stability of the electric power system (EPS). However, most existing studies have overlooked the effect of power electronic converter (PEC) efficiency on capacity configuration optimization, leading to a significant difference between theoretical optimal and actual results. This paper introduces an accurate efficiency model applicable to different types of PECs, and establishes an enhanced mathematical model along with constraint conditions for WT–PV–BES–grid–load systems, based on precise converter efficiency models. In two typical application scenarios, the capacity configurations of WT–PV–BES are optimized with optimal cost as the objective function. The different configuration results among ignoring PEC loss, using fixed PEC efficiency models, and using accurate PEC efficiency models are compared. The results show that in the DC system, the total efficiency of the system with the precise converter efficiency model is approximately 96.63%, and the cost increases by CNY 49,420, about 8.56%, compared to the system with 100% efficiency. In the AC system, the total efficiency with the precise converter efficiency model is approximately 97.64%, and the cost increases by CNY 4517, about 2.02%, compared to the system with 100% efficiency. The analysis clearly reveals that the lack of an accurate efficiency model for PECs will greatly affect the precision and effectiveness of configuration optimization. Full article
(This article belongs to the Collection State-of-the-Art of Electrical Power and Energy System in China)
Show Figures

Figure 1

16 pages, 3761 KiB  
Article
Disassemblability Assessment of Power Electronic Converters for Improved Circularity
by Tugce Turkbay Romano, Li Fang, Thècle Alix, Maud Rio, Julien Mélot, Fabrice Serrano, Pierre Lefranc, Yves Lembeye, Nicolas Perry and Jean-Christophe Crébier
Sustainability 2024, 16(11), 4712; https://doi.org/10.3390/su16114712 - 31 May 2024
Cited by 4 | Viewed by 1647
Abstract
Power Electronics Converters (PEC) play a crucial role in the operation of many modern electrical systems and devices. Despite their widespread use, the lack of an efficient and cost-effective disassembly process can limit their repairability, refurbishability, remanufacturability and, ultimately, recyclability, thus hindering the [...] Read more.
Power Electronics Converters (PEC) play a crucial role in the operation of many modern electrical systems and devices. Despite their widespread use, the lack of an efficient and cost-effective disassembly process can limit their repairability, refurbishability, remanufacturability and, ultimately, recyclability, thus hindering the circularity of products. In order to improve their circularity, it is important to assess their ease of disassembly. Therefore, this paper investigates the applicability of the “ease of Disassembly Metric” (eDiM), which is referenced in the material efficiency standards, Benelux repairability assessment method, and Repair Scoring System (RSS), to analyze the ease of disassembly of energy-related products. After identifying the limitations of the eDiM method, we refined and adapted it to make it more suitable for Printed Circuit Board (PCB)-based PEC, and thus propose a PCB-based disassemblability assessment method allowing the implementation of quantifiable requirements supporting their circularity. This standardized approach, at the PCB level, can improve the circularity of such products by facilitating design enhancements. With this approach, policymakers and designers can contribute more effectively to the transition to a circular economy in PCB electronics, particularly in the field of power electronics. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

20 pages, 1083 KiB  
Article
Comparison of Energy Storage Management Techniques for a Grid-Connected PV- and Battery-Supplied Residential System
by Luis Martínez-Caballero, Radek Kot, Adam Milczarek and Mariusz Malinowski
Electronics 2024, 13(1), 87; https://doi.org/10.3390/electronics13010087 - 24 Dec 2023
Cited by 8 | Viewed by 1850
Abstract
The use of renewable energy sources (RES) such as wind and solar power is increasing rapidly to meet growing electricity demand. However, the intermittent nature of RES poses a challenge to grid stability. Energy storage (ES) technologies offer a solution by adding flexibility [...] Read more.
The use of renewable energy sources (RES) such as wind and solar power is increasing rapidly to meet growing electricity demand. However, the intermittent nature of RES poses a challenge to grid stability. Energy storage (ES) technologies offer a solution by adding flexibility to the system. With the emergence of distributed energy resources (DERs) and the transition to prosumer-based electricity systems, energy management systems (EMSs) have become crucial to coordinate the operation of different devices and optimize system efficiency and functionality. This paper presents an EMS for a residential photovoltaic (PV) and battery system that addresses two different functionalities: energy cost minimization, and self-consumption maximization. The proposed EMS takes into account the operational requirements of the devices and their lower-level controllers. A genetic algorithm (GA) is used to solve the optimization problems, ensuring a desired State of Charge (SOC) at the end of the day based on the next day forecast, without discretizing the SOC transitions allowing a continuous search space. The importance of adhering to the manufacturer’s operating specification to avoid premature battery degradation is highlighted, and a comparative analysis is performed with a simple tariff-driven solution, evaluating total cost, energy exchange, and peak power. Tests are carried out in a detailed model, where Power Electronics Converters (PECs) and their local controllers are considered together with the EMS. Full article
Show Figures

