Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,947)

Search Parameters:
Keywords = powder production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 3909 KiB  
Article
Development of Technology for Processing Pyrite–Cobalt Concentrates to Obtain Pigments of the Composition Fe2O3 and Fe3O4
by Tatyana Chepushtanova, Aliya Altmyshbayeva, Yerik Merkibayev, Kulzira Mamyrbayeva, Zhanat Yespenova and Brajendra Mishra
Metals 2025, 15(8), 886; https://doi.org/10.3390/met15080886 (registering DOI) - 7 Aug 2025
Abstract
This paper presents the results of a study on the development of a processing technology for pyrite–cobalt concentrates to obtain iron oxide pigments (Fe2O3 and Fe3O4) via high-temperature hydrolysis. It was found that, in a single [...] Read more.
This paper presents the results of a study on the development of a processing technology for pyrite–cobalt concentrates to obtain iron oxide pigments (Fe2O3 and Fe3O4) via high-temperature hydrolysis. It was found that, in a single operation, the concentrate can be effectively purified from lead, zinc, and copper, yielding an iron–nickel–cobalt product suitable for further processing by standard technologies, such as smelting into ferronickel. The scientific originality of research concludes in a mechanism of stepwise selective chloride volatilization, which was established as follows: stage I (500–650 °C)—removal of lead; stage II (700–750 °C)—chlorination of copper and iron; stage III (850–900 °C)—volatilization of nickel and cobalt. Microprobe analysis of the powders obtained from high-temperature hydrolysis of FeCl2·4H2O and FeCl3·6H2O revealed the resulting Fe3O4 and Fe2O3 powders with particle sizes 50 μm and 100 μm. A visual color palette was created, corresponding to different Fe3O4/Fe2O3 ratios in the pigment composition—ranging from black (magnetite) to red (hematite)—and potential application areas. For the first time, the new technological scheme was proposed of pigments Fe2O3 and Fe3O4 production from pyrite–cobalt concentrates via combination of oxidized roasting with subsequent chlorination and high-temperature hydrolysis of the products. Full article
16 pages, 3939 KiB  
Article
Effects of Dietary Ginger (Zingiber officinale) Rhizome Powder Supplementation on Productive Performance, Egg Quality, Antioxidant Capacity, and Hepato-Intestinal Morphology in Pre-Peak Xiaoshan Laying Hens
by Debela Bayu Derese, Hanxue Sun, Xihuai Xiong, Ziqing Li, Rahmani Mohammad Malyar, Lizhi Lu and Fangxiong Shi
Animals 2025, 15(15), 2315; https://doi.org/10.3390/ani15152315 - 7 Aug 2025
Abstract
Ginger powder (GP) has antioxidant properties and can be a suitable alternative to antibiotics in laying hen diets; however, research on its effects remains limited. Therefore, our study aimed to evaluate the impact of dietary GP supplementation on production performance during the pre-peak [...] Read more.
Ginger powder (GP) has antioxidant properties and can be a suitable alternative to antibiotics in laying hen diets; however, research on its effects remains limited. Therefore, our study aimed to evaluate the impact of dietary GP supplementation on production performance during the pre-peak production stage. A total of 270 hens, 18 weeks old and averaging 1.83 ± 0.03 kg, were divided into three groups: control (CN, basal diet), CN + 5 g/kg GP (T1), and CN + 10 g/kg GP (T2), with six replicates of 15 hens each, in a 10-week feeding trial. Dietary GP had no significant effect on feed intake (p > 0.05), but it dose-dependently improved laying rate, egg mass, and feed conversion ratio (p < 0.05). Egg quality parameters, including albumen height, Haugh unit, eggshell thickness, and strength, were also linearly improved with GP supplementation (p < 0.05). Dietary GP linearly enhanced the antioxidant status of hens (p < 0.01) and reduced malondialdehyde activity (p < 0.0001). Furthermore, 10 g/kg GP supplementation slightly improved gizzard index and liver morphology, and it linearly enhanced intestinal morphology (p < 0.01). These findings suggest that 10 g/kg GP supplementation can improve the productivity and health of laying hens. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

