Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,976)

Search Parameters:
Keywords = power distribution control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1146 KiB  
Review
A Review of Optimization Scheduling for Active Distribution Networks with High-Penetration Distributed Generation Access
by Kewei Wang, Yonghong Huang, Yanbo Liu, Tao Huang and Shijia Zang
Energies 2025, 18(15), 4119; https://doi.org/10.3390/en18154119 (registering DOI) - 3 Aug 2025
Abstract
The high-proportion integration of renewable energy sources, represented by wind power and photovoltaics, into active distribution networks (ADNs) can effectively alleviate the pressure associated with advancing China’s dual-carbon goals. However, the high uncertainty in renewable energy output leads to increased system voltage fluctuations [...] Read more.
The high-proportion integration of renewable energy sources, represented by wind power and photovoltaics, into active distribution networks (ADNs) can effectively alleviate the pressure associated with advancing China’s dual-carbon goals. However, the high uncertainty in renewable energy output leads to increased system voltage fluctuations and localized voltage violations, posing safety challenges. Consequently, research on optimal dispatch for ADNs with a high penetration of renewable energy has become a current focal point. This paper provides a comprehensive review of research in this domain over the past decade. Initially, it analyzes the voltage impact patterns and control principles in distribution networks under varying levels of renewable energy penetration. Subsequently, it introduces optimization dispatch models for ADNs that focus on three key objectives: safety, economy, and low carbon emissions. Furthermore, addressing the challenge of solving non-convex and nonlinear models, the paper highlights model reformulation strategies such as semidefinite relaxation, second-order cone relaxation, and convex inner approximation methods, along with summarizing relevant intelligent solution algorithms. Additionally, in response to the high uncertainty of renewable energy output, it reviews stochastic optimization dispatch strategies for ADNs, encompassing single-stage, two-stage, and multi-stage approaches. Meanwhile, given the promising prospects of large-scale deep reinforcement learning models in the power sector, their applications in ADN optimization dispatch are also reviewed. Finally, the paper outlines potential future research directions for ADN optimization dispatch. Full article
Show Figures

Figure 1

15 pages, 997 KiB  
Article
Reactive Power Optimization Control Method for Distribution Network with Hydropower Based on Improved Discrete Particle Swarm Optimization Algorithm
by Tao Liu, Bin Jia, Shuangxiang Luo, Xiangcong Kong, Yong Zhou and Hongbo Zou
Processes 2025, 13(8), 2455; https://doi.org/10.3390/pr13082455 (registering DOI) - 3 Aug 2025
Abstract
With the rapid development of renewable energy, the proportion of small hydropower as a clean energy in the distribution network (DN) is increasing. However, the randomness and intermittence of small hydropower has brought new challenges to the operation of DN; especially, the problems [...] Read more.
With the rapid development of renewable energy, the proportion of small hydropower as a clean energy in the distribution network (DN) is increasing. However, the randomness and intermittence of small hydropower has brought new challenges to the operation of DN; especially, the problems of increasing network loss and reactive voltage exceeding the limit have become increasingly prominent. Aiming at the above problems, this paper proposes a reactive power optimization control method for DN with hydropower based on an improved discrete particle swarm optimization (PSO) algorithm. Firstly, this paper analyzes the specific characteristics of small hydropower and establishes its mathematical model. Secondly, considering the constraints of bus voltage and generator RP output, an extended minimum objective function for system power loss is established, with bus voltage violation serving as the penalty function. Then, in order to solve the following problems: that the traditional discrete PSO algorithm is easy to fall into local optimization and slow convergence, this paper proposes an improved discrete PSO algorithm, which improves the global search ability and convergence speed by introducing adaptive inertia weight. Finally, based on the IEEE-33 buses distribution system as an example, the simulation analysis shows that compared with GA optimization, the line loss can be reduced by 3.4% in the wet season and 13.6% in the dry season. Therefore, the proposed method can effectively reduce the network loss and improve the voltage quality, which verifies the effectiveness and superiority of the proposed method. Full article
Show Figures

