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Abstract: The use of renewable energy sources (RES) such as wind and solar power is increasing
rapidly to meet growing electricity demand. However, the intermittent nature of RES poses a
challenge to grid stability. Energy storage (ES) technologies offer a solution by adding flexibility to the
system. With the emergence of distributed energy resources (DERs) and the transition to prosumer-
based electricity systems, energy management systems (EMSs) have become crucial to coordinate
the operation of different devices and optimize system efficiency and functionality. This paper
presents an EMS for a residential photovoltaic (PV) and battery system that addresses two different
functionalities: energy cost minimization, and self-consumption maximization. The proposed EMS
takes into account the operational requirements of the devices and their lower-level controllers. A
genetic algorithm (GA) is used to solve the optimization problems, ensuring a desired State of Charge
(SOC) at the end of the day based on the next day forecast, without discretizing the SOC transitions
allowing a continuous search space. The importance of adhering to the manufacturer’s operating
specification to avoid premature battery degradation is highlighted, and a comparative analysis is
performed with a simple tariff-driven solution, evaluating total cost, energy exchange, and peak
power. Tests are carried out in a detailed model, where Power Electronics Converters (PECs) and
their local controllers are considered together with the EMS.

Keywords: cost minimization; energy management; energy minimization; energy storage; four-leg
inverter; genetic algorithm; optimization; tertiary control

1. Introduction

The addition of global renewable electricity capacity of up to 305 GW is expected for
the following four years; among the distributed energy resources (DERs), Wind-powered
installations and photovoltaic (PV) systems are extensively deployed due to their competi-
tiveness in power generation costs [1]. Despite their advantages, renewable energy sources
(RESs) suffer from natural intermittency, and Energy Storage (ES) technologies can help to
overcome this drawback by adding flexibility to the system and even providing support
functions such as peak-shaving, power reserve, or frequency stabilization of the grid, while
maintaining the State of Charge (SOC) within limits [2].

At the residential level, there is an increasing availability of RESs like PV modules,
and ES technologies such as lithium-ion batteries, essential to transitioning consumers into
prosumers. In this sense, more flexibility is added to the system, with the possibility to
provide continuous supply to the local loads in the event of faults or outages. Moreover, the
electricity market policies allow to obtain economic benefits for such systems. Therefore,
small participants are expected to take part in the upcoming transactive energy market to
negotiate between themselves and the Distribution System Operator (DSO) [3]. Even at the
residential level, the system becomes more complex and demands coordination between
the different devices to harness its full potential effectively. Each system element demands
its own needs; in the case of the DERs, the objective is to extract the maximum available
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power. On the other hand, ES devices must be operated within safe limits to maximize
their lifetime without limiting their utilization.

The complicated nature of interactions between consumers, loads, DERs, and the
grid creates a need for energy management systems (EMSs) as an indispensable tool to
perform real-time monitoring of energy generation and consumption, optimizing energy
flow, and guaranteeing the load supply such that the overall residential system operates at
the desired operating conditions within the given constraints, and achieves specific goals
such as cost reduction [4].

Extensive research has been conducted for the EMS at the residential level, giving
special attention to the optimization methods [5–9]. In terms of the solving method, the
mixed integer linear programming (MILP) approach is widely adopted. However, several
others have been explored, such as dynamic programming (DP), model predictive control
(MPC), nonlinear programming (NLP), heuristic methods, like particle swarm optimization
(PSO) and genetic algorithms (GA), and the most recent solutions exploit the use of artificial
intelligence (AI) techniques including reinforcement learning [10]. However, AI-based
solutions face limitations in handling hard constraints that must never be breached in
a real environment and transferring learning from simulation-trained models to their
implementation in real environments [11].

In [5], a modified PSO is proposed, a dynamic penalty factor is added to the cost
function, which has to be tuned and the algorithm is executed each hour without leveraging
the information of load and generation profiles from forecast services. An analytical
approach to maximize self-consumption is proposed in [6], the initial investment and
maintenance expenses are included, and the computational complexity is reduced, but
this proposal is only applicable to two-level tariff scenarios. In [7], a modified state-space
DP technique is used to achieve a given value of SOC at the end of the day. This method
requires the discretization of the SOC, resulting in a discontinuous search space [12]. The
DP algorithm has also been implemented in [13] to solve the optimal battery scheduling,
considering the battery aging. In this case, the performance of the system is assessed in
terms of the net present cost instead of the revenue obtained by the user

A quadratic programming (QP) based scheduling algorithm is used in [14] where
different metering topologies, and the sensitivity to battery size are studied. Furthermore,
voltage swings due to increased power flow are penalized to reduce the burden on the
grid. An improved implementation of the sparrow search algorithm (SSA), together with
multiobjective SSA, has been proposed in [15] to solve the energy management problem in
the context of source-load-storage aggregation groups connected to a distribution network.
For instance, to reduce the stress on the grid and minimize indirect costs such as network
expenses, energy exchange minimization has been investigated [8,9]. Despite the objective
of energy minimization, economic improvements are also obtained compared to a simple
strategy where the battery is only charged when generation is greater than the load demand.
Another proposal that addresses energy minimization and battery usage simultaneously, is
presented in [16]. The optimization problem is solved with linear programming, and the
weighted sum approach is used to integrate the multi-objective cost function into a single
objective one. However, results demonstrate to be sensitive to the selection of the weights.

One of the most recent solutions is based on Reinforcement Learning-Techniques.
An energy management system based on Proximal Policy Optimization is developed
in [17], without requiring forecast services. However, a constant price and feed-in tariff are
considered, and extensive training examples and parameter tuning are needed. In contrast
to the proposals that deal with large-scale systems, where distributed algorithms are
utilized [18], in the context of residential applications, centralized algorithms are sufficient
to solve the optimization problem.