14 pages, 280 KiB  
Article
Effects of Dietary Puffed Jujube Powder on Growth Performance, Apparent Digestibility, and Meat Quality of Hainan Black Goats
by Yi Zhang, Jianzhi Shi, Jiapeng Wang, Keke Li, Xianzheng Qiao, Dong Chen, Tingting Dong, Yuanxiao Li, Yushu Zhang and Renlong Lv
Animals 2025, 15(15), 2306; https://doi.org/10.3390/ani15152306 - 6 Aug 2025
Abstract
This study was conducted to investigate the effects of puffed jujube powder (PJP) supplementation in the diet on the slaughter characteristics, growth performance, meat quality, and serum antioxidant capacity of Hainan Black (HB) goats. Twenty-four healthy male HB goats, three months old with [...] Read more.
This study was conducted to investigate the effects of puffed jujube powder (PJP) supplementation in the diet on the slaughter characteristics, growth performance, meat quality, and serum antioxidant capacity of Hainan Black (HB) goats. Twenty-four healthy male HB goats, three months old with an initial body weight of 15.12 ± 3.67 kg, were randomly divided into three groups: the 10% PJP group (basal diet plus 10% PJP); the 20% PJP group (basal diet plus 20% PJP); and the control group (basal diet only). After a 10-day adaptation period, a feeding trial was carried out for 90 days in an ad libitum diet environment. The results show that the final body weight of the 20% PJP group was markedly higher (p < 0.05) than that of the control group (22.58 ± 0.94 kg vs. 20.45 ± 1.01 kg). The average daily gain of the 20% PJP group was 83.44 ± 1.78 g/d, which was substantially greater (p < 0.05) than the 59.22 ± 2.13 g/d of the control group. The feed intake of the 20% PJP group was 713.10 ± 4.54 g/d, notably higher (p < 0.05) than the 498.20 ± 4.33 g/d of the control group. In terms of slaughter characteristics, the carcass weight of the 20% PJP group was 13.99 ± 1.22 kg, considerably heavier (p < 0.05) than the 11.79 ± 1.38 kg of the control group. The muscle weight of the 20% PJP group was 11.43 ± 1.42 kg, distinctly greater (p < 0.05) than the 9.59 ± 1.99 kg of the control group. The slaughter rate of the 20% PJP group was 42.41%, showing a notable increase (p < 0.05) compared with the 37.42% of the control group, and the net meat rate of the 20% PJP group was 34.65%, with a significant rise (p < 0.05) compared with the 30.43% of the control group. Regarding serum antioxidant capacity and meat quality, the activities of serum antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), were conspicuously increased (p < 0.05) in the 20% PJP group. The meat shear force of the 20% PJP group was decreased by 12.9%, and the cooking loss was improved by 8.9% in comparison with the control group. In conclusion, the supplementation of 20% PJP in the diet was demonstrated to enhance the growth performance, improve the meat quality, and boost the antioxidant status of HB goats, thus presenting a feasible strategy for optimizing tropical goat production systems. Full article
(This article belongs to the Section Animal Nutrition)
17 pages, 3354 KiB  
Article
Quantitative Analysis of Adulteration in Anoectochilus roxburghii Powder Using Hyperspectral Imaging and Multi-Channel Convolutional Neural Network
by Ziyuan Liu, Tingsong Zhang, Haoyuan Ding, Zhangting Wang, Hongzhen Wang, Lu Zhou, Yujia Dai and Yiqing Xu
Agronomy 2025, 15(8), 1894; https://doi.org/10.3390/agronomy15081894 - 6 Aug 2025
Abstract
Adulteration detection in medicinal plant powders remains a critical challenge in quality control. In this study, we propose a hyperspectral imaging (HSI)-based method combined with deep learning models to quantitatively analyze adulteration levels in Anoectochilus roxburghii powder. After preprocessing the spectral data using [...] Read more.
Adulteration detection in medicinal plant powders remains a critical challenge in quality control. In this study, we propose a hyperspectral imaging (HSI)-based method combined with deep learning models to quantitatively analyze adulteration levels in Anoectochilus roxburghii powder. After preprocessing the spectral data using raw, first-order, and second-order Savitzky–Golay derivatives, we systematically evaluated the performance of traditional machine learning models (Random Forest, Support Vector Regression, Partial Least Squares Regression) and deep learning architectures. While traditional models achieved reasonable accuracy (R2 up to 0.885), their performance was limited by feature extraction and generalization ability. A single-channel convolutional neural network (CNN) utilizing individual spectral representations improved performance marginally (maximum R2 = 0.882), but still failed to fully capture the multi-scale spectral features. To overcome this, we developed a multi-channel CNN that simultaneously integrates raw, SG-1, and SG-2 spectra, effectively leveraging complementary spectral information. This architecture achieved a significantly higher prediction accuracy (R2 = 0.964, MSE = 0.005), demonstrating superior robustness and generalization. The findings highlight the potential of multi-channel deep learning models in enhancing quantitative adulteration detection and ensuring the authenticity of herbal products. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

