Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (975)

Search Parameters:
Keywords = power division

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6436 KiB  
Article
Low-Resolution ADCs Constrained Joint Uplink/Downlink Channel Estimation for mmWave Massive MIMO
by Songxu Wang, Yinyuan Wang and Congying Hu
Electronics 2025, 14(15), 3076; https://doi.org/10.3390/electronics14153076 - 31 Jul 2025
Viewed by 206
Abstract
The use of low-resolution analog-to-digital converters (ADCs) in receivers has emerged as an effective solution for reducing power consumption in millimeter-wave (mmWave) massive multiple-input–multiple-output (MIMO) systems. However, low-resolution ADCs also pose significant challenges for channel estimation. To address this issue, we propose a [...] Read more.
The use of low-resolution analog-to-digital converters (ADCs) in receivers has emerged as an effective solution for reducing power consumption in millimeter-wave (mmWave) massive multiple-input–multiple-output (MIMO) systems. However, low-resolution ADCs also pose significant challenges for channel estimation. To address this issue, we propose a joint uplink/downlink (UL/DL) channel estimation algorithm that utilizes the spatial reciprocity of frequency division duplex (FDD) to improve the estimation of quantized UL channels. Quantified UL/DL channels are concentrated at the BS for joint estimation. This estimation problem is regarded as a compressed sensing problem with finite bits, which has led to the development of expectation-maximization-based quantitative generalized approximate messaging (EM-QGAMP) algorithms. In the expected step, QGAMP is used for posterior estimation of sparse channel coefficients, and the block maximization minimization (MM) algorithm is introduced in the maximization step to improve the estimation accuracy. Finally, simulation results verified the robustness of the proposed EM-QGAMP algorithm, and the proposed algorithm’s NMSE (normalized mean squared error) outperforms traditional methods by over 90% and recent state-of-the-art techniques by 30%. Full article
Show Figures

Figure 1

17 pages, 3273 KiB  
Article
Cluster Partitioning and Reactive Power–Voltage Control Strategy for Distribution Systems with High-Penetration Distributed PV Integration
by Bingxu Zhai, Kaiyu Liu, Yuanzhuo Li, Zhilin Jiang, Panhao Qin, Wang Zhang and Yuanshi Zhang
Processes 2025, 13(8), 2423; https://doi.org/10.3390/pr13082423 - 30 Jul 2025
Viewed by 309
Abstract
The large-scale integration of renewable energy into power systems poses significant challenges to reactive power and voltage stability. To enhance system stability, this work proposes a cluster partitioning and distributed control strategy for distribution networks with high-penetration distributed PV integration. Firstly, a comprehensive [...] Read more.
The large-scale integration of renewable energy into power systems poses significant challenges to reactive power and voltage stability. To enhance system stability, this work proposes a cluster partitioning and distributed control strategy for distribution networks with high-penetration distributed PV integration. Firstly, a comprehensive clustering index system, including electrical distance, voltage sensitivity, and regulation ability, is established. Considering the voltage and reactive power support capability of regional clusters, the distribution network is divided into clusters. Subsequently, based on the results of cluster division, a hierarchical partition optimization model is constructed with voltage and reactive power as the optimization objectives. Finally, a distributed optimization algorithm based on ADMM is proposed to solve the optimization model and maximize the utilization of distribution network control resources. The simulation results based on the IEEE 33-node distribution system verify the effectiveness of the proposed distributed optimization strategy. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