The studies emphasizing the optimization stage rely on simplified approximations,
often neglecting the dynamics of the low-level controllers and their corresponding PECs,
which, along with the operational requirements of ES, are needed to leverage the system
capabilities [19]. Additionally, most of these studies limit the investigation to single-day
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operation scenarios, where the battery is fully discharged at the end of the day. In contrast,
the initial SOC is typically set near half the capacity of the ES device.

Studies that consider the operational requirements and the lower-level controllers
demonstrate the operational feasibility in shorter time scales (in the range of seconds)
compared to optimization-based solutions [20]. An off-grid system, powered by a Wind
Turbine (WT) and a PV array coordinated by a flowchart-based EMS, has been studied
in [21]. The prediction of demand and generation profiles is used to modify the SOC lower
limit of the ES as a precautionary measure to tackle uncertainty in [22]. Different from other
solutions, the references from the third level are sent to the inverter. Instead of considering
an additional ES device, an electric vehicle is considered in [23] to support the peak load
demand. The experimental validation of the proposal is conducted, and tests are carried
out under different operating scenarios without quantification of total cost or energy. These
proposals rely on simpler rule-based EMSs, which are insufficient to achieve specific goals
such as cost or energy reduction under operating constraints. Nevertheless, these studies
are essential to enable the operation under uncertain and critical events such as black-start
or outage of the electrical grid.

Some studies bridge the gap between operational-focused investigations and
optimization-oriented research. The optimization methods are developed simultaneously
with the operational requirements. The optimization method described in [8] is adopted
in [24] where the control structure and operation of the system allowing power sharing
between two prosumers are highlighted. However, the SOC of the battery and economic
benefits are not presented.

An additional constraint is included to generate a smooth power profile for the battery
using an adaptive penalization factor for the power gradient [25]. Nevertheless, this is
not specified in the manufacturers’ guidelines and limits battery utilization. In [26], a
rule-based expert system is developed as an EMS for a grid-connected PV system with
supercapacitors (SC) and batteries. The operation within limits of frequency and voltage is
achieved with additional economic benefits. Despite this, the list of rules depends on the
expertise of the designer, and the SOC is kept near 50%, which limits the exploitation of ES.
A MILP approach is adopted for the optimization stage of an EMS in a configuration of
two generators (PV and WT sources) and batteries. The constant voltage control mode is
considered for the full charge of the battery, and a general framework to assess the results
is proposed [27]. Only single-day operation is investigated with lead-acid technology for
the ES.

The DP method and the fuzzy controller have been combined to select the operating
mode of a system that integrates a PV source, together with fuel cell and lead-acid battery
as ES technologies, to minimize the operating costs [28]. Fuzzy-based EMSs for smoothing
the power profile of the electrical grid at the Point of Common Coupling (PCC) have
been implemented [29]. Fuzzy logic approaches are suitable for designing EMS based on
simple linguistic rules, but they depend on the expertise of the designer. Similarly, a Fuzzy
Q-Learning approach is proposed in [30], for a single-phase system with a PV source and
ES. In this work, the power management algorithm selects eight possible operating modes
which include transitions between standalone and grid-connected modes. The control
of the system is improved with an additional capacitor current feedback loop to reduce
the overshoot in the DC-link voltage. The different modes of operation are demonstrated;
however, the cost reduction is not quantified. An improved adaptive artificial bee colony
(AABC) optimization method is proposed in [31] to coordinate the optimal power flow
of ES and PV in a residential system. In this case, forecast data are not used, and the PV
system is not operating in MPPT mode, which may limit the obtained solution.

Most of these proposals only investigate one-day operation, and the battery is com-
pletely discharged at the end of the day to minimize the cost. In some cases, the optimization
method is modified to manipulate the SOC profile limiting the ES utilization. It is evident
that the EMS has to be flexible and deal with different objectives in a unified operating
environment. For example, although the most common objective from the point of view
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of the residential system owner is to reduce the energy cost, in the context of weak grids,
minimizing the energy exchange and peak power is crucial to reduce the stress of the grid.

Therefore, this study presents an EMS for a PV and battery-based residential system
that can deal with the objectives of cost minimization and energy exchange minimiza-
tion (self-consumption maximization).The focus of this study is to compare each of these
strategies independently, different to the multiobjective optimization approach in which
several objectives are considered at the same time. Additionally, the study is limited to the
case of feed-in tariffs, which is not the only policy available in the market. For instance,
residential prosumers are subject to net-metering policies. Some of the works in which
the focus is the optimization problem demonstrate the capabilities of their proposals and
cost-effectiveness considering the average values of power profiles. Nonetheless, in this
work, the simulations and final calculations are taken from the results of the model that
runs with the PECs models, and the continuous power profiles. The averaged values of the
power profiles are solely used to solve the optimization problem.

Each functionality of the proposed EMS is tested under a detailed model where the
PECs and their lower-level controllers are considered in the context of a Time of Use
(TOU) tariff environment. The optimization problem is formulated taking into account the
manufacturers’ specifications of the ES device, without adding constraints that limit its
exploitation, and an offline GA is used to solve the optimization problem.

The performance of the EMS is tested under four different power profiles for two
consecutive days, and the initial and ending SOC for the two-day analysis is fixed at 50%.
One of the main contributions of this study is to determine the optimal SOC setting for the
subsequent day based on the anticipated power profile to improve the desired objective,
whether it is cost reduction or energy minimization.

