Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (236)

Search Parameters:
Keywords = post stress restoration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 9116 KiB  
Article
Habitat Loss and Other Threats to the Survival of Parnassius apollo (Linnaeus, 1758) in Serbia
by Dejan V. Stojanović, Vladimir Višacki, Dragana Ranđelović, Jelena Ivetić and Saša Orlović
Insects 2025, 16(8), 805; https://doi.org/10.3390/insects16080805 - 4 Aug 2025
Viewed by 219
Abstract
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive [...] Read more.
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive livestock grazing has triggered vegetation succession, the disappearance of the larval host plant (Sedum album), and a reduction in microhabitat heterogeneity—conditions essential for the persistence of this stenophagous butterfly species. Through satellite-based analysis of vegetation dynamics (2015–2024), we identified clear structural differences between habitats that currently support populations and those where the species is no longer present. Occupied sites were characterized by low levels of exposed soil, moderate grass coverage, and consistently high shrub and tree density, whereas unoccupied sites exhibited dense encroachment of grasses and woody vegetation, leading to structural instability. Furthermore, MODIS-derived indices (2010–2024) revealed a consistent decline in vegetation productivity (GPP, FPAR, LAI) in succession-affected areas, alongside significant correlations between elevated land surface temperatures (LST), thermal stress (TCI), and reduced photosynthetic capacity. A wildfire event on Mount Stol in 2024 further exacerbated habitat degradation, as confirmed by remote sensing indices (BAI, NBR, NBR2), which documented extensive burn scars and post-fire vegetation loss. Collectively, these findings indicate that the decline of P. apollo is driven not only by ecological succession and climatic stressors, but also by the abandonment of land-use practices that historically maintained suitable habitat conditions. Our results underscore the necessity of restoring traditional grazing regimes and integrating ecological, climatic, and landscape management approaches to prevent further biodiversity loss in montane environments. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

16 pages, 4891 KiB  
Article
Effects of Performance Variations in Key Components of CRTS I Slab Ballastless Track on Structural Response Following Slab-Replacement Operations
by Wentao Wu, Hongyao Lu, Yuelei He and Haitao Xia
Materials 2025, 18(15), 3621; https://doi.org/10.3390/ma18153621 - 1 Aug 2025
Viewed by 198
Abstract
Slab-replacement operations are crucial for restoring deteriorated CRTS I slab ballastless tracks to operational standards. This study investigates the structural implications of the operation by evaluating the strength characteristics and material properties of track components both prior to and following replacement. Apparent strength [...] Read more.
Slab-replacement operations are crucial for restoring deteriorated CRTS I slab ballastless tracks to operational standards. This study investigates the structural implications of the operation by evaluating the strength characteristics and material properties of track components both prior to and following replacement. Apparent strength was measured using rebound hammer tests on three categories of slabs: retained, deteriorated, and newly installed track slabs. In addition, samples of old and new filling resins were collected and tested to determine their elastic moduli. These empirical data were subsequently used to develop a refined finite-element model that captures both pre- and post-replacement conditions. Under varying temperature loads, disparities in component performance were found to significantly affect stress distribution. Specifically, before replacement, deteriorated track slabs exhibited 10.74% lower strength compared to adjacent retained slabs, whereas, after replacement, new slabs showed a 25.26% increase in strength over retained ones. The elastic modulus of old filling resin was measured at 5.19 kN/mm, 35.13% below the minimum design requirement, while the new resin reached 10.48 kN/mm, exceeding the minimum by 31.00%. Although the slab-replacement operation enhances safety by addressing structural deficiencies, it may also create new weak points in adjacent areas, where insufficient stiffness results in stress concentrations and potential damage. This study offers critical insights for optimizing maintenance strategies and improving the long-term performance of ballastless track systems. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 5092 KiB  
Article
Salvianolic Acid B Alleviates LPS-Induced Spleen Injury by Remodeling Redox Status and Suppressing NLRP3 Inflammasome
by Hao Wang, Xiao Dou, Ruixue Wang, Yuxin Jiang, Jinsong Zhang, Xianjuan Qiao, Yingjun Liu, Hao Zhang, Chenhuan Lai, Yanan Chen and Qiang Yong
Antioxidants 2025, 14(7), 883; https://doi.org/10.3390/antiox14070883 - 18 Jul 2025
Viewed by 376
Abstract
Background: The spleen is the primary reservoir of immune cells in mammals. Diverse stimuli can disrupt spleen homeostasis, resulting in spleen injury and immune dysfunction. This study employed a porcine model to assess the therapeutic potential of salvianolic acid B (SAB) against [...] Read more.
Background: The spleen is the primary reservoir of immune cells in mammals. Diverse stimuli can disrupt spleen homeostasis, resulting in spleen injury and immune dysfunction. This study employed a porcine model to assess the therapeutic potential of salvianolic acid B (SAB) against lipopolysaccharide (LPS)-induced splenic injury. Methods: Seventy-two male weanling piglets were randomly assigned to one of four groups: CON-SS, SAB-SS, CON-LPS, and SAB-LPS. The CON-SS and CON-LPS groups received a basal diet, while SAB-SS and SAB-LPS groups received a SAB-supplemented diet. After 14 d, the CON-SS and SAB-SS groups received an intraperitoneal injection of sterile saline, whereas the CON-LPS and SAB-LPS groups were injected with LPS. Blood and spleen tissues were harvested 6 h post-injection for biochemical analysis. Results: LPS induced systemic immune disorders in piglets, as evidenced by increased immune organ indices and decreased white blood cell, lymphocyte, and basophil counts in blood (p < 0.05). LPS also caused histoarchitectural disruption, cell apoptosis, oxidative stress, and inflammation in the spleen (p < 0.05). Conversely, SAB improved splenic histopathology and reduced splenic apoptosis and pro-inflammatory mediators in piglets (p < 0.05). SAB significantly mitigated peroxidation accumulation by facilitating the nuclear translocation of nuclear factor erythroid 2-related factor 2 and strengthening the antioxidant system, and inhibited nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome activation (p < 0.05). Mechanistically, SAB attenuated LPS-induced splenic oxidative stress and NLRP3 inflammasome activation by restoring mitochondrial structure and function (p < 0.05). Conclusions: This research unveils that SAB alleviates LPS-induced spleen disorder by reinforcing antioxidant system and suppressing NLRP3 inflammasome, highlighting SAB’s potential as a prospective therapeutic agent for spleen disorders. Full article
(This article belongs to the Special Issue The OxInflammation Process and Tissue Repair)
Show Figures

Figure 1

25 pages, 5545 KiB  
Article
Finite Element Analysis of the Mechanical Performance of an Innovative Beam-Column Joint Incorporating V-Shaped Steel as a Replaceable Energy-Dissipating Component
by Lin Zhang, Yiru Hou and Yi Wang
Buildings 2025, 15(14), 2513; https://doi.org/10.3390/buildings15142513 - 17 Jul 2