16 pages, 2137 KiB  
Article
Constellation-Optimized IM-OFDM: Joint Subcarrier Activation and Mapping via Deep Learning for Low-PAPR ISAC
by Li Li, Jiying Lin, Jianguo Li and Xiangyuan Bu
Electronics 2025, 14(15), 3007; https://doi.org/10.3390/electronics14153007 - 28 Jul 2025
Viewed by 191
Abstract
Orthogonal frequency division multiplexing (OFDM) has been regarded as an attractive waveform for integrated sensing and communication (ISAC). However, suffering from its high peak-to-average power ratio (PAPR), sensitivity to phase noise (PN), and spectral efficiency saturation, the performance of OFDM in ISAC is [...] Read more.
Orthogonal frequency division multiplexing (OFDM) has been regarded as an attractive waveform for integrated sensing and communication (ISAC). However, suffering from its high peak-to-average power ratio (PAPR), sensitivity to phase noise (PN), and spectral efficiency saturation, the performance of OFDM in ISAC is limited. Against this background, this paper proposes a constellation-optimized index-modulated OFDM (CO-IM-OFDM) framework that leverages neural networks to design a constellation suitable for subcarrier activation patterns. A correlation model between index modulation and constellation is established, enabling adaptive constellation mapping in IM-OFDM. Then, Adam optimizer is employed to train the constellation tailored for ISAC, enhancing spectral efficiency under PN and PAPR constraints. Furthermore, a weighting factor is defined to characterize the joint communication–sensing performance, thus optimizing the overall system performance. Simulation results demonstrate that the proposed method can achieve improvements in bit error rate (BER) by over 4 dB and in Cramér–Rao bound (CRB) by 2% to 8% compared to traditional IM-OFDM constellation mapping. It overcomes fixed constellation constraints of conventional IM-OFDM systems, offering theoretical innovation waveform design for low-power communication–sensing systems in highly dynamic environments. Full article
(This article belongs to the Special Issue Integrated Sensing and Communications for 6G)
Show Figures

Figure 1

25 pages, 2495 KiB  
Article
Integration Strategies for Large-Scale Renewable Interconnections with Grid Forming and Grid Following Inverters, Capacitor Banks, and Harmonic Filters
by Soham Ghosh, Arpit Bohra, Sreejata Dutta and Saurav Verma
Energies 2025, 18(15), 3934; https://doi.org/10.3390/en18153934 - 23 Jul 2025
Viewed by 239
Abstract
The transition towards a power system characterized by a reduced presence of synchronous generators (SGs) and an increased reliance on inverter-based resources (IBRs), including wind, solar photovoltaics (PV), and battery storage, presents new operational challenges, particularly when these sources exceed 50–60% of the [...] Read more.
The transition towards a power system characterized by a reduced presence of synchronous generators (SGs) and an increased reliance on inverter-based resources (IBRs), including wind, solar photovoltaics (PV), and battery storage, presents new operational challenges, particularly when these sources exceed 50–60% of the system’s demand. While current grid-following (GFL) IBRs, which are equipped with fast and rigid control systems, continue to dominate the inverter landscape, there has been a notable surge in research focused on grid-forming (GFM) inverters in recent years. This study conducts a comparative analysis of the practicality and control methodologies of GFM inverters relative to traditional GFL inverters from a system planning perspective. A comprehensive framework aimed at assisting system developers and consulting engineers in the grid-integration of wide-scale renewable energy sources (RESs), incorporating strategies for the deployment of inverters, capacitor banks, and harmonic filters, is proposed in this paper. The discussion includes an examination of the reactive power capabilities of the plant’s inverters and the provision of additional reactive power to ensure compliance with grid interconnection standards. Furthermore, the paper outlines a practical approach to assess the necessity for enhanced filtering measures to mitigate potential resonant conditions and achieve harmonic compliance at the installation site. The objective of this work is to offer useful guidelines and insights for the effective addition of RES into contemporary power systems. Full article
Show Figures

Figure 1

15 pages, 541 KiB  
Article
Joint Optimization and Performance Analysis of Analog Shannon–Kotel’nikov Mapping for OFDM with Carrier Frequency Offset
by Jingwen Lin, Qiwang Chen, Yu Hua and Chen Chen
Entropy 2025, 27(8), 778; https://doi.org/10.3390/e27080778 - 23 Jul 2025
Viewed by 174
Abstract
An analog joint source-channel coding (AJSCC) based on Shannon–Kotel’nikov (S-K) mapping transmitting discrete-time encoded samples in orthogonal frequency division multiplexing (OFDM) systems over wireless channel has exhibited excellent performance. However, the phenomenon of carrier frequency offset (CFO) caused by the frequency mismatch between [...] Read more.
An analog joint source-channel coding (AJSCC) based on Shannon–Kotel’nikov (S-K) mapping transmitting discrete-time encoded samples in orthogonal frequency division multiplexing (OFDM) systems over wireless channel has exhibited excellent performance. However, the phenomenon of carrier frequency offset (CFO) caused by the frequency mismatch between the transmitter’s and receiver’s local oscillators often exists in actual scenarios; thus, in this paper the performance of AJSCC-OFDM with CFO is analyzed and the S-K mapping is optimized. A joint optimization strategy is developed to maximize the signal-to-distortion ratio (SDR) subject to CFO constraints. Considering that the optimized AJSCC-OFDM strategies will change the amplitude distribution of encoded symbol, the peak-to-average power ratio (PAPR) characteristics under different AJSCC parameters are also analyzed. Full article
(This article belongs to the Special Issue Next-Generation Channel Coding: Theory and Applications)
Show Figures