A simple tariff-driven strategy that is applicable to a TOU tariff scheme is also included
to compare the optimization-based solutions in terms of total cost, total energy exchange,
and peak power. The remainder of the paper is as follows: Section 2 introduces the system
under study with the lower level controllers, and an overview of the power availability
in different operating scenarios that are present in a grid-connected residential system, is
provided. In Section 3 a thorough discussion of each solution included in the proposed
EMS is presented, and practical considerations are discussed. In Section 4, the case study
details and the results for a two-day run of the proposed EMS under different generation
profiles are shown. Finally, the conclusions are presented in Section 5.

2. System Description

A residential grid-connected system with PV as a generation source and lithium-ion
battery as the ES device is considered for this study and shown in Figure 1. The PV module
is connected with a boost converter and the battery is interfaced to the DC bus with a
bidirectional converter. Both of the DC-DC converters operate in the interleaving mode.
This topology is selected because it reduces the current rating for the semiconductors.
Besides, compared to the conventional converter, the filter size is reduced four times,
obtaining the same input current ripple [32,33].

For the DC-AC stage, four-leg or three-leg two-level converters may be used depend-
ing on the load or mode of operation. However, in a residential context, power is supplied
by a low-voltage distribution network, in which several single-phase loads or unbalanced
three-phase loads are connected. Under this situation, to allow for increased flexibility
and future operation in standalone mode with the capability to handle the zero-sequence
components, a four-leg two-level converter with an LCL filter is used as the DC-AC stage
to interface the grid with the supply system, compared to the three-leg converter that can
only regulate positive and negative sequence components [34]. The grid impedance has
been modeled with a configurable three-phase voltage source and lumped impedance with
a value corresponding to the line length between the PCC and the nearest transformer in a
given low-voltage distribution network. The parameters of the system under consideration
are summarized in Table 1.
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Figure 1. Residential system under study.

Table 1. System parameters.

Parameters Symbol Values Parameters Symbol Values

PV System Maximum Power PMPPT
PV 10 kW PV Voltage at Maximum Power

Point VMPP 450 V

PV Short Circuit Current ISC 18.5 A Battery Total Energy Cbat 10 kWh

Battery Nominal Voltage vB 450 V Grid Nominal Voltage
(line-neutral) vG 230 VRMS

Grid Nominal Frequency fg 50 Hz Grid Inductance Lg 100 µH
Grid Resistance Rg 120 mΩ Switching frequency fsw 40 kHz

DC bus nominal voltage Vdc 750 V DC bus capacitor Cdc 1 mF
Cdc internal resistor Rdc 10 mΩ Filter converter side inductor L1, Ln 2 mH

L1 and Ln internal resistor R1, Rn 10 mΩ Filter grid side inductor L2 300 µH
L2 internal resistor R2 10 mΩ Capacitor filter C f 3 µF
C f internal resistor R f 10 mΩ Boost converter inductance Lu 4 mH
Lu internal resistor Ru 10 mΩ Battery converter inductance Lb 4 mH
Lb internal resistor Rb 10 mΩ PV capacitor Cpv 5 µF

Cpv internal resistor Rpv 10 mΩ Battery capacitor Cb 5 µF
Cb internal resistor Rb 10 mΩ - - -

The following measurements are used either for the controllers or to calculate the
power of the different energy exchange units in the system:

vpv—PV voltage,
iu—PV converter input current,
vbat—battery voltage,
ib—battery converter input current,
vdc—DC bus voltage,
iC,abc—DC-AC converter current,
iL,abc—load currents,
vG,abc—grid phase voltages at the PCC.

The EMS uses the expected power generation, PPV,t and load power demand PL,t for
two days, producing as output the reference power for the battery P∗

B as shown in Figure 1.
Even though the grid is available at all times, one can distinguish different operating
scenarios depending on the energy exchange within the system.
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2.1. Local Controllers

The structure of local controllers for each device of the system is shown in Figure 2.
The PV system controller is responsible for the generation of maximum available power.
Therefore, a Maximum Power Point Tracking (MPPT) method sets the reference voltage
v∗pv at which the output power is maximum [35]. Then, the reference PV voltage v∗pv is
sent to an outer PI controller to set the reference current i∗u, for the inner PI controller. The
calculated output is then scaled by the DC bus voltage vdc to set the modulating signal of
the converter.

The DC-AC converter controller regulates the DC bus voltage vdc and produces
sinusoidal currents at the output. An outer PI controller is used to regulate the DC bus
voltage. Then, the output of the controller and the measurements of the grid voltage vG,abc
is used to generate the reference currents i∗C,abc. It is important to mention that the reference
currents are calculated to operate at the unity power factor. To track these reference currents,
a Proportional Resonant (PR) controller is used for each phase, and the output is divided by
the DC bus voltage vdc to send the resulting signal to the modulation stage of the inverter.

The input to the ES controller is the desired reference power for the battery P∗
B , which

is later converted to the battery reference current i∗b dividing it by the battery voltage vbat. A
PI controller is fed with the reference current i∗b , and the output of the controller is scaled to
produce the modulating signal for the bidirectional converter. This results in the control of
charging and discharging cycles of the battery with the reference power P∗

B that is generated
from the EMS. The details of the controllers implementation and their respective gains are
summarized in Table 2. The transfer function that defines the PI controller is GPI(s), and
GPR(s) corresponds to the PR controller, where ω0 = 2π fg.

+-

ES Controller

PWM
ESPI

PR+-
Ref.
Gen +-PI

DC-AC Controller

^2

PWM DC-AC

+- +-MPPT PI PI

PV Controller

PWM 
PV

Local Controllers

Figure 2. Local controllers of PECs.

Table 2. Structure of the controllers and gains.