Figure 1

22 pages, 3304 KiB  
Article
The Mechanism by Which Colour Patch Characteristics Influence the Visual Landscape Quality of Rhododendron simsii Landscape Recreational Forests
by Yan Liu, Juyang Liao, Yaqi Huang, Qiaoyun Li, Linshi Wu, Xinyu Yi, Ling Wang and Chan Chen
Horticulturae 2025, 11(8), 898; https://doi.org/10.3390/horticulturae11080898 (registering DOI) - 3 Aug 2025
Abstract
Landscape quality and the productivity of Rhododendron simsii are directly related to the maintenance of ecological functions in the alpine region. The specific relationship between the spatial pattern of colour patches and the visual quality of R. simsii landscape recreational forests has been [...] Read more.
Landscape quality and the productivity of Rhododendron simsii are directly related to the maintenance of ecological functions in the alpine region. The specific relationship between the spatial pattern of colour patches and the visual quality of R. simsii landscape recreational forests has been insufficiently explored. In this study, we constructed a model of the relationship between landscape colour patches and the aesthetic value of such a forest, analysing the key factors driving changes in its landscape quality. A total of 1549 participants were asked to assess 16 groups of landscape photographs. The results showed that variations in perceived aesthetic quality were stimulated by colour patch dynamics and spatial heterogeneity. Utilising structural equation modelling (SEM), we identified key indicators synergistically influencing aesthetic quality, including the area percentage, shape, and distribution of colour patches, which demonstrated strong explanatory power (R2 = 0.83). The SEM also revealed that the red patch area, mean perimeter area ratio, and separation index are critical latent variables with standardised coefficients of 0.54, 0.65, and 0.62, respectively. These findings provide actionable design strategies: (1) optimising chromatic contrast through high-saturation patches, (2) controlling geometric complexity, and (3) improving spatial coherence. These results advance the theoretical framework for landscape aesthetic evaluation and offer practical guidance for landscape recreational forest management. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