Figure 1

33 pages, 2746 KiB  
Article
Thematic Evolution and Governance Structure of China’s Forest Resource Policy Planning: A Text Mining Analysis from a Multi-Level Governance Perspective
by Haoqian Hu, Yifen Yin, Chunning Wang, Jingwen Cai and Yingchong Xie
Forests 2025, 16(7), 1185; https://doi.org/10.3390/f16071185 - 18 Jul 2025
Viewed by 201
Abstract
Amidst the escalating global challenges of deforestation and climate change, effective forest governance has become a critical global imperative. As a key actor in this arena, China presents a crucial case for understanding state-led environmental governance. This study addresses the thematic evolution and [...] Read more.
Amidst the escalating global challenges of deforestation and climate change, effective forest governance has become a critical global imperative. As a key actor in this arena, China presents a crucial case for understanding state-led environmental governance. This study addresses the thematic evolution and governance structure of China’s forest policy planning from 1980 to 2024. Grounded in multi-level governance (MLG) theory, we apply the Non-negative Matrix Factorization (NMF) topic model to a corpus of 1265 policy documents sourced from the PKULaw database, spanning four administrative levels from central to county. An analysis of 13 core policy themes reveals a significant transition, shifting from early regulatory development and resource utilization to a modern emphasis on ecological protection, scientific monitoring, financial support, and governance innovation. The findings delineate a complex governance architecture: a vertical division of labor (central guidance, local implementation), a horizontal model of inter-departmental interaction where specialized management coexists with comprehensive coordination, and adaptive governance reflecting regional heterogeneity. These results illuminate the dynamic evolution of power allocation, central–local relations, and synergy within China’s forest sector. This study not only provides new empirical evidence and an analytical framework for understanding China’s natural resource policy transition but also offers scientific insights for optimizing multi-level forest governance systems and enhancing policy synergy and efficacy. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

17 pages, 7385 KiB  
Article
Time-Division Subbands Beta Distribution Random Space Vector Pulse Width Modulation Method for the High-Frequency Harmonic Dispersion
by Jian Wen and Xiaobin Cheng
Electronics 2025, 14(14), 2852; https://doi.org/10.3390/electronics14142852 - 16 Jul 2025
Viewed by 231
Abstract
Conventional space vector pulse width modulation (CSVPWM) with the fixed switching frequency generates significant sideband harmonics in the three-phase voltage. Discrete random switching frequency SVPWM (DRSF-SVPWM) methods have been widely applied in motor control systems for the suppression of tone harmonic energy. To [...] Read more.
Conventional space vector pulse width modulation (CSVPWM) with the fixed switching frequency generates significant sideband harmonics in the three-phase voltage. Discrete random switching frequency SVPWM (DRSF-SVPWM) methods have been widely applied in motor control systems for the suppression of tone harmonic energy. To further reduce the amplitude of the high-frequency harmonic with a limited switching frequency variation range, this paper proposes a time-division subbands beta distribution random SVPWM (TSBDR-SVPWM) method. The overall frequency band of the switching frequency is equally divided into N subbands, and each fundamental cycle of the line voltage is segmented into 2*(N-1) equal time intervals. Additionally, within each time segment, the switching frequency is randomly selected from the corresponding subband and follows the optimal discrete beta distribution. The switching frequency harmonic energy in the line voltage spectrum spreads across multiple frequency subbands and discrete frequency components, thereby forming a more uniform power spectrum of the line voltage. Both simulation and experimental results validate that, compared with CSVPWM, the sideband harmonic amplitude is reduced by more than 8.5 dB across the entire range of speed and torque conditions in the TSBDR-SVPWM. Furthermore, with the same variation range of the switching frequency, the proposed method achieves the lowest switching frequency harmonic amplitude and flattest line voltage spectrum compared with several state-of-the-art random modulation methods. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