Description Equation Gains
Proportional Integral

Battery current controller

GPI(s) = Kp,x +
Ki,x

s

Kp,ib = 32 Ki,ib = 5

PV current controller Kp,ipv = 10.5 Ki,ipv = 640

PV voltage controller Kp,vpv = 0.03 Ki,vpv = 720

DC Bus voltage controller Kp,vdc = 0.59 Ki,vdc = 72

DC-AC current controller GPR(s) = Kpr +
Krs

s2+ω2
0

Kpr = 80.4 Kr = 600
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2.2. Operating Scenarios

A simplified diagram to describe the power balance of the system is shown in Figure 3,
and the following considerations are taken into account:

• system is considered lossless;
• grid power, PG, is negative when the grid provides power to the loads and/or the

battery, and positive when receiving power from the PV and/or the ES;
• load power, PL, is always positive;
• PV system power, PPV , is either negative or equal to zero;
• power from the battery, PB, is positive when charging and negative when discharging.

DC

DC

DC

DC

AC

DC

. . .

Figure 3. Simplified diagram of power balance in the system.

The system under consideration operates in ten different modes, listed in Table 3.
For any given scenario, (+) and (−) signs indicate power consumption and generation,
respectively, while (0) denotes that power transfer is unavailable. In the case of PV instal-
lations they cannot produce power (0) if strings are covered (e.g., by snow) or there are
dark clouds. The ES cannot provide energy (0 power available) if it is fully discharged or it
cannot store more energy if it is fully charged. The operation details are discussed below
for each configuration.

Table 3. System operation modes in grid-connected configuration.

Mode PV ES Grid

M1 0 + −
M2 0 − −
M3 0 − +
M4 0 0 −
M5 − + −
M6 − + +
M7 − − −
M8 − − +
M9 − 0 −

M10 − 0 +

(1) M1: The loads and the ES are supplied by the grid; this is applicable when the prices
are low and it is desired to charge the battery. For this mode, the power balance is
given by:

PG = −(PL + PB) (1)

(2) M2: In this case, the ES and the grid supply the power demanded by the loads. This
scenario is possible when no PV generation is available, and it is intended to reduce
the power demanded from the grid side.

(3) M3: In this operating mode, the ES supplies both the loads and the grid. This scenario
is expected at night hours when there is no PV generation or when the energy selling
prices are high.
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(4) M4: In this case, the grid solely provides the power demanded by the loads, and the
power balance is approximated as:

PG = −PL (2)

(5) M5: This operating mode is related to the event where the PV can not fully supply
the loads and charge the battery at the desired rate, resulting in the compensation of
power from the grid. The power balance is approximated as:

PG = −(PL + PB + PPV) (3)

(6) M6: In this mode, the PV generation is greater than the demand for the loads and the
battery, as a result, the excedent power is taken by the grid.

(7) M7: This is the case when the PV is working in MPPT mode, and the ES is supplying
power at the maximum limit and this does not suffice to supply the power demanded
from the load. Then, the grid needs to provide additional power. This may be caused
by a large demand from the loads and/or a low PV generation event.

(8) M8: In this case, the generation from the residential system comes from the PV and ES,
being greater than the load demand. The excess power is supplied to the grid, which
may take place for local power demand or high power availability from the PV.

(9) M9: This case results from the PV generation being lower than the load demand, for
example, during night hours. This mode is similar to M6, with the difference of the
ES being unable to store more energy. The power balance for this operation mode is
given by:

PG = −(PL + PPV) (4)

(10) M10: In the last mode, the PV generation is greater than the load demand; conse-
quently, the grid absorbs a surplus of power, since the ES cannot store more energy.

3. Proposed EMS

In Figure 4, three strategies for the EMS are shown. A simple tariff-driven strategy is
proposed to have a comparison as a baseline. Additionally, two strategies that involve an
optimization problem, namely, energy cost minimization and energy exchange minimiza-
tion, are included. It is important to highlight that each objective is addressed separately.
Therefore, this study does not address combinations of different energy management strate-
gies, as the focus of this study is the comparison between the strategies under different
generation conditions. This is different from a multiobjective optimization approach in
which the optimization-based strategies can be combined.

Energy Cost
Minimization

Genetic Algorithm
Cost function Equation (13)

Constraints Equations 
(5),(6),(10)

Tariff-driven
Strategy

Predefined  
References

Energy Management System

Energy Exchange
Minimization

Genetic Algorithm
Cost function Equation (15)

Constraints Equations 
(5),(6),(10)

Figure 4. Detailed diagram of the EMS functionalities.

3.1. Tariff-Driven Strategy

The tariff-driven strategy can be implemented in a TOU tariff scenario, and the op-
eration is as follows. During the day, the aim is to charge the battery at a constant rate
during the timeframe in which the prices are cheaper to achieve the highest possible SOC
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before higher electricity prices begin. Then, when the cost of energy is higher, the battery is
discharged at a constant rate before transitioning to the period when the energy is cheaper
again. Usually, the last hours of the TOU scenario offer reduced prices, which can be
leveraged to reach the desired SOC at the end of the day.

3.2. Energy Cost Minimization

The optimization of the total energy cost during two days has been proposed. For this
strategy, the load and PV generation power profiles and the price rates are considered to
be known in advance. Furthermore, a fixed rate per kWh is assumed when selling energy
to the grid. In order to reduce the number of decision variables, the predicted generation
and load profiles are averaged for a given time horizon. In this case, one hour is selected as
the averaging period. Before solving the optimization problem, the objective function and
constraints of the problem must be set.

3.2.1. Constraints

This strategy aims to minimize the total cost of the energy exchanged, and this must
be conducted while guaranteeing a safe operation of the system. Therefore, the following
constraints are set:

• Maximum power limit: In order to avoid battery degradation, the battery must be
charged/discharged, according to the manufacturer’s specification. For ES products
that are available in the market, the continuous power rating of lithium-ion batteries
is about 5 kW [36]. This constraint is described in (5).