Figure 1

23 pages, 2062 KiB  
Article
Fractional PID Controller for Voltage-Lift Converters
by Luis M. Martinez-Patiño, Francisco J. Perez-Pinal, Allan Giovanni Soriano-Sánchez, Manuel Rico-Secades, Carina Zarate-Orduño and Jose-Cruz Nuñez-Perez
Fractal Fract. 2023, 7(7), 542; https://doi.org/10.3390/fractalfract7070542 - 13 Jul 2023
Cited by 4 | Viewed by 2028
Abstract
Voltage-lift is a widely used technique in DC–DC converters to step-up output voltage levels. Several traditional and advanced control techniques applicable to power electronic converters (PEC) have been reported and utilized for voltage-lift applications. Similarly, in recent years the implementation of fractional-order controllers [...] Read more.
Voltage-lift is a widely used technique in DC–DC converters to step-up output voltage levels. Several traditional and advanced control techniques applicable to power electronic converters (PEC) have been reported and utilized for voltage-lift applications. Similarly, in recent years the implementation of fractional-order controllers (FOC) in PEC applications has gained interest, aiming to improve system performance, and has been validated in basic converter topologies. Following this trend, this work presents an FOC for a voltage-lift converter, requiring only output voltage feedback. A third-order non-minimal phase system is selected for experimentation to verify FOC implementations for more complex PEC configurations. A simple, straightforward design and approximation methodology for the FOC is proposed. Step-by-step development of the FOC, numerical and practical results on a 50 W voltage-lift converter are reported. The results show that PEC transient and steady-state responses can be enhanced using FOC controllers when compared with classical linear controllers. Extended applications of FOC for improved performance in power conversion is also discussed. Full article
(This article belongs to the Special Issue Design, Optimization and Applications for Fractional Chaotic System)
Show Figures

Figure 1

17 pages, 4736 KiB  
Article
Grid-Connected Renewable Energy Sources: A New Approach for Phase-Locked Loop with DC-Offset Removal
by Mohammad A. Bany Issa, Zaid A. Al Muala and Pastora M. Bello Bugallo
Sustainability 2023, 15(12), 9550; https://doi.org/10.3390/su15129550 - 14 Jun 2023
Cited by 8 | Viewed by 1903
Abstract
Renewable Energy Sources (RES) are widely used worldwide due to their positive effect on the environment, being sustainable, low cost, and controllable. The power generated from RESs must be configured to interface and perfectly synchronize with the grid by using Power Electronics Converters [...] Read more.
Renewable Energy Sources (RES) are widely used worldwide due to their positive effect on the environment, being sustainable, low cost, and controllable. The power generated from RESs must be configured to interface and perfectly synchronize with the grid by using Power Electronics Converters (PEC). A Phase-Locked Loop (PLL) is one of the most popular synchronization techniques used due to its speed and robustness. A growing issue that results in oscillations in the estimated fundamental grid phase, frequency, and voltage amplitude is the DC-offset in the input of the PLL. This study was developed to eliminate the DC-offset in the single-phase grid synchronization using Delay Signal Cancellation (DSC) and a fixed-length Transfer Delay (TD)-based PLL. Then, the small-signal model, stability analysis, and selection of controller gains were discussed. The proposed PLL was simulated using MATLAB/Simulink. Moreover, to evaluate the proposed method, several scenarios were developed in order to compare it with other powerful PLLs in terms of performance indicators such as settling time, frequency, and phase error. As a result, the proposed PLL has the fastest dynamic response, completely rejects the DC-offset effect, and fully synchronizes with the electrical grid. Full article
Show Figures