25 pages, 3133 KiB  
Article
Real-Time Optimal Dispatching Strategy for Wind–Thermal–Storage Integrated System with Adaptive Time Division and Variable Objectives
by Peng Cao, Changhong Deng, Xiaohui Zhang, Yuanao Zhang, Li Feng and Kaike Wang
Electronics 2025, 14(14), 2842; https://doi.org/10.3390/electronics14142842 - 15 Jul 2025
Viewed by 192
Abstract
Against the backdrop of the increasing penetration rate of new energy year by year, power systems face a continuously growing demand for flexibility. Under the structure of such a new power system, it is essential not only to introduce diverse flexible power sources [...] Read more.
Against the backdrop of the increasing penetration rate of new energy year by year, power systems face a continuously growing demand for flexibility. Under the structure of such a new power system, it is essential not only to introduce diverse flexible power sources but also to explore the flexible regulation capabilities of existing conventional power sources. To fully utilize the flexibility of thermal power units (TPUs), this study proposes a real-time optimal scheduling strategy for a wind–thermal energy-storage integrated system with an adaptive time division and variable objectives. Based on the evaluation results of the real-time flexible supply–demand relationship within a regional power grid, the operation modes of TPUs are categorized into three types: economic mode, peak shaving mode, and coordination mode. For each operation mode, corresponding optimization objectives are defined, and an energy storage control strategy is developed to assist in the peak shaving of TPUs. While effectively harnessing the flexibility of TPUs, the proposed method reduces both the frequency and capacity of TPUs entering deep peak shaving. Using data from a province in Northwest China as a case study, simulation calculations and analyses demonstrate that the proposed method increases renewable energy consumption by 314.37 MWh while decreasing system economic benefits by CNY 129,000. Compared with traditional scheduling methods for TPUs to accommodate renewable energy, the system benefit increases by CNY 297,000, and an additional 13.53 MWh of peak wind power is accommodated. These results confirm that the proposed scheduling strategy can significantly enhance the system’s ability to integrate new energy while maintaining its economic efficiency. Full article
(This article belongs to the Special Issue Planning, Scheduling and Control of Grids with Renewables)
Show Figures

Figure 1

25 pages, 9888 KiB  
Article
An Optimal Multi-Zone Fast-Charging System Architecture for MW-Scale EV Charging Sites
by Sai Bhargava Althurthi and Kaushik Rajashekara
World Electr. Veh. J. 2025, 16(7), 389; https://doi.org/10.3390/wevj16070389 - 10 Jul 2025
Viewed by 270
Abstract
In this paper, a detailed review of electric vehicle (EV) charging station architectures is first presented, and then an optimal architecture suitable for a large MW-scale EV fast-charging station (EVFS) with multiple fast chargers is proposed and evaluated. The study examines various EVFS [...] Read more.
In this paper, a detailed review of electric vehicle (EV) charging station architectures is first presented, and then an optimal architecture suitable for a large MW-scale EV fast-charging station (EVFS) with multiple fast chargers is proposed and evaluated. The study examines various EVFS architectures, including those currently deployed in commercial sites. Most EVFS implementations use either a common AC-bus or a common DC-bus configuration, with DC-bus architectures being slightly more predominant. The paper analyzes the EV charging and battery energy storage system (BESS) requirements for future large-scale EVFSs and identifies key implementation challenges associated with the full adoption of the common DC-bus approach. To overcome these limitations, a novel multi-zone EVFS architecture is proposed that employs an optimal combination of isolated and non-isolated DC-DC converter topologies while maintaining galvanic isolation for EVs. The system efficiency and total power converter capacity requirements of the proposed architecture are evaluated and compared with those of other EVFS models. A major feature of the proposed design is its multi-zone division and zonal isolation capabilities, which are not present in conventional EVFS architectures. These advantages are demonstrated through a scaled-up model consisting of 156 EV fast chargers. The analysis highlights the superior performance of the proposed multi-zone EVFS architecture in terms of efficiency, total power converter requirements, fault tolerance, and reduced grid impacts, making it the best solution for reliable and scalable MW-scale commercial EVFS systems of the future. Full article
Show Figures