PB,min ≤ PB,t ≤ PB,max (5)

The powers PB,min and PB,max, correspond to the minimum and maximum continuous
power. In this case, the values are set to −5 kW and 5 kW, respectively.

• Last value of SOC: To guarantee the operation of the system for the subsequent days,
taking into consideration the next day’s forecast, an additional constraint is chosen
where the target is to set the SOC at the end of the day to a predefined value, this
constraint is expressed as:

k

∑
t=1

∆SOCt + SOC0 = SOCk (6)

The index k corresponds to the hour chosen to reach a given SOC, for this case, two
equality constraints are needed, one for the last hour of each day. ∆SOCt is the change in
SOC at time t, and can be approximated by:

∆SOCt = PB,t ·
∆t

Cbat
(7)

where Cbat is the total capacity of the ES and ∆t is the considered time step, in this case,
one hour.

• SOC limits: The following constraints are needed to guarantee that the SOC is within
bounds during operation. For lithium-ion batteries, a lower limit of 20% is set, as a
preventive measure to reduce the effect of aging due to a large depth of discharge
(DOD) range [37]. A constant voltage control is needed to fully charge the battery, and
this operating mode can be disregarded if the maximum SOC is set at 90%. In this
range, the battery can safely operate in the continuous current charging/discharging
mode. For the first hour of operation, the constraint is given by:

SOCmin ≤ SOC0 + ∆SOC1 ≤ SOCmax (8)
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For the first two hours of operation of the system, the constraint is given by:

SOCmin ≤ SOC0 + ∆SOC1 + ∆SOC2 ≤ SOCmax (9)

Therefore, a total of 23 constraints for each day are needed to guarantee that the SOC
is within limits during operation, and can be written as:

SOCmin ≤ SOC0 +
T={1, 2, ··· , 23}

∑
t=1

∆SOCt ≤ SOCmax (10)

The constraints to keep the SOC within bounds at the last hour of each day (when
t = 24 and t = 48) are taken into account with (6).

3.2.2. Cost Function

The objective of the problem is to minimize the total cost of energy in two days. A
TOU tariff is considered when purchasing energy, and a fixed price is used for selling
energy to the grid. When the power of the grid is negative, the incurred cost will depend
on the TOU tariff; when the grid power is positive, the system owner gets revenue at a
fixed price. Then, the cost function can be written as:

f =
48

∑
t=1

PG,t · ∆t · c(PG,t, t) (11)

where PG,t is the grid power, ∆t is the averaging period in hours (in this case, one hour),
and c(PG,t, t) is a coefficient that is a function of the grid power and time.It can be modified
to different scenarios, for example, variable rates of purchasing and feed-in tariffs. For this
particular case, it is defined as:

c(PG,t, t) =


0.1 e/kWh if PG,t < 0, and {t ≤ 6 or 13 < t ≤ 15 or 22 < t ≤ 24}
0.2 e/kWh, PG,t < 0, and {6 < t ≤ 13 or 15 < t ≤ 22}
0.13 e/kWh, PG,t > 0
0 e/kWh, PG,t = 0

(12)

If the power is positive, the coefficient is the feed-in tariff rate at which the energy
is sold. On the contrary, when the power is negative, the value of the coefficient c(PG,t, t)
is assigned according to the TOU rate. As previously mentioned, the hourly averaged
generation and load profiles are available, using (3) and replacing it in (11), results in:

f =
48

∑
t=1

−(PPV,t + PB,t + PL,t) · ∆t · c(PG,t, t) (13)

In this form, the decision variable is the hourly reference power for the battery P∗
B,t,

which is sent to the ES controller.

3.3. Energy Exchange Minimization

In order to provide another functionality and compare optimization approaches, a
different objective is formulated, that is, the minimization of the grid energy exchange. The
advantage of energy minimization is the ability to reduce power fluctuations, which is
important for weak grids that are more sensitive to these conditions, resulting in degraded
power quality. In order to guarantee the safe operation of the system, the same constraints
as in the cost minimization approach are used, and a different cost function is formulated.
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3.3.1. Cost Function

If the absolute value of the grid power at each time (PG,t) is minimized, then adding
these values along the two days will minimize the energy exchange, and the cost function
to achieve the objective is expressed as:

g =
48

∑
t=1

|PG,t| (14)

The grid power at a given time interval, PG,t, can be approximated with (3) and the
cost function in which the target is to minimize the energy exchange results in:

g =
48

∑
t=1

| − (PPV,t + PB,t + PL,t)| · ∆t (15)

Similar to the cost minimization strategy, the decision variable is the hourly power
reference for the battery, P∗

B , which is sent to the ES controller.

3.4. Genetic Algorithm

From the previous section, it can be noted that the cost functions are non-linear. For
the energy cost minimization, the selling rates of the energy are defined by a piecewise
linear function, that also depends on the grid power, PG,t and time t. Likewise, for the
energy minimization objective, the cost function takes the absolute value of the grid power.
Although metaheuristic methods such as GA can fall in a local minimum, their performance
yields acceptable results compared with other methods [38]. On top of that, the use of
metaheuristic algorithms is not restricted to a certain type of cost function or constraints,
which provides additional flexibility. The primary goal of this study is the comparison of
energy storage management techniques in single-objective formulation, a later study will
make use of the methods available for multiobjective optimization for further comparison.