19 pages, 3154 KiB  
Article
Optimizing the Operation of Local Energy Communities Based on Two-Stage Scheduling
by Ping He, Lei Zhou, Jingwen Wang, Zhuo Yang, Guozhao Lv, Can Cai and Hongbo Zou
Processes 2025, 13(8), 2449; https://doi.org/10.3390/pr13082449 (registering DOI) - 2 Aug 2025
Abstract
Flexible energy sources such as electric vehicles and the battery energy storage systems of intelligent distribution systems can provide system-wide auxiliary services such as frequency regulation for power systems. This paper proposes an optimal method for operating the local energy community that is [...] Read more.
Flexible energy sources such as electric vehicles and the battery energy storage systems of intelligent distribution systems can provide system-wide auxiliary services such as frequency regulation for power systems. This paper proposes an optimal method for operating the local energy community that is based on two-stage scheduling. Firstly, the basic concepts of the local energy community and flexible service are introduced in detail. Taking LEC as the reserve unit of artificial frequency recovery, an energy information interaction model among LEC, balance service providers, and the power grid is established. Then, a two-stage scheduling framework is proposed to ensure the rationality and economy of community energy scheduling. In the first stage, day-ahead scheduling uses the energy community management center to predict the up/down flexibility capacity that LEC can provide by adjusting the BESS control parameters. In the second stage, real-time scheduling aims at maximizing community profits and scheduling LEC based on the allocation and activation of standby flexibility determined in real time. Finally, the correctness of the two-stage scheduling framework is verified through a case study. The results show that the control parameters used in the day-ahead stage can significantly affect the real-time profitability of LEC, and that LEC benefits more in the case of low BESS utilization than in the case of high BESS utilization and non-participation in frequency recovery reserve. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 1008 KiB  
Article
Variable Submodule Voltage Control for Enhanced Efficiency in DAB-Integrated Modular Multilevel Converters
by Marzio Barresi, Davide De Simone, Edoardo Ferri and Luigi Piegari
Energies 2025, 18(15), 4096; https://doi.org/10.3390/en18154096 (registering DOI) - 1 Aug 2025
Abstract
Modular multilevel converters (MMCs) are widely used in power-conversion applications, including distributed energy storage integration, because of their scalability, high efficiency, and reduced harmonic distortion. Integrating battery storage systems into MMC submodules using dual active bridge (DAB) converters provides electrical isolation and reduces [...] Read more.
Modular multilevel converters (MMCs) are widely used in power-conversion applications, including distributed energy storage integration, because of their scalability, high efficiency, and reduced harmonic distortion. Integrating battery storage systems into MMC submodules using dual active bridge (DAB) converters provides electrical isolation and reduces voltage stress, harmonics, and common-mode issues. However, voltage fluctuations due to the battery state of charge can compromise the zero-voltage switching (ZVS) operation of a DAB and increase the reactive power circulation, leading to higher losses and reduced system performance. To address these challenges, this study investigated an active control strategy for submodule voltage regulation in an MMC with DAB-based battery integration. Assuming single-phase-shift modulation, two control strategies were evaluated. The first strategy regulated the DAB voltage on one side to match the battery voltage on the other, scaled by the high-frequency transformer turns ratio, which facilitated the ZVS operation and reduced the reactive power. The second strategy optimized this voltage to minimize the total power-conversion losses. The proposed control strategies improved the efficiency, particularly at low power levels, achieving several percentage points of improvement compared to maintaining a constant voltage. Full article
25 pages, 17227 KiB  
Article
Distributed Online Voltage Control with Feedback Delays Under Coupled Constraints for Distribution Networks
by Jinxuan Liu, Yanjian Peng, Xiren Zhang, Zhihao Ning and Dingzhong Fan
Technologies 2025, 13(8), 327; https://doi.org/10.3390/technologies13080327 (registering DOI) - 31 Jul 2025
Viewed by 85
Abstract
High penetration of photovoltaic (PV) generation presents new challenges for voltage regulation in distribution networks (DNs), primarily due to output intermittency and constrained reactive power capabilities. This paper introduces a distributed voltage control method leveraging reactive power compensation from PV inverters. Instead of [...] Read more.