14 pages, 3011 KiB  
Article
Ameliorative Effects of Soybean Powder Fermented by Bacillus subtilis on Constipation Induced by Loperamide in Rats
by Gi Soo Lee, Su Kang Kim, Ju Yeon Ban and Chung-Hun Oh
Int. J. Mol. Sci. 2025, 26(15), 7615; https://doi.org/10.3390/ijms26157615 - 6 Aug 2025
Abstract
Constipation is a prevalent gastrointestinal disorder that significantly impairs quality of life. While pharmacological agents such as loperamide are widely used to induce constipation in experimental models, there is increasing interest in natural alternatives for alleviating intestinal dysfunction. In this study, we investigated [...] Read more.
Constipation is a prevalent gastrointestinal disorder that significantly impairs quality of life. While pharmacological agents such as loperamide are widely used to induce constipation in experimental models, there is increasing interest in natural alternatives for alleviating intestinal dysfunction. In this study, we investigated the laxative effects of soybean powder fermented by Bacillus subtilis DKU_09 in a loperamide-induced rat model of constipation. The probiotic strain was isolated from cheonggukjang, a traditional Korean fermented soybean paste, and its identity was confirmed through 16S rRNA sequencing. Fermented soybean powder was characterized morphologically via scanning electron microscopy and chemically via HPLC to assess its isoflavone content. Rats were administered loperamide (5 mg/kg) for four days to induce constipation and were then treated with fermented soybean powder at doses of 100, 200, or 300 mg/kg. No pharmacological laxatives (e.g., PEG) were used as a positive control; instead, values from the treatment groups were compared with those from the loperamide-only constipation group. Key outcomes of fecal output, water content, colonic fecal retention, and gastrointestinal transit ratio were measured. The fermented product significantly improved stool frequency and moisture content, reduced colonic fecal retention, and restored gastrointestinal transit in a dose-dependent manner. Notably, the 300 mg/kg group demonstrated nearly complete recovery of fecal parameters without affecting body weight. Statistical analysis was performed using one-way ANOVA followed by Tukey’s post hoc test. These findings suggest that Bacillus subtilis-fermented soybean powder exerts synergistic laxative effects through the combined action of probiotic viability and fermentation-enhanced bioactive compounds such as aglycone isoflavones. This study supports the potential use of fermented soybean-based nutraceuticals as a natural and safe intervention for constipation and gastrointestinal dysregulation. Full article
(This article belongs to the Special Issue Functions and Applications of Natural Products)
Show Figures