GA is in the class of metaheuristic optimization algorithms that are inspired by natural
behavior and mimic a biological process, in this case, natural selection. This algorithm
is flexible as it can deal with different problems compared to other approaches that are
suitable only for specific cases. Besides, the GA provides a continuous search space for the
multivariable problem, and it has a randomization component in the process that helps to
explore other solutions and minimizes the possibility of getting stuck in local minimum [39].
The flowchart of the algorithm is presented in Figure 5, and the description of the algorithm
applied to the problem being solved is the following:

yes

Begin

Initialize population

Evaluate 
cost function Selection Crossover Mutation

Termination criteria
satisfied?

End

no

Figure 5. GA flowchart.

1. Initial population: A number of individual solutions, Np, are created. The individual
solution is a vector that has every component of the decision variable, in this case, the
battery power for each hour, PB,1−48. For this particular problem, the constraints are
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linear, and the initial population is created so that each individual of the population
satisfies the constraints [40].

2. Evaluate cost function: In this step each individual is evaluated in the cost func-
tion, (13) for cost minimization or (15) for energy exchange minimization.

3. Selection: As a result of the previous step, individual solutions yield different results.
The best solutions are kept in the population and are duplicated, and the remaining
ones are ruled out.

4. Crossover: In this step, new solutions are created, with probability pc, from combina-
tions of a pair of individuals. In other words, two different solutions of battery power
references (PB,1−48) are selected and combined to create a new solution.

5. Mutation: The purpose of this operation is to allow for exploration of the search space
to escape from the local minimum. Some of the components of the individual (battery
power references) are changed with probability pm. The operation is performed so
the individual satisfies the constraints.

6. Termination criteria: Up to this step, one iteration of the algorithm has concluded. For
this study, a predefined number of iterations Ni, is selected as the termination criteria.
If the number of iterations is reached, then the best solution from the population
is selected.

4. Case Study

The presented strategies have to be calculated ahead of time to schedule the battery’s
power profile, setting an hourly power reference P∗

B,t, which is updated each hour and sent
to the ES system controller. The SOC of the battery was calculated utilizing the “Coulomb
count” method.

The collection of power profile data is facilitated by widely employed smart meters,
which enable data acquisition with a resolution ranging from 15 min to one hour [41]. For
simplicity, in this proposal, the averaged load and generation profiles have a resolution
of one hour. Moreover, it is important to highlight that this method can be extended to a
desired time window by easily adjusting the corresponding set of constraints and providing
the data of power profiles accordingly. Besides, the cost minimization strategy can also
handle dynamic tariffs, for example, with a resolution of one hour. Profiles with shorter
resolution times as shown in Figure 6a are averaged on an hourly basis, resulting in the
profiles that are illustrated in Figure 6b, the latter are used as inputs to the optimization
problems, i.e., for the cost minimization and energy exchange minimization. It is important
to note that the selected profiles represent two different scenarios. For the first 24 h a low
PV generation profile is used, which can be considered to happen on cloudy days. On the
other hand, for the last 24 h a sunny day is represented. In both cases, it can be noted that
the peak power generation occurs in the middle hours of each day, and the load from the
evening hours is not covered, which is a typical scenario. Regardless, these profiles can be
changed accordingly to a specific location or scenario.

A TOU scenario is selected in order to compare the presented strategies, where two
fixed rates, day and night tariffs, are available during the day. Both the cost at which the
energy is purchased from the grid and the feed-in tariff are shown in Figure 7.

The energy management strategies discussed in Section 3, have been implemented
and later tested in a detailed model where the PECs and their local controllers are included.
Although the averaged power profiles were used as inputs in the optimization stage, the
continuous load and PV generation profiles, which are shown in Figure 6a, were used
during the tests to compare the energy management strategies.

Each strategy is tested for two consecutive days under four different power profiles:
two consecutive days of cloudy or sunny profiles, and the scenarios where one of the days
is sunny and the other is cloudy. For each of the EMS strategies and power profiles, three
options for SOC at the end of the first day were set at 30%, 50%, and 90%, resulting in
36 studied scenarios. The starting and ending SOC is set at 50% in all the tests, and the
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target SOC at the end of the first day is modified to investigate which is the best option
considering different power profiles.
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Figure 6. PV generation and load profiles. (a) Continuous profiles. (b) Averaged profiles.
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Figure 7. Rates of energy cost and feed-in tariff.

4.1. Tariff-Driven Strategy

Results for a target SOC of 30% and two cloudy days are presented in Figure 8. Night
tariff periods are shaded in blue, while the day tariff period (higher prices) corresponds to
the non-shaded area. The power profiles of the first day sunny and the second cloudy, and
the SOC profile of the battery are presented in Figure 9a and Figure 9b, respectively. In this
case, the target SOC at the end of the first day is set to 50%.
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Figure 8. Tariff-driven strategy for 30% target SOC during two cloudy days. (a) Power profiles.
(b) SOC.
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It is worth noting that in all cases the power profile of the battery and the SOC is the
same for the first day, up to the last two hours. The battery power profile is not determined
by the generation or load power profiles.
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Figure 9. Tariff-driven strategy for 50% target SOC with first day cloudy and second sunny. (a) Power
profiles. (b) SOC.

4.2. Energy Cost Minimization

Results for the scenario where the total cost of energy is minimized when the first day
is sunny and the second day is cloudy are shown in Figure 10. Additionally, the setting for
SOC target at the end of the day is set to 50%. Results regarding the scenario in which the
first day is cloudy and the second day is sunny, with a setting for the SOC of 30% at the end
of the first day are shown in Figure 11a, for the power profiles and Figure 11b for the SOC.
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Figure 10. Energy cost minimization for 50% target SOC with first day sunny and second cloudy.
(a) Power profiles. (b) SOC.