High penetration of photovoltaic (PV) generation presents new challenges for voltage regulation in distribution networks (DNs), primarily due to output intermittency and constrained reactive power capabilities. This paper introduces a distributed voltage control method leveraging reactive power compensation from PV inverters. Instead of relying on centralized computation, the proposed method allows each inverter to make local decisions using real-time voltage measurements and delayed communication with neighboring PV nodes. To account for practical asynchronous communication and feedback delay, a Distributed Online Primal–Dual Push–Sum (DOPP) algorithm that integrates a fixed-step delay model into the push–sum coordination framework is developed. Through extensive case studies on a modified IEEE 123-bus system, it has been demonstrated that the proposed method maintains robust performance under both static and dynamic scenarios, even in the presence of fixed feedback delays. Specifically, in static scenarios, the proposed strategy rapidly eliminates voltage violations within 50–100 iterations, effectively regulating all nodal voltages into the acceptable range of [0.95, 1.05] p.u. even under feedback delays with a delay step of 10. In dynamic scenarios, the proposed strategy ensures 100% voltage compliance across all nodes, demonstrating superior voltage regulation and reactive power coordination performance over conventional droop and incremental control approaches. Full article
19 pages, 1020 KiB  
Article
Optimizing Power Sharing and Demand Reduction in Distributed Energy Resources for Apartments Through Tenant Incentivization
by Janak Nambiar, Samson Yu, Jag Makam and Hieu Trinh
Energies 2025, 18(15), 4073; https://doi.org/10.3390/en18154073 (registering DOI) - 31 Jul 2025
Viewed by 95
Abstract
The increasing demand for electricity in multi-tenanted residential areas has placed unforeseen strain on sub-transformers, particularly in dense urban environments. This strain compromises overall grid performance and challenges utilities with shifting and rising peak demand periods. This study presents a novel approach to [...] Read more.
The increasing demand for electricity in multi-tenanted residential areas has placed unforeseen strain on sub-transformers, particularly in dense urban environments. This strain compromises overall grid performance and challenges utilities with shifting and rising peak demand periods. This study presents a novel approach to enhance the operation of a virtual power plant (VPP) comprising a microgrid (MG) integrated with renewable energy sources (RESs) and energy storage systems (ESSs). By employing an advanced monitoring and control system, the proposed topology enables efficient energy management and demand-side control within apartment complexes. The system supports controlled electricity distribution, reducing the likelihood of unpredictable demand spikes and alleviating stress on local infrastructure during peak periods. Additionally, the model capitalizes on the large number of tenancies to distribute electricity effectively, leveraging locally available RESs and ESSs behind the sub-transformer. The proposed research provides a systematic framework for managing electricity demand and optimizing resource utilization, contributing to grid reliability and a transition toward a more sustainable, decentralized energy system. Full article
16 pages, 3838 KiB  
Article
Model-Free Cooperative Control for Volt-Var Optimization in Power Distribution Systems
by Gaurav Yadav, Yuan Liao and Aaron M. Cramer
Energies 2025, 18(15), 4061; https://doi.org/10.3390/en18154061 (registering DOI) - 31 Jul 2025
Viewed by 176
Abstract
Power distribution systems are witnessing a growing deployment of distributed, inverter-based renewable resources such as solar generation. This poses certain challenges such as rapid voltage fluctuations due to the intermittent nature of renewables. Volt-Var control (VVC) methods have been proposed to utilize the [...] Read more.
Power distribution systems are witnessing a growing deployment of distributed, inverter-based renewable resources such as solar generation. This poses certain challenges such as rapid voltage fluctuations due to the intermittent nature of renewables. Volt-Var control (VVC) methods have been proposed to utilize the ability of inverters to supply or consume reactive power to mitigate fast voltage fluctuations. These methods usually require a detailed power network model including topology and impedance data. However, network models may be difficult to obtain. Thus, it is desirable to develop a model-free method that obviates the need for the network model. This paper proposes a novel model-free cooperative control method to perform voltage regulation and reduce inverter aging in power distribution systems. This method assumes the existence of time-series voltage and load data, from which the relationship between voltage and nodal power injection is derived using a feedforward artificial neural network (ANN). The node voltage sensitivity versus reactive power injection can then be calculated, based on which a cooperative control approach is proposed for mitigating voltage fluctuation. The results obtained for a modified IEEE 13-bus system using the proposed method have shown its effectiveness in mitigating fast voltage variation due to PV intermittency. Moreover, a comparative analysis between model-free and model-based methods is provided to demonstrate the feasibility of the proposed method. Full article
Show Figures