Graphical abstract

18 pages, 5010 KiB  
Article
Advanced Fault-Detection Technique for DC-Link Aluminum Electrolytic Capacitors Based on a Random Forest Classifier
by Acácio M. R. Amaral, Khaled Laadjal and Antonio J. Marques Cardoso
Electronics 2023, 12(12), 2572; https://doi.org/10.3390/electronics12122572 - 7 Jun 2023
Cited by 13 | Viewed by 1923
Abstract
In recent years, significant technological advances have emerged in renewable power generation systems (RPGS), making them more economical and competitive. On the other hand, for the RPGS to achieve the highest level of performance possible, it is important to ensure the healthy operation [...] Read more.
In recent years, significant technological advances have emerged in renewable power generation systems (RPGS), making them more economical and competitive. On the other hand, for the RPGS to achieve the highest level of performance possible, it is important to ensure the healthy operation of their main building blocks. Power electronic converters (PEC), which are one of the main building blocks of RPGS, have some vulnerable components, such as capacitors, which are responsible for more than a quarter of the failures in these converters. Therefore, it is of paramount importance that the design of fault diagnosis techniques (FDT) assess the capacitor’s state of health so that it is possible to implement predictive and preventive maintenance plans in order to reduce unexpected stoppage of these systems. One of the most commonly used capacitors in power converters is the aluminum electrolytic capacitor (AEC) whose aging manifests itself through an increase in its equivalent series resistance (ESR). Several advanced intelligent techniques have been proposed for assessing AEC health status, many of which require the use of a current sensor in the capacitor branch. However, the introduction of a current sensor in the capacitor branch imposes practical restrictions; in addition, it introduces unwanted resistive and inductive effects. This paper presents an FDT based on the random forest classifier (RFC), which triggers an alert mechanism when the DC-link AEC reaches its ESR threshold value. The great advantage of the proposed solution is that it is non-invasive; therefore, it is not necessary to introduce any sensor inside the converter. The validation of the proposed FDT will be carried out using several computer simulations carried out in Matlab/Simulink. Full article
Show Figures

Figure 1

36 pages, 15708 KiB  
Article
Novel Multibus Multivoltage Concept for DC-Microgrids in Buildings: Modeling, Design and Local Control
by Heriberto Rodriguez-Estrada, Elias Rodriguez-Segura, Rodolfo Orosco-Guerrero, Cecilia Gordillo-Tapia and Juan Martínez-Nolasco
Appl. Sci. 2023, 13(4), 2405; https://doi.org/10.3390/app13042405 - 13 Feb 2023
Cited by 9 | Viewed by 2765
Abstract
In this paper, a novel microgrid (MG) concept suitable for direct current (DC) multibus architectures is depicted. Multibus feature is improved in order to distribute power in DC using a number of buses at different voltage level. A teachers offices building that houses [...] Read more.
In this paper, a novel microgrid (MG) concept suitable for direct current (DC) multibus architectures is depicted. Multibus feature is improved in order to distribute power in DC using a number of buses at different voltage level. A teachers offices building that houses several kinds of loads, including a charging station for electric vehicles (EV), is considered to validate the strategy. Several topologies of power electronics converters (PECs) are included in the system to perform specific tasks and providing isolation between bus and final loads. In order to develop the PECs, first, a switching function is used to obtain average model of each converter. Then, converters design is done by using well known methods that allow to obtain parameter values of all the devices in every version of each kind of converter. A hierarchical control is selected to govern the direct current microgrid (DCMG). At a lower control level, local control stage is implemented and tuned using models and designs obtained, with linear controllers in some PECs and classic strategies in others. In higher control level, there is a supervisory strategy that prioritizes the use of generated power to supply the building’s loads. This energy management system (EMS) is based in Petri net theory; it consists of a start-up test, then source condition synchronous algorithm and load condition synchronous algorithm operate the DCMG according to the mentioned priority. Finally, PECs are tested on standalone, performing in closed loop, facing load changes to verify the adequate operation. Some trajectories of a simplified version of the CDMG are tested with local control in order to validate the multibus multivoltage concept. In order to verify coordinated control, some events managed by EMS are presented. Full article
(This article belongs to the Special Issue Renewable Energy Systems 2023)
Show Figures

Figure 1

21 pages, 675 KiB  
Article
Energy Loss Savings Using Direct Current Distribution in a Residential Building with Solar Photovoltaic and Battery Storage
by Patrik Ollas, Torbjörn Thiringer, Mattias Persson and Caroline Markusson
Energies 2023, 16(3), 1131; https://doi.org/10.3390/en16031131 - 19 Jan 2023
Cited by 8 | Viewed by 4180
Abstract
This work presents a comparison of alternating current (AC) and direct current (DC) distribution systems for a residential building equipped with solar photovoltaic (PV) generation and battery storage. Using measured PV and load data from a residential building in Sweden, the study evaluated [...] Read more.
This work presents a comparison of alternating current (AC) and direct current (DC) distribution systems for a residential building equipped with solar photovoltaic (PV) generation and battery storage. Using measured PV and load data from a residential building in Sweden, the study evaluated the annual losses, PV utilization, and energy savings of the two topologies. The analysis considered the load-dependent efficiency characteristics of power electronic converters (PECs) and battery storage to account for variations in operating conditions. The results show that DC distribution, coupled with PV generation and battery storage, offered significant loss savings due to lower conversion losses than the AC case. Assuming fixed efficiency for conversion gave a 34% yearly loss discrepancy compared with the case of implementing load-dependent losses. The results also highlight the effect on annual system losses of adding PV and battery storage of varying sizes. A yearly loss reduction of 15.8% was achieved with DC operation for the studied residential building when adding PV and battery storage. Additionally, the analysis of daily and seasonal variations in performance revealed under what circumstances DC could outperform AC and how the magnitude of the savings could vary with time. Full article
Show Figures