Figure 1

20 pages, 3741 KiB  
Article
Use of Amino Acids and Organic Waste Extracts to Improve the Quality of Liquid Nitrogen–Calcium–Magnesium Fertilizers
by Eglė Didžiulytė and Rasa Šlinkšienė
Sustainability 2025, 17(15), 7081; https://doi.org/10.3390/su17157081 - 5 Aug 2025
Viewed by 61
Abstract
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse [...] Read more.
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse gas emissions, water eutrophication, and soil degradation. To develop more sustainable solutions, the focus is on organic fertilizers, which are produced using waste and biostimulants such as amino acids. The aim of this study was to develop and characterize liquid nitrogen–calcium–magnesium fertilizers produced by decomposing dolomite with nitric acid followed by further processing and to enrich them with a powdered amino acid concentrate Naturamin-WSP and liquid extracts from digestate, a by-product of biogas production. Nutrient-rich extracts were obtained using water and potassium hydroxide solutions, with the latter proving more effective by yielding a higher organic carbon content (4495 ± 0.52 mg/L) and humic substances, which can improve soil structure. The produced fertilizers demonstrated favourable physical properties, including appropriate viscosity and density, as well as low crystallization temperatures (eutectic points from –3 to –34 °C), which are essential for storage and application in cold climates. These properties were achieved by adjusting the content of nitrogenous compounds and bioactive extracts. The results of the study show that liquid fertilizers enriched with organic matter can be an effective and more environmentally friendly alternative to mineral fertilizers, contributing to the development of the circular economy and sustainable agriculture. Full article
Show Figures

Figure 1

20 pages, 1622 KiB  
Article
Effect of Hemp Protein and Sea Buckthorn Extract on Quality and Shelf Life of Cooked-Smoked Sausages
by Kainar Bukarbayev, Sholpan Abzhanova, Lyazzat Baibolova, Gulshat Zhaksylykova, Talgat Kulazhanov, Vitalii Vasilenko, Bagila Jetpisbayeva, Alma Katasheva, Sultan Sabraly and Yerkin Yerzhigitov
Foods 2025, 14(15), 2730; https://doi.org/10.3390/foods14152730 - 5 Aug 2025
Viewed by 149
Abstract
Modern meat processing faces several challenges, including high resource consumption, environmental impact, and the need to enhance the nutritional and biological value of finished products. In this context, interest is growing in functional plant-based ingredients capable of improving the quality of meat products. [...] Read more.
Modern meat processing faces several challenges, including high resource consumption, environmental impact, and the need to enhance the nutritional and biological value of finished products. In this context, interest is growing in functional plant-based ingredients capable of improving the quality of meat products. The aim of this study was to evaluate the effect of adding 0.01% hemp protein powder and 0.01% sea buckthorn extract (based on the weight of unsalted raw material) on the nutritional, technological, and microbiological characteristics of cooked-smoked sausages. The results demonstrated an increase in total protein content, a 2.5-fold rise in tocopherol levels, as well as a 17.9% improvement in the Amino Acid Score of threonine and a 2.48% increase in the biological value of protein. Samples enriched with plant-based components exhibited enhanced organoleptic properties and greater storage stability over 36 days. In addition, extrusion parameters for the production of the protein additive were optimized, resulting in a stable functional ingredient. Full article
Show Figures