Figure 1

14 pages, 1981 KiB  
Article
A Sparse Bayesian Technique to Learn the Frequency-Domain Active Regressors in OFDM Wireless Systems
by Carlos Crespo-Cadenas, María José Madero-Ayora, Juan A. Becerra, Elías Marqués-Valderrama and Sergio Cruces
Sensors 2025, 25(14), 4266; https://doi.org/10.3390/s25144266 - 9 Jul 2025
Viewed by 286
Abstract
Digital predistortion and nonlinear behavioral modeling of power amplifiers (PA) have been the subject of intensive research in the time domain (TD), in contrast with the limited number of works conducted in the frequency domain (FD). However, the adoption of orthogonal frequency division [...] Read more.
Digital predistortion and nonlinear behavioral modeling of power amplifiers (PA) have been the subject of intensive research in the time domain (TD), in contrast with the limited number of works conducted in the frequency domain (FD). However, the adoption of orthogonal frequency division multiplexing (OFDM) as a prevalent modulation scheme in current wireless communication standards provides a promising avenue for employing an FD approach. In this work, a procedure to model nonlinear distortion in wireless OFDM systems in the frequency domain is demonstrated for general model structures based on a sparse Bayesian learning (SBL) algorithm to identify a reduced set of regressors capable of an efficient and accurate prediction. The FD-SBL algorithm is proposed to first identify the active FD regressors and estimate the coefficients of the PA model using a given symbol, and then, the coefficients are employed to predict the distortion of successive OFDM symbols. The performance of this proposed FD-SBL with a validation NMSE of 47 dB for a signal of 30 MHz bandwidth is comparable to 46.6 dB of the previously proposed implementation of the TD-SBL. In terms of execution time, the TD-SBL fails due to excessive processing time and numerical problems for a 100 MHz bandwidth signal, whereas the FD-SBL yields an adequate validation NMSE of −38.6 dB. Full article
Show Figures

Figure 1

21 pages, 2223 KiB  
Article
Optimized Deployment of Generalized OCDM in Deep-Sea Shadow-Zone Underwater Acoustic Channels
by Haodong Yu, Cheng Chi, Yongxing Fan, Zhanqing Pu, Wei Wang, Li Yin, Yu Li and Haining Huang
J. Mar. Sci. Eng. 2025, 13(7), 1312; https://doi.org/10.3390/jmse13071312 - 8 Jul 2025
Viewed by 337
Abstract
Communication in deep-sea shadow zones remains a significant challenge due to high propagation losses, complex multipath effects, long transmission delays, and strong environmental influences. In recent years, orthogonal chirp division multiplexing (OCDM) has demonstrated promising performance in underwater acoustic communication due to its [...] Read more.
Communication in deep-sea shadow zones remains a significant challenge due to high propagation losses, complex multipath effects, long transmission delays, and strong environmental influences. In recent years, orthogonal chirp division multiplexing (OCDM) has demonstrated promising performance in underwater acoustic communication due to its robustness against multipath interference. However, its high peak-to-average power ratio (PAPR) limits its reliability and efficiency in deep-sea shadow-zone environments. This study applies a recently proposed generalized orthogonal chirp division multiplexing (GOCDM) modulation scheme to deep-sea shadow-zone communication. GOCDM follows the same principles as orthogonal signal division multiplexing (OSDM) while offering the advantage of a reduced PAPR. By segmenting the data signal into multiple vector blocks, GOCDM enables flexible resource allocation, optimizing the PAPR without compromising performance. Theoretical analysis and practical simulations confirm that GOCDM preserves the full frequency diversity benefits of traditional OCDM, while mitigating PARR-related limitations. Additionally, deep-sea experiments were carried out to evaluate the practical performance of GOCDM in shadow-zone environments. The experimental results demonstrate that GOCDM achieves superior performance under low signal-to-noise ratio (SNR) conditions, where the system attains a 0 bit error rate (BER) at 4.2 dB and 6.8 dB, making it a promising solution for enhancing underwater acoustic communication in challenging deep-sea environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