It is interesting to note that for the two scenarios shown, the battery is fully charged
before the beginning of the period when the TOU tariff is high. This behavior is similar to
the tariff-driven strategy proposed for comparison. Besides, it is observed that regardless
of the target SOC and power profile, the battery is charged mostly during low-price hours,
compared to the discharging events that occur when energy is more expensive.
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Figure 11. Energy cost minimization for 30% target SOC with first day cloudy and second day sunny.
(a) Power profiles. (b) SOC.

4.3. Energy Exchange Minimization

To demonstrate the performance of the system under the energy exchange minimiza-
tion strategy, a new set of tests was carried out. The power profiles of the system for two
sunny days, and the SOC profile of the battery are presented in Figure 12a and Figure 12b,
respectively. In this case, the target SOC at the end of the first day is set to 90%. Additionally,
the power profiles of the system are shown in Figure 13a for the scenario in which the first
day is cloudy and the remaining 24 h corresponds to a sunny day, for a target SOC of 50%.
Besides, the transitions of the SOC for this case are shown in Figure 13b.

The charging and discharging cycles of the battery are not related to the prices of
the energy during the day. However, it is observed that when the energy exchange min-
imization strategy is used, the SOC profiles are smoother compared to the approach of
cost minimization.
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Figure 12. Energy exchange minimization for 90% target SOC, and two sunny days. (a) Power
profiles. (b) SOC.
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Figure 13. Energy exchange minimization for 50% target SOC, with first day cloudy and second day
sunny. (a) Power profiles. (b) SOC.

4.4. Comparison

A total of 36 scenarios were studied, i.e., three energy management strategies, for each
strategy four different power profiles and for each power profile, three SOC targets at the
end of the first day to study the influence of the final SOC value of the day. The starting and
ending SOC of the 48 h analysis is the same for all cases and is set at 50%. The cost, total
energy exchange, and peak power for each scenario and EMS strategy are summarized in
Table 4.

Table 4. Total cost, energy, and peak power results for the 36 tested scenarios, best cases highlighted
in green and worst cases highlighted in red.

EMS SOC 30% SOC 50% SOC 90%

Cost
(e)

EE
(kWh)

PMAX
(kW)

PMIN
(kW)

Cost
(e)

EE
(kWh)

PMAX
(kW)

PMIN
(kW)

Cost
(e)

EE
(kWh)

PMAX
(kW)

PMIN
(kW)

Cloudy—Cloudy

TD −6.51 75.23 1.93 −4.61 −6.51 75.21 1.93 −4.61 −6.51 75.22 1.93 −4.61
CM −6.26 84.90 4.89 −4.72 −6.13 94.20 4.85 −5.26 −6.36 81.30 4.92 −5.19
EM −7.65 44.59 0.18 −2.87 −7.61 45.02 0.41 −2.97 −7.66 46.71 0.74 −3.29

Cloudy—Sunny

TD −3.66 86.49 4.13 −4.61 −3.66 86.49 4.13 −4.61 −3.66 86.50 4.13 −4.61
CM −3.47 93.22 4.92 −4.86 −3.36 102.41 5.55 −6.08 −3.18 111.88 6.59 −5.04
EM −4.51 50.05 2.26 −2.74 −4.55 51.23 2.33 −2.90 −4.65 59.16 2.25 −3.03

Sunny—Cloudy

TD −3.66 86.53 4.14 −4.58 −3.66 86.52 4.14 −4.58 −3.65 86.51 4.14 −4.57
CM −3.23 107.79 6.84 −5.07 −3.33 99.91 5.69 −5.27 −3.40 96.73 4.93 −5.52
EM −4.54 51.43 2.12 −2.97 −4.53 51.58 2.33 −2.84 −4.65 55.21 2.16 −2.92

Sunny—Sunny

TD −0.81 97.81 4.14 −3.28 −0.81 97.78 4.14 −3.27 −0.80 97.80 4.14 −3.59
CM −0.33 122.17 5.72 −5.05 −0.46 114.79 5.56 −4.65 −0.36 118.71 7.72 −5.15
EM −1.48 55.53 2.27 −2.64 −1.52 57.52 2.23 −2.59 −1.73 66.40 2.31 −3.69

EE: Energy Exchange, PMAX : Maximum grid power, PMIN : Minimum grid power, TD: Tariff-driven, CM: Cost
minimization, EM: Energy minimization.
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The minimum cost is always achieved using the cost minimization strategy for a given
power profile and target SOC at the end of two days. However, one of the key findings of
this study is that for a given power profile, the target SOC that reduces the cost is different,
as highlighted in green color in Table 4. For instance, for two cloudy days, the cost is
minimized if the SOC at the end of the first day is 50%. In contrast, for the same power
profile, the worst scenario in terms of cost is when the target SOC at the end of the day is
90% because more energy is taken to charge the battery under low irradiation conditions.

When the first day is cloudy and the second is sunny, the best economic result is
achieved for the SOC setting at the end of the first day at 90%, which is explained because,
at the end of the day, there is a low load profile and the tariffs used as a case study allow
to sell the energy at a higher price than it was bought. On the other hand, under this
generation profile the worst case in terms of cost, occurs when the target SOC is 30%. For
the cases where the first day is sunny and the second is cloudy, or when the two days are
sunny, the minimum cost is achieved when the target SOC is set at 30%, and the cost is
increased when setting the target SOC to 90% and 50% for the sequence sunny-cloudy and
two sunny days, respectively. For any scenario under a given power generation profile
and target SOC, the total energy exchange is reduced almost two times compared to the
cost minimization approach. Regardless of the generation power profile and SOC target in
all cases, the energy is minimized when the SOC is set to 30% while the maximum energy
exchange occurs when setting the SOC at the end of the day at 90%. Compared to the
other strategies, for energy minimization, the positive peak power is minimized in all cases,
and the negative peak power is reduced, except when the power profile is of two sunny
days and the target SOC is 90%. On the contrary, when cost minimization is pursued, the
maximum and minimum power of the grid are higher compared to the other strategies.