Figure 1

15 pages, 647 KiB  
Article
Effects of Burdock Addition and Different Starters on the Quality and Flavor Improvement of Duck Sausages
by Li Cui, Xuan Zhao, Xingye Song, Wenjing Zhou, Tao Wang, Wuyang Huang and Yuxing Guo
Biology 2025, 14(8), 996; https://doi.org/10.3390/biology14080996 - 4 Aug 2025
Viewed by 189
Abstract
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, [...] Read more.
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, and flavor profiles of duck sausages. Three bacterial strains, Lacticaseibacillus casei, L. helveticus, and L. plantarum, were selected based on sensory analysis, and their effects on sausage properties were evaluated through combined fermentation trials. The results demonstrated that duck sausages fermented with L. plantarum and L. helveticus and supplemented with 3% burdock powder (PHB group) exhibited > 1.5-fold higher antioxidant activity (ABTS at 85.2 μmol trolox/g and DPPH at 92.7 μmol trolox/g, respectively; p < 0.05) and 15% increase in total phenolic content (8.24 mg gallic acid/g) compared to non-fermented counterparts. The PHB formulation also enhanced color stability (lightness, redness, yellowness), textural characteristics (hardness, springiness, cohesiveness), and sensory acceptability. Volatile compound analysis revealed a reduction in off-odor aldehydes (hexanal, (E)-2-octenal, (E)-2-decenal, and (E,E)-2,4-decadienal) and increased production of desirable aromatic compounds like tetramethyl-pyrazine. These findings highlight the potential of combining lactic acid bacteria fermentation with burdock powder to develop functional duck sausages with improved nutritional and sensory properties. Full article
(This article belongs to the Special Issue Nutraceutical and Bioactive Compounds in Foods)
Show Figures

Figure 1

23 pages, 7087 KiB  
Article
Production of Anisotropic NdFeB Permanent Magnets with In Situ Magnetic Particle Alignment Using Powder Extrusion
by Stefan Rathfelder, Stephan Schuschnigg, Christian Kukla, Clemens Holzer, Dieter Suess and Carlo Burkhardt
Materials 2025, 18(15), 3668; https://doi.org/10.3390/ma18153668 - 4 Aug 2025
Viewed by 116
Abstract
This study investigates the sustainable production of NdFeB permanent magnets using powder extrusion molding (PEM) with in situ magnetic alignment, utilizing recycled powder from an end-of-life (Eol) wind turbine magnet obtained via hydrogen processing of magnetic scrap (HPMS). Finite Element Method (FEM) simulations [...] Read more.
This study investigates the sustainable production of NdFeB permanent magnets using powder extrusion molding (PEM) with in situ magnetic alignment, utilizing recycled powder from an end-of-life (Eol) wind turbine magnet obtained via hydrogen processing of magnetic scrap (HPMS). Finite Element Method (FEM) simulations were conducted to design and optimize alignment tool geometries and magnetic field parameters. A key challenge in the PEM process is achieving effective particle alignment while the continuous strand moves through the magnetic field during extrusion. To address this, extrusion experiments were performed using three different alignment tool geometries and varying magnetic field strengths to determine the optimal configuration for particle alignment. The experimental results demonstrate a high degree of alignment (Br/Js = 0.95), exceeding the values obtained with PEM without an external magnetic field (0.78). The study confirms that optimizing the alignment tool geometry and applying sufficiently strong magnetic fields during extrusion enable the production of anisotropic NdFeB permanent magnets without post-machining, providing a scalable route for permanent magnet recycling and manufacturing. Moreover, PEM with in situ magnetic particle alignment allows for the continuous fabrication of near-net-shape strands with customizable cross-sections, making it a scalable approach for permanent magnet recycling and industrial manufacturing. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