Figure 1

17 pages, 3273 KiB  
Article
Cluster Partitioning and Reactive Power–Voltage Control Strategy for Distribution Systems with High-Penetration Distributed PV Integration
by Bingxu Zhai, Kaiyu Liu, Yuanzhuo Li, Zhilin Jiang, Panhao Qin, Wang Zhang and Yuanshi Zhang
Processes 2025, 13(8), 2423; https://doi.org/10.3390/pr13082423 - 30 Jul 2025
Viewed by 252
Abstract
The large-scale integration of renewable energy into power systems poses significant challenges to reactive power and voltage stability. To enhance system stability, this work proposes a cluster partitioning and distributed control strategy for distribution networks with high-penetration distributed PV integration. Firstly, a comprehensive [...] Read more.
The large-scale integration of renewable energy into power systems poses significant challenges to reactive power and voltage stability. To enhance system stability, this work proposes a cluster partitioning and distributed control strategy for distribution networks with high-penetration distributed PV integration. Firstly, a comprehensive clustering index system, including electrical distance, voltage sensitivity, and regulation ability, is established. Considering the voltage and reactive power support capability of regional clusters, the distribution network is divided into clusters. Subsequently, based on the results of cluster division, a hierarchical partition optimization model is constructed with voltage and reactive power as the optimization objectives. Finally, a distributed optimization algorithm based on ADMM is proposed to solve the optimization model and maximize the utilization of distribution network control resources. The simulation results based on the IEEE 33-node distribution system verify the effectiveness of the proposed distributed optimization strategy. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 12611 KiB  
Article
Banana Fusarium Wilt Recognition Based on UAV Multi-Spectral Imagery and Automatically Constructed Enhanced Features
by Ye Su, Longlong Zhao, Huichun Ye, Wenjiang Huang, Xiaoli Li, Hongzhong Li, Jinsong Chen, Weiping Kong and Biyao Zhang
Agronomy 2025, 15(8), 1837; https://doi.org/10.3390/agronomy15081837 - 29 Jul 2025
Viewed by 114
Abstract
Banana Fusarium wilt (BFW, also known as Panama disease) is a highly infectious and destructive disease that threatens global banana production, requiring early recognition for timely prevention and control. Current monitoring methods primarily rely on continuous variable features—such as band reflectances (BRs) and [...] Read more.
Banana Fusarium wilt (BFW, also known as Panama disease) is a highly infectious and destructive disease that threatens global banana production, requiring early recognition for timely prevention and control. Current monitoring methods primarily rely on continuous variable features—such as band reflectances (BRs) and vegetation indices (VIs)—collectively referred to as basic features (BFs)—which are prone to noise during the early stages of infection and struggle to capture subtle spectral variations, thus limiting the recognition accuracy. To address this limitation, this study proposes a discretized enhanced feature (EF) construction method, the automated kernel density segmentation-based feature construction algorithm (AutoKDFC). By analyzing the differences in the kernel density distributions between healthy and diseased samples, the AutoKDFC automatically determines the optimal segmentation threshold, converting continuous BFs into binary features with higher discriminative power for early-stage recognition. Using UAV-based multi-spectral imagery, BFW recognition models are developed and tested with the random forest (RF), support vector machine (SVM), and Gaussian naïve Bayes (GNB) algorithms. The results show that EFs exhibit significantly stronger correlations with BFW’s presence than original BFs. Feature importance analysis via RF further confirms that EFs contribute more to the model performance, with VI-derived features outperforming BR-based ones. The integration of EFs results in average performance gains of 0.88%, 2.61%, and 3.07% for RF, SVM, and GNB, respectively, with SVM achieving the best performance, averaging over 90%. Additionally, the generated BFW distribution map closely aligns with ground observations and captures spectral changes linked to disease progression, validating the method’s practical utility. Overall, the proposed AutoKDFC method demonstrates high effectiveness and generalizability for BFW recognition. Its core concept of “automatic feature enhancement” has strong potential for broader applications in crop disease monitoring and supports the development of intelligent early warning systems in plant health management. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

19 pages, 3963 KiB  
Article
Real-Time Energy Management in Microgrids: Integrating T-Cell Optimization, Droop Control, and HIL Validation with OPAL-RT
by Achraf Boukaibat, Nissrine Krami, Youssef Rochdi, Yassir El Bakkali, Mohamed Laamim and Abdelilah Rochd
Energies 2025, 18(15), 4035; https://doi.org/10.3390/en18154035 - 29 Jul 2025
Viewed by 319
Abstract
Modern microgrids face critical challenges in maintaining stability and efficiency due to renewable energy intermittency and dynamic load demands. This paper proposes a novel real-time energy management framework that synergizes a bio-inspired T-Cell optimization algorithm with decentralized voltage-based droop control to address these [...] Read more.
Modern microgrids face critical challenges in maintaining stability and efficiency due to renewable energy intermittency and dynamic load demands. This paper proposes a novel real-time energy management framework that synergizes a bio-inspired T-Cell optimization algorithm with decentralized voltage-based droop control to address these challenges. A JADE-based multi-agent system (MAS) orchestrates coordination between the T-Cell optimizer and edge-level controllers, enabling scalable and fault-tolerant decision-making. The T-Cell algorithm, inspired by adaptive immune system dynamics, optimizes global power distribution through the MAS platform, while droop control ensures local voltage stability via autonomous adjustments by distributed energy resources (DERs). The framework is rigorously validated through Hardware-in-the-Loop (HIL) testing using OPAL-RT, which interfaces MATLAB/Simulink models with Raspberry Pi for real-time communication (MQTT/Modbus protocols). Experimental results demonstrate a 91% reduction in grid dependency, 70% mitigation of voltage fluctuations, and a 93% self-consumption rate, significantly enhancing power quality and resilience. By integrating centralized optimization with decentralized control through MAS coordination, the hybrid approach achieves scalable, self-organizing microgrid operation under variable generation and load conditions. This work advances the practical deployment of adaptive energy management systems, offering a robust solution for sustainable and resilient microgrids. Full article
Show Figures