5. Conclusions

The development and implementation of energy management strategies have been
presented: tariff-driven strategy, energy cost minimization, and energy exchange minimiza-
tion. A given SOC level at the end of the day is achieved, providing better initial conditions
of the ES for the next day’s operation. The tariff-driven strategy to charge/discharge the
battery during low/high prices of energy has been proposed as a baseline to compare the
optimized solutions. With this approach, the number of cycles of the battery is independent
of the load and PV power profiles and is the same regardless of the final SOC.

Two residential system functionalities that use an optimization technique were im-
plemented; for one case, the objective was to minimize the energy cost, and for the other
scenario, the goal was to minimize the energy exchange with the grid during operation
under different power generation profiles. For each of the above-mentioned strategies,
three scenarios were tested considering different levels for the final SOC of the day as
a constraint, specifically 30%, 50%, and 90%, comparing the benefits of flexible SOC set-
tings based on the next day forecast. Additionally, a GA is used to solve the optimization
problem, allowing for a continuous search space of solutions.

The energy management strategies were compared in terms of the total cost, the total
energy exchange, and the maximum and minimum grid power. It is worth mentioning
that reaching a minor SOC at the end of the first day does not produce a minimized cost
in all cases. A different value of SOC should be selected at the end of the day depending
on the PV generation power profiles of two consecutive days, and the final SOC cannot be
neglected in the optimization process. Therefore, the SOC at the end of the day can also
be optimized in the following research of the considered functionalities, based on next-
day forecast and pre-calculated optimized benefits (minimized cost or energy exchange).
Moreover, this study makes use of an offline single-objective optimization method, which
is prone to diminished performance in the case when the forecast data change abruptly.
Besides, the flexibility of the system could be further leveraged by controlling the local
loads of the residential system. In consequence, future work will focus on implementing an
online optimization method and the addition of demand-side management, considering
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controllable loads for additional flexibility, and the implementation of a multi-objective
optimization algorithm to handle both objectives. Finally, a later implementation of the
case study in a real-time platform will be carried out.
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33. Kroičs, K.; Stan, a, G, . Bidirectional Interleaved DC–DC Converter for Supercapacitor Energy Storage Integration with Reduced
Capacitance. Electronics 2023, 12, 126. [CrossRef]

34. Rojas, F.; Cárdenas, R.; Burgos-Mellado, C.; Espina, E.; Pereda, J.; Pineda, C.; Arancibia, D.; Díaz, M. An Overview of Four-Leg
Converters: Topologies, Modulations, Control and Applications. IEEE Access 2022, 10, 61277–61325. [CrossRef]

35. Kot, R.; Stynski, S.; Stepien, K.; Zaleski, J.; Malinowski, M. Simple Technique Reducing Leakage Current for H-Bridge Converter
in Transformerless Photovoltaic Generation. J. Power Electron. 2016, 16, 153–162. [CrossRef]

36. Tesla Powerwall 2 Datasheet. Available online: https://www.tesla.com/sites/default/files/pdfs/powerwall/Powerwall%202_
AC_Datasheet_en_northamerica.pdf (accessed on 13 June 2023).

37. Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A Review on the Key Issues of the Lithium Ion Battery Degradation
among the Whole Life Cycle. eTransportation 2019, 1, 100005. [CrossRef]

38. Gelleschus, R.; Böttiger, M.; Stange, P.; Bocklisch, T. Comparison of Optimization Solvers in the Model Predictive Control of a
PV-battery-heat Pump System. Energy Procedia 2018, 155, 524–535. [CrossRef]

39. Katoch, S.; Chauhan, S.S.; Kumar, V. A Review on Genetic Algorithm: Past, Present, and Future. Multimed. Tools Appl. 2021,
80, 8091–8126. [CrossRef]

40. Importance of Population Diversity, MATLAB. Available online: https://www.mathworks.com/help/gads/population-diversity.
html (accessed on 17 December 2023).

41. Bu, F.; Dehghanpour, K.; Wang, Z. Enriching Load Data Using Micro-PMUs and Smart Meters. IEEE Trans. Smart Grid 2021,
12, 5084–5094. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/electronics12010126
http://dx.doi.org/10.1109/ACCESS.2022.3180746
http://dx.doi.org/10.6113/JPE.2016.16.1.153
https://www.tesla.com/sites/default/files/pdfs/powerwall/Powerwall%202_AC_Datasheet_en_northamerica.pdf
https://www.tesla.com/sites/default/files/pdfs/powerwall/Powerwall%202_AC_Datasheet_en_northamerica.pdf
http://dx.doi.org/10.1016/j.etran.2019.100005
http://dx.doi.org/10.1016/j.egypro.2018.11.028
http://dx.doi.org/10.1007/s11042-020-10139-6
https://www.mathworks.com/help/gads/population-diversity.html
https://www.mathworks.com/help/gads/population-diversity.html
http://dx.doi.org/10.1109/TSG.2021.3101685

	Introduction
	System Description
	Local Controllers
	Operating Scenarios

	Proposed EMS
	Tariff-Driven Strategy
	Energy Cost Minimization
	Constraints
	Cost Function

	Energy Exchange Minimization
	Cost Function

	Genetic Algorithm

	Case Study
	Tariff-Driven Strategy
	Energy Cost Minimization
	Energy Exchange Minimization
	Comparison

	Conclusions
	References