18 pages, 1189 KiB  
Article
Mixture Design and Kano Model for a Functional Chickpea and Hibiscus Beverage
by Fernando López-Cardoso, Nayely Leyva-López, Erick Paul Gutiérrez-Grijalva, Rosabel Vélez de la Rocha, Luis Angel Cabanillas-Bojórquez, Josué Camberos-Barraza, Feliznando Isidro Cárdenas-Torres and José Basilio Heredia
Beverages 2025, 11(4), 112; https://doi.org/10.3390/beverages11040112 - 4 Aug 2025
Viewed by 97
Abstract
The demand for functional beverages is increasing as consumers seek options that offer health benefits, and plant-based beverages are gaining popularity for their associated advantages. The objective of this study was to optimize the formulation of a chickpea and hibiscus beverage to maximize [...] Read more.
The demand for functional beverages is increasing as consumers seek options that offer health benefits, and plant-based beverages are gaining popularity for their associated advantages. The objective of this study was to optimize the formulation of a chickpea and hibiscus beverage to maximize flavor sensory acceptance, antioxidant capacity, and anthocyanin content using a mixture design and characterize the optimal formulation. An extreme vertices mixture design was employed, with fixed proportions of chickpea beverage (66.5%) and inulin (2%), while varying the proportions of hibiscus decoction, monk fruit, and cinnamon powder. Additionally, the Kano model was used to classify the beverage’s attributes. The optimized formulation consisted of 31.41% hibiscus decoction, 0.48% monk fruit, and 0.61% cinnamon powder, achieving 329.2 µmol TE/100 mL (antioxidant capacity), 3.567 mg C3GE/100 mL (anthocyanin content), and a flavor rating of 6.2. The Kano model classified good taste, functional properties, monk fruit sweetening, and chickpeas as attractive attributes, with functional properties obtaining the highest satisfaction index (0.88). These results demonstrate that employing a mixture design is an effective tool to enhance health-related aspects and consumer acceptance. Additionally, the incorporation of the Kano model provides a broader perspective on the development of functional beverages by identifying key attributes that influence product acceptance and market success. Full article
Show Figures

Figure 1

20 pages, 1743 KiB  
Article
Encapsulation of Lactobacillus reuteri in Chia–Alginate Hydrogels for Whey-Based Functional Powders
by Alma Yadira Cid-Córdoba, Georgina Calderón-Domínguez, María de Jesús Perea-Flores, Alberto Peña-Barrientos, Fátima Sarahi Serrano-Villa, Rigoberto Barrios-Francisco, Marcela González-Vázquez and Rentería-Ortega Minerva
Gels 2025, 11(8), 613; https://doi.org/10.3390/gels11080613 - 4 Aug 2025
Viewed by 226
Abstract
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. [...] Read more.
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. A hydrogel matrix composed of chia seed mucilage and sodium alginate was used to form a biopolymeric network that protected probiotic cells during processing. The encapsulation efficiency reached 99.0 ± 0.01%, and bacterial viability remained above 9.9 log10 CFU/mL after lyophilization, demonstrating the excellent protective capacity of the hydrogel matrix. Microstructural analysis using confocal laser scanning microscopy (CLSM) revealed well-retained cell morphology and homogeneous distribution within the hydrogel matrix while, in contrast, scanning electron microscopy (SEM) showed spherical, porous microcapsules with distinct surface characteristics influenced by the encapsulation method. Encapsulates were incorporated into beverages flavored with red fruits and pear and subsequently freeze-dried. The resulting powders were analyzed for moisture, protein, lipids, carbohydrates, fiber, and color determinations. The results were statistically analyzed using ANOVA and response surface methodology, highlighting the impact of ingredient ratios on nutritional composition. Raman spectroscopy identified molecular features associated with casein, lactose, pectins, anthocyanins, and other functional compounds, confirming the contribution of both matrix and encapsulants maintaining the structural characteristics of the product. The presence of antioxidant bands supported the functional potential of the powder formulations. Chia–alginate hydrogels effectively encapsulated L. reuteri, maintaining cell viability and enabling their incorporation into freeze-dried beverage powders. This approach offers a promising strategy for the development of next-generation functional food gels with enhanced probiotic stability, nutritional properties, and potential application in health-promoting dairy systems. Full article
(This article belongs to the Special Issue Food Gels: Fabrication, Characterization, and Application)
Show Figures