Figure 1

16 pages, 2589 KiB  
Article
Design Space Analysis of the Dual-Active-Bridge Converter for More Electric Aircraft
by Alejandro Fernandez-Hernandez, Fernando Gonzalez-Hernando, Asier Garcia-Bediaga, Irma Villar and Gonzalo Abad
Energies 2022, 15(24), 9503; https://doi.org/10.3390/en15249503 - 14 Dec 2022
Cited by 4 | Viewed by 2050
Abstract
In the literature, different DC/DC power electronic converters (PECs) have been found to interconnect high-voltage DC and low-voltage DC grids in the electric power distribution networks of aircraft. In this scenario, the dual-active-bridge (DAB) converter has been shown to be one of the [...] Read more.
In the literature, different DC/DC power electronic converters (PECs) have been found to interconnect high-voltage DC and low-voltage DC grids in the electric power distribution networks of aircraft. In this scenario, the dual-active-bridge (DAB) converter has been shown to be one of the most promising topologies. The main disadvantages of this PEC are the large output capacitance required to satisfy more electric aircraft (MEA) requirements and the high conduction losses produced in low-voltage power devices of (LV). Therefore, this paper proposes analytical models to determine the voltage ripple and root-mean-square (RMS) current in DC bus capacitors of DABs considering different modulation strategies. Moreover, an analysis of the design space in an MEA case study is performed to evaluate the influence of the design variables in power losses of power devices and peak-to-peak voltage ripple in DC bus capacitors. These models are useful for the design stage of this PEC, as well as to enable multi-objective optimization procedures by reducing the computational cost of these methodologies. Furthermore, the exploration of the switching frequency and limit of the modulation angle aid in reducing the resulting volume of the low-voltage DC capacitor. Full article
Show Figures

Figure 1

23 pages, 1897 KiB  
Review
Sub Synchronous Oscillations under High Penetration of Renewables—A Review of Existing Monitoring and Damping Methods, Challenges, and Research Prospects
by Uvini Perera, Amanullah Maung Than Oo and Ramon Zamora
Energies 2022, 15(22), 8477; https://doi.org/10.3390/en15228477 - 13 Nov 2022
Cited by 26 | Viewed by 5145
Abstract
With the recent developments in renewable energy generation and addition of power electronic devices, power system dynamics have become extremely complex. One of the challenges faced due to this transition is the sub synchronous oscillations caused by the interaction of renewable energy sources [...] Read more.
With the recent developments in renewable energy generation and addition of power electronic devices, power system dynamics have become extremely complex. One of the challenges faced due to this transition is the sub synchronous oscillations caused by the interaction of renewable energy sources and various components of the power grid. Recently reported incidents due to sub synchronous oscillations highlight the need of monitoring and suppression of these harmful oscillations in real time. This paper gives an overview of the phenomena of sub synchronous oscillations and discusses the existing monitoring and damping techniques along with their limitations. Further, it highlights the research trends along this path. Full article
(This article belongs to the Collection Feature Papers in Smart Grids and Microgrids)
Show Figures