12 pages, 3556 KiB  
Article
Power Indices Through Rotational Inertial Devices for Lower Extremity Profiling and Injury Risk Stratification in Professional Soccer Players: A Cross-Sectional Study
by Álvaro Murillo-Ortiz, Javier Raya-González, Moisés Falces-Prieto, Samuel López-Mariscal, Francisco Javier Iglesias-García and Luis Manuel Martínez-Aranda
Diagnostics 2025, 15(13), 1691; https://doi.org/10.3390/diagnostics15131691 - 2 Jul 2025
Cited by 1 | Viewed by 493
Abstract
Background/Objectives: Power indices may provide valuable information for performance and injury prevention in soccer players, so increasing the knowledge about them seems essential. Therefore, this study aimed to establish limb-specific normative values for flywheel-derived power indices in professional soccer players, while accounting [...] Read more.
Background/Objectives: Power indices may provide valuable information for performance and injury prevention in soccer players, so increasing the knowledge about them seems essential. Therefore, this study aimed to establish limb-specific normative values for flywheel-derived power indices in professional soccer players, while accounting for limb performance or ability, to explore the relationships between power indices across variables and to compare the power outcomes related to these indices between injured and non-injured players within four months post-assessment. Methods: Twenty-two male professional soccer players (age: 26.6 ± 4.6 years; competitive level: Belgian second division) were recruited from a single elite-tier club to participate in this cross-sectional diagnostic study. Participants underwent a standardized assessment protocol, executed in a rotational inertial device, comprising six unilateral exercises focused on the lower limbs: hip-dominant quadriceps (Qhip), knee-dominant quadriceps (Qknee), hip-dominant hamstrings (Hhip), knee-dominant hamstrings (Hknee), adductor (Add), and abductor (Abd). The testing session incorporated a randomized, counterbalanced design, with each exercise comprising two sets of eight maximal concentric–eccentric repetitions per limb. Leg dominance was operationally defined as the self-reported preferred limb for ball-striking tasks. Power indices were calculated from these exercises. Results: No significant differences in flywheel-derived power indices were found between limbs or between injured and non-injured players. However, significant correlations between indices were found in all power variables, with the Qhip:Qknee and Hhip:Hknee concentric ratios emerging as the most clinically actionable biomarkers for rapid screening. Conclusions: These results suggest the necessity of including more variables for injury prediction. Moreover, power indices could be considered based on the classification of limbs as “strong” or “weak”. Full article
Show Figures

Figure 1

24 pages, 5848 KiB  
Article
Influence of Thermal Inertia on Dynamic Characteristics of Gas Turbine Impeller Components
by Yang Liu, Yuhao Jia and Yongbao Liu
Entropy 2025, 27(7), 711; https://doi.org/10.3390/e27070711 - 1 Jul 2025
Viewed by 334
Abstract
Gas turbines in land-based microgrids and shipboard-isolated power grids frequently face operational challenges, such as the startup and shutdown of high-power equipment and sudden load fluctuations, which significantly impact their performance. To examine the dynamic behavior of gas turbines under transitional operating conditions, [...] Read more.
Gas turbines in land-based microgrids and shipboard-isolated power grids frequently face operational challenges, such as the startup and shutdown of high-power equipment and sudden load fluctuations, which significantly impact their performance. To examine the dynamic behavior of gas turbines under transitional operating conditions, a three-dimensional computational fluid dynamic simulation is employed to create a model of the gas turbine rotor, incorporating thermal inertia, which is then analyzed in conjunction with three-dimensional finite element methods. The governing equations of the flow field are discretized, providing results for the flow and temperature fields throughout the entire flow path. A hybrid approach, combining temperature differences and heat flux density, is applied to set the thermal boundary conditions for the walls, with the turbine’s operational state determined based on the direction of heat transfer. Additionally, mesh division techniques and turbulence models are selected based on the geometric dimensions and operating conditions of the compressor and turbine. The simulation results reveal that thermal inertia induces a shift in the dynamic characteristics of the rotor components. Under the same heat transfer conditions, variations in rotational speed have a minimal impact on the shift in the characteristic curve. The working fluid temperature inside the compressor components is lower, with a smaller temperature difference from the wall, resulting in less intense heat transfer compared to the turbine components. Overall, heat transfer accounts for only about 0.1% of the total enthalpy at the inlet. When heat exchange occurs between the working fluid and the walls, around 6–15% of the exchanged heat is converted into changes in technical work, with this percentage increasing as the temperature difference rises. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