Graphical abstract

17 pages, 1635 KiB  
Article
Predicting Relative Density of Pure Magnesium Parts Produced by Laser Powder Bed Fusion Using XGBoost
by Kristijan Šket, Snehashis Pal, Janez Gotlih, Mirko Ficko and Igor Drstvenšek
Appl. Sci. 2025, 15(15), 8592; https://doi.org/10.3390/app15158592 - 2 Aug 2025
Viewed by 149
Abstract
In this work, Laser Powder Bed Fusion (LPBF), an additive manufacturing (AM) process, was optimised to produce pure magnesium components. The focus of the presented work is on the prediction of the relative product density using the machine learning model XGBoost to improve [...] Read more.
In this work, Laser Powder Bed Fusion (LPBF), an additive manufacturing (AM) process, was optimised to produce pure magnesium components. The focus of the presented work is on the prediction of the relative product density using the machine learning model XGBoost to improve the production process and thus the usability of the material for practical use. Experimental tests with different parameters, laser power, scanning speed and layer thickness, and fixed parameters, track overlapping and hatching distance, were analysed and resulted in relative material densities between 89.29% and 99.975%. The XGBoost model showed high predictive power, achieving an R2 test result of 0.835, a mean absolute error (MAE) of 0.728 and a root mean square error (RMSE) of 0.982. Feature importance analysis showed that the interaction of laser power and scanning speed had the largest influence on the predictions at 35.9%, followed by laser power × layer thickness at 29.0%. The individual contributions were laser power (11.8%), scanning speed (10.7%), scanning speed × layer thickness (9.0%) and layer thickness (3.6%). These results provide a data-based method for LPBF parameter settings that improve manufacturing efficiency and component performance in the aerospace, automotive and biomedical industries and identify optimal parameter regions for a high density, serving as a pre-optimisation stage. Full article
Show Figures

Figure 1

19 pages, 2157 KiB  
Article
WEEE Glass as a Sustainable Supplementary Cementitious Material: Experimental Analysis on Strength, Durability and Ecotoxic Performance of Mortars
by Raphaele Malheiro, André Lemos, Aires Camões, Duarte Ferreira, Juliana Alves and Cristina Quintelas
Sci 2025, 7(3), 107; https://doi.org/10.3390/sci7030107 - 2 Aug 2025
Viewed by 239
Abstract
This study investigates the use of waste glass powder derived from fluorescent lamps as a partial replacement for cement in mortar production, aiming to valorize this Waste from Electrical and Electronic Equipment (WEEE) and enhance sustainability in the construction sector. Mortars were formulated [...] Read more.
This study investigates the use of waste glass powder derived from fluorescent lamps as a partial replacement for cement in mortar production, aiming to valorize this Waste from Electrical and Electronic Equipment (WEEE) and enhance sustainability in the construction sector. Mortars were formulated by substituting 25% of cement by volume with glass powders from fluorescent lamp glass and green bottle glass. The experimental program evaluated mechanical strength, durability parameters and ecotoxicological performance. Results revealed that clean fluorescent lamp mortars showed the most promising mechanical behavior, exceeding the reference in long-term compressive (54.8 MPa) and flexural strength (10.0 MPa). All glass mortars exhibited significantly reduced chloride diffusion coefficients (85–89%) and increased electrical resistivity (almost 4 times higher), indicating improved durability. Leaching tests confirmed that the incorporation of fluorescent lamp waste did not lead to hazardous levels of heavy metals in the cured mortars, suggesting effective encapsulation. By addressing both technical (mechanical and durability) and ecotoxic performance, this research contributes in an original and relevant way to the development of more sustainable building materials. Full article
Show Figures