Figure 1

22 pages, 7127 KiB  
Article
Research on Reactive Power Compensation Control Strategy of Flexible On-Load Voltage Regulator
by Libo Han, Jingyuan Yin, Lixin Wu, Longfei Sun and Tongzhen Wei
Energies 2022, 15(17), 6193; https://doi.org/10.3390/en15176193 - 25 Aug 2022
Cited by 3 | Viewed by 2215
Abstract
The application of on-load tap-charger (OLTC) transformer technology has become the most direct and effective way to solve the voltage fluctuation of power grid. With the development of active distribution technology, the research focus of on-load voltage regulation technology has gradually turned to [...] Read more.
The application of on-load tap-charger (OLTC) transformer technology has become the most direct and effective way to solve the voltage fluctuation of power grid. With the development of active distribution technology, the research focus of on-load voltage regulation technology has gradually turned to the development direction of arc free, fast and intelligent. This paper presents a flexible on-load voltage regulation topology based on power electronic technology. The flexible on-load voltage regulation (flexible OLVR) transformer is a combination of power electronic technology and traditional on-load tap-charger transformer, which can realize fast arcless switching, voltage step-less regulation, power regulation and other functions. In this paper, a new type of flexible on-load voltage regulation transformer is proposed. The OLTC switches of the device adopts the power electronic switch of anti-parallel thyristors, which can realize step, fast and arcless voltage regulation; the power electronic converter (PEC) module is connected to the primary side of the main transformer. At the same time, it proposed a new reactive power compensation control strategy, which could realize the functions of step-less voltage regulation and reactive power compensation. In the end, the rationality and validity of the proposed topology is tested and verified by simulations and experimental tests. Full article
Show Figures

Graphical abstract

19 pages, 5355 KiB  
Article
Research on the Novel Flexible On-Load Voltage Regulator Transformer and Voltage Stability Analysis
by Libo Han, Jingyuan Yin, Lixin Wu, Longfei Sun and Tongzhen Wei
Energies 2022, 15(17), 6189; https://doi.org/10.3390/en15176189 - 25 Aug 2022
Cited by 3 | Viewed by 2555
Abstract
Voltage stability has always been a hot topic in power system research. Traditional On-Load Tap-Charger (OLTC) transformer is considered to play a very important role in the system voltage stability. However, in the heavy load of distribution network, the tap adjustment of OLTC [...] Read more.
Voltage stability has always been a hot topic in power system research. Traditional On-Load Tap-Charger (OLTC) transformer is considered to play a very important role in the system voltage stability. However, in the heavy load of distribution network, the tap adjustment of OLTC transformer will lead to the shift of critical stable operating point, which bring the “negative voltage regulating effect” of voltage adjustment, and even cause the instability of system voltage. This paper presents a Flexible On-Load Voltage Regulation (OLVR) transformer based on power electronic technology. The Flexible On-Load Voltage Regulation (OLVR) transformer is a combination of Power Electronic Converter (PEC) and OLTC transformer, which can realize voltage step-less regulation and reactive power regulation. Meanwhile, the paper presents the equivalent models of distribution network with Flexible OLVR transformer and analyzes the critical operating point. Through the step-less voltage regulation control of the Flexible OLVR transformer, the negative voltage regulation effect of the transformer in on-load voltage regulation is avoided, and the voltage stability of the distribution network is improved. Full article
Show Figures

Figure 1

52 pages, 27224 KiB  
Article
Comparative Efficiency and Sensitivity Analysis of AC and DC Power Distribution Paradigms for Residential Localities
by Hasan Erteza Gelani, Faizan Dastgeer, Sayyad Ahmad Ali Shah, Faisal Saeed, Muhammad Hassan Yousuf, Hafiz Muhammad Waqas Afzal, Abdullah Bilal, Md. Shahariar Chowdhury, Kuaanan Techato, Sittiporn Channumsin and Nasim Ullah
Sustainability 2022, 14(13), 8220; https://doi.org/10.3390/su14138220 - 5 Jul 2022
Cited by 5 | Viewed by 4079
Abstract
The new millennium has witnessed a pervasive shift of trend from AC to DC in the residential load sector. The shift is predominantly due to independent residential solar PV systems at rooftops and escalating electronic loads with better energy saving potential integrated with [...] Read more.
The new millennium has witnessed a pervasive shift of trend from AC to DC in the residential load sector. The shift is predominantly due to independent residential solar PV systems at rooftops and escalating electronic loads with better energy saving potential integrated with diminishing prices as well as commercial availability of DC-based appliances. Comprehensive sensitivity analysis considering the real load profile is missing in the present body of knowledge. In order to fill that gap, this paper is an attempt to include a comprehensive sensitivity analysis of the DC distribution system and its simulation-based comparison with its AC counterpart, considering the real load profile. The paper uses the Monte Carlo technique and probabilistic approach to add diversity in residential loads consumption to obtain an instantaneous load profile. Various possible scenarios such as variation of standard deviation from 5% to 20% of mean load value, PV capacity variation from 1000 W to 9000 W, and variation in power electronic converter (PEC) efficiencies are incorporated to make the system realistic as much as possible maintaining a fair comparison between both systems. The paper concludes with the baseline efficiency advantage of 2% to 3% during the day for the case of the DC distribution system as compared to the AC distribution system. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

Back to TopTop