20 pages, 3108 KiB  
Article
Energy-Efficient MAC Protocol for Underwater Sensor Networks Using CSMA/CA, TDMA, and Actor–Critic Reinforcement Learning (AC-RL) Fusion
by Wazir Ur Rahman, Qiao Gang, Feng Zhou, Muhammad Tahir, Wasiq Ali, Muhammad Adil, Sun Zong Xin and Muhammad Ilyas Khattak
Acoustics 2025, 7(3), 39; https://doi.org/10.3390/acoustics7030039 - 25 Jun 2025
Viewed by 582
Abstract
Due to the dynamic and harsh underwater environment, which involves a long propagation delay, high bit error rate, and limited bandwidth, it is challenging to achieve reliable communication in underwater wireless sensor networks (UWSNs) and network support applications, like environmental monitoring and natural [...] Read more.
Due to the dynamic and harsh underwater environment, which involves a long propagation delay, high bit error rate, and limited bandwidth, it is challenging to achieve reliable communication in underwater wireless sensor networks (UWSNs) and network support applications, like environmental monitoring and natural disaster prediction, which require energy efficiency and low latency. To tackle these challenges, we introduce AC-RL-based power control (ACRLPC), a novel hybrid MAC protocol that can efficiently integrate Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)-based MAC and Time Division Multiple Access (TDMA) with Actor–Critic Reinforcement Learning (AC-RL). The proposed framework employs adaptive strategies, utilizing adaptive power control and intelligent access methods, which adjust to fluctuating conditions on the network. Harsh and dynamic underwater environment performance evaluations of the proposed scheme confirm a significant outperformance of ACRLPC compared to the current protocols of FDU-MAC, TCH-MAC, and UW-ALOHA-QM in all major performance measures, like energy consumption, throughput, accuracy, latency, and computational complexity. The ACRLPC is an ultra-energy-efficient protocol since it provides higher-grade power efficiency by maximizing the throughput and limiting the latency. Its overcoming of computational complexity makes it an approach that greatly relaxes the processing requirement, especially in the case of large, scalable underwater deployments. The unique hybrid architecture that is proposed effectively combines the best of both worlds, leveraging TDMA for reliable access, and the flexibility of CSMA/CA serves as a robust and holistic mechanism that meets the desired enablers of the system. Full article
Show Figures

Figure 1

12 pages, 3981 KiB  
Article
On-Chip Silicon Photonic Neural Networks Based on Thermally Tunable Microring Resonators for Recognition Tasks
by Huan Zhang, Beiju Huang, Chuantong Cheng, Biao Jiang, Lei Bao and Yiyang Xie
Photonics 2025, 12(7), 640; https://doi.org/10.3390/photonics12070640 - 24 Jun 2025
Viewed by 667
Abstract
Leveraging the human brain as a paradigm of energy-efficient computation, considerable attention has been paid to photonic neurons and neural networks to achieve higher computing efficiency and lower energy consumption. This study experimentally demonstrates on-chip silicon photonic neurons and neural networks based on [...] Read more.
Leveraging the human brain as a paradigm of energy-efficient computation, considerable attention has been paid to photonic neurons and neural networks to achieve higher computing efficiency and lower energy consumption. This study experimentally demonstrates on-chip silicon photonic neurons and neural networks based on thermally tunable microring resonators (MRRs) implement weighting and nonlinear operations. The weight component consists of eight cascaded MRRs thermally tuned within wavelength division multiplexing (WDM) architecture. The nonlinear response depends on the MRR’s nonlinear transmission spectrum, which is analogous to the rectified linear unit (ReLU) function. The matrix multiplication and recognition task of digits 2, 3, and 5 represented by seven-segment digital tube are successfully completed by using the photonic neural networks constructed by the photonic neurons based on the on-chip thermally tunable MRR as the nonlinear units. The power consumption of the nonlinear unit was about 5.65 mW, with an extinction ratio of about 25 dB between different digits. The proposed photonic neural network is CMOS-compatible, which makes it easy to construct scalable and large-scale multilayer neural networks. These findings reveal that there is great potential for highly integrated and scalable neuromorphic photonic chips. Full article
(This article belongs to the Special Issue Silicon Photonics: From Fundamentals to Future Directions)
Show Figures

Figure 1

Back to TopTop