Figure 1

16 pages, 2239 KiB  
Article
Synthesis of Silver Nanoparticles from Bitter Melon (Momordica charantia) Extracts and Their Antibacterial Effect
by Nanh Lovanh, Getahun Agga, Graciela Ruiz-Aguilar, John Loughrin and Karamat Sistani
Microorganisms 2025, 13(8), 1809; https://doi.org/10.3390/microorganisms13081809 - 2 Aug 2025
Viewed by 231
Abstract
We utilized silver nanoparticles synthesized from bitter melon (Momordica charantia) extracts for testing against the common agricultural pathogen Escherichia coli. The synthesized nanoparticles were characterized and confirmed as silver nanoparticles by using ultraviolet spectroscopy, Fourier transform infrared spectroscopy, and scanning [...] Read more.
We utilized silver nanoparticles synthesized from bitter melon (Momordica charantia) extracts for testing against the common agricultural pathogen Escherichia coli. The synthesized nanoparticles were characterized and confirmed as silver nanoparticles by using ultraviolet spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy analysis. The results show that AgNPs were effective against E. coli ATCC25922 strain. The AgNPs had an increased potency against the E. coli strain in optimum culture media compared to silver ions alone. AgNP-treated cultures achieved a kill percentage of 100% in less incubation time and at a lower dosage than those treated with silver ions alone. The powder form of the AgNPs also showed remarkable potency against E. coli in solution. Based on these findings, the current method is suitable for the industrial-scale production of AgNPs from a commonly available edible plant with known medicinal benefits in the fight against foodborne pathogens, including antibiotic-resistant strains. Full article
Show Figures

Figure 1

20 pages, 1876 KiB  
Article
Evaluation of Clean-Label Additives to Inhibit Molds and Extend the Shelf Life of Preservative-Free Bread
by Ricardo H. Hernández-Figueroa, Aurelio López-Malo, Beatriz Mejía-Garibay, Nelly Ramírez-Corona and Emma Mani-López
Microbiol. Res. 2025, 16(8), 179; https://doi.org/10.3390/microbiolres16080179 - 1 Aug 2025
Viewed by 144
Abstract
This study evaluates the efficacy of commercial clean-label additives, specifically fermentates, in inhibiting mold growth in vitro and extending the shelf life of preservative-free bread. The mold growth on selected bread was modeled using the time-to-growth approach. The pH, aw, and [...] Read more.
This study evaluates the efficacy of commercial clean-label additives, specifically fermentates, in inhibiting mold growth in vitro and extending the shelf life of preservative-free bread. The mold growth on selected bread was modeled using the time-to-growth approach. The pH, aw, and moisture content of fresh bread were determined. In addition, selected fermentates were characterized physicochemically. Fermentates, defined as liquid or powdered preparations containing microorganisms, their metabolites, and culture supernatants, were tested at varying concentrations (1% to 12%) to assess their antimicrobial performance and impact on bread quality parameters, including moisture content, water activity, and pH. The results showed significant differences in fermentate efficacy, with Product A as the best mold growth inhibitor in vitro and a clear dose-dependent response. For Penicillium corylophilum, inhibition increased from 51.90% at 1% to 62.60% at 4%, while P. chrysogenum had an inhibition ranging from 32.26% to 34.49%. Product F exhibited moderate activity on both molds at 4%, inhibiting between 28.48% and 46.27%. The two molds exhibited differing sensitivities to the fermentates, with P. corylophilum consistently more susceptible to inhibition. Product A displayed a low pH (2.61) and high levels of lactic acid (1053.6 mmol/L) and acetic acid (1061.3 mmol/L). Product F presented a similar pH but lower levels of lactic and acetic acid. A time-to-growth model, validated by significant coefficients (p < 0.05) and high predictive accuracy (R2 > 0.95), was employed to predict the appearance of mold on bread loaves. The model revealed that higher concentrations of fermentates A and F delayed mold growth, with fermentate A demonstrating superior efficacy. At 2% concentration, fermentate A delayed mold growth for 8 days, compared to 6 days for fermentate F. At 8% concentration, fermentate A prevented mold growth for over 25 days, significantly outperforming the control (4 days). Additionally, fermentates influenced bread quality parameters, with fermentate A improving crust moisture retention and reducing water activity at higher concentrations. These findings highlight the potential of fermentates as sustainable, consumer-friendly alternatives to synthetic preservatives, offering a viable solution to the challenge of bread spoilage while maintaining product quality. Full article
(This article belongs to the Collection Microbiology and Technology of Fermented Foods)
Show Figures

Figure 1

Back to TopTop