Figure 1

31 pages, 6206 KiB  
Article
High-Redundancy Design and Application of Excitation Systems for Large Hydro-Generator Units Based on ATS and DDS
by Xiaodong Wang, Xiangtian Deng, Xuxin Yue, Haoran Wang, Xiaokun Li and Xuemin He
Electronics 2025, 14(15), 3013; https://doi.org/10.3390/electronics14153013 - 29 Jul 2025
Viewed by 223
Abstract
The large-scale integration of stochastic renewable energy sources necessitates enhanced dynamic balancing capabilities in power systems, positioning hydropower as a critical balancing asset. Conventional excitation systems utilizing hot-standby dual-redundancy configurations remain susceptible to unit shutdown events caused by regulator failures. To mitigate this [...] Read more.
The large-scale integration of stochastic renewable energy sources necessitates enhanced dynamic balancing capabilities in power systems, positioning hydropower as a critical balancing asset. Conventional excitation systems utilizing hot-standby dual-redundancy configurations remain susceptible to unit shutdown events caused by regulator failures. To mitigate this vulnerability, this study proposes a peer-to-peer distributed excitation architecture integrating asynchronous traffic shaping (ATS) and Data Distribution Service (DDS) technologies. This architecture utilizes control channels of equal priority and achieves high redundancy through cross-communication between discrete acquisition and computation modules. This research advances three key contributions: (1) design of a peer-to-peer distributed architectural framework; (2) development of a real-time data interaction methodology combining ATS and DDS, incorporating cross-layer parameter mapping, multi-priority queue scheduling, and congestion control mechanisms; (3) experimental validation of system reliability and redundancy through dynamic simulation. The results confirm the architecture’s operational efficacy, delivering both theoretical foundations and practical frameworks for highly reliable excitation systems. Full article
(This article belongs to the Special Issue Power Electronics in Renewable Systems)
Show Figures

Figure 1

21 pages, 4738 KiB  
Article
Research on Computation Offloading and Resource Allocation Strategy Based on MADDPG for Integrated Space–Air–Marine Network
by Haixiang Gao
Entropy 2025, 27(8), 803; https://doi.org/10.3390/e27080803 - 28 Jul 2025
Viewed by 265
Abstract
This paper investigates the problem of computation offloading and resource allocation in an integrated space–air–sea network based on unmanned aerial vehicle (UAV) and low Earth orbit (LEO) satellites supporting Maritime Internet of Things (M-IoT) devices. Considering the complex, dynamic environment comprising M-IoT devices, [...] Read more.
This paper investigates the problem of computation offloading and resource allocation in an integrated space–air–sea network based on unmanned aerial vehicle (UAV) and low Earth orbit (LEO) satellites supporting Maritime Internet of Things (M-IoT) devices. Considering the complex, dynamic environment comprising M-IoT devices, UAVs and LEO satellites, traditional optimization methods encounter significant limitations due to non-convexity and the combinatorial explosion in possible solutions. A multi-agent deep deterministic policy gradient (MADDPG)-based optimization algorithm is proposed to address these challenges. This algorithm is designed to minimize the total system costs, balancing energy consumption and latency through partial task offloading within a cloud–edge-device collaborative mobile edge computing (MEC) system. A comprehensive system model is proposed, with the problem formulated as a partially observable Markov decision process (POMDP) that integrates association control, power control, computing resource allocation, and task distribution. Each M-IoT device and UAV acts as an intelligent agent, collaboratively learning the optimal offloading strategies through a centralized training and decentralized execution framework inherent in the MADDPG. The numerical simulations validate the effectiveness of the proposed MADDPG-based approach, which demonstrates rapid convergence and significantly outperforms baseline methods, and indicate that the proposed MADDPG-based algorithm reduces the total system cost by 15–60% specifically. Full article
(This article belongs to the Special Issue Space-Air-Ground-Sea Integrated Communication Networks)
Show Figures

Figure 1

19 pages, 2649 KiB  
Article
Short-Circuit Current Calculation of Single-Phase to Ground Fault in Petal-Shaped Distribution Network
by Yilong Kang, Huanruo Qi, Rui Liu, Xiangyang Yan, Chen Chen, Fei Guo, Fang Guo and Xiaoxiao Dong
Processes 2025, 13(8), 2393; https://doi.org/10.3390/pr13082393 - 28 Jul 2025
Viewed by 214
Abstract
Petal-shaped distribution networks are receiving increasing attention due to their enhanced reliability. However, the integration of distributed generators (DGs) significantly alters the fault characteristics during single-phase to ground faults. Traditional short-circuit calculation methods become inadequate due to the unmodeled effects of negative sequence [...] Read more.
Petal-shaped distribution networks are receiving increasing attention due to their enhanced reliability. However, the integration of distributed generators (DGs) significantly alters the fault characteristics during single-phase to ground faults. Traditional short-circuit calculation methods become inadequate due to the unmodeled effects of negative sequence current control in DGs. To address this challenge, this study establishes, for the first time, a mathematical model for single-phase to ground faults in a petal-shaped network with DG integration under both positive and negative sequence control. It explicitly derives the DGs’ output current under three control goals: maintaining constant active power, maintaining constant reactive power, and injecting a symmetric three-phase current. Utilizing the symmetrical component method, a composite sequence network incorporating the DGs’ negative sequence current output is developed. Based on the node–voltage relationships, an analytical short-circuit current calculation method suitable for multiple control goals is proposed. Validation via MATLAB R2022a simulations demonstrates high-fidelity accuracy: in Case 1 with different fault locations, the maximum relative error is 0.31%, while in Case 2, it is 2.04%. These results quantify the critical impact of the negative sequence current—reaching up to 14.78% of the DG output during severe voltage sags—providing theoretical support for the protection design of a petal-shaped distribution network with high DG integration. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 2443 KiB  
Article
Research on Coordinated Planning and Operational Strategies for Novel FACTS Devices Based on Interline Power Flow Control
by Yangqing Dan, Hui Zhong, Chenxuan Wang, Jun Wang, Yanan Fei and Le Yu
Electronics 2025, 14(15), 3002; https://doi.org/10.3390/electronics14153002 - 28 Jul 2025
Viewed by 261
Abstract
Under the “dual carbon” goals and rapid clean energy development, power grids face challenges including rapid load growth, uneven power flow distribution, and limited transmission capacity. This paper proposes a novel FACTS device with fault tolerance and switchable topology that maintains power flow [...] Read more.
Under the “dual carbon” goals and rapid clean energy development, power grids face challenges including rapid load growth, uneven power flow distribution, and limited transmission capacity. This paper proposes a novel FACTS device with fault tolerance and switchable topology that maintains power flow control over multiple lines during N-1 faults, enhancing grid safety and economy. The paper establishes a steady-state mathematical model based on additional virtual nodes and provides power flow calculation methods to accurately reflect the device’s control characteristics. An entropy-weighted TOPSIS method was employed to establish a quantitative evaluation system for assessing the grid performance improvement after FACTS device integration. To address interaction issues among multiple flexible devices, an optimization planning model considering th3e coordinated effects of UPFC and VSC-HVDC was constructed. Multi-objective particle swarm optimization obtained Pareto solution sets, combined with the evaluation system, to determine the optimal configuration schemes. Considering wind power uncertainty and fault risks, we propose a system-level coordinated operation strategy. This strategy constructs probabilistic risk indicators and introduces topology switching control constraints. Using particle swarm optimization, it achieves a balance between safety and economic objectives. Simulation results in the Jiangsu power grid scenarios demonstrated significant advantages in enhancing the transmission capacity, optimizing the power flow distribution, and ensuring system security. Full article
Show Figures

Figure 1

Back to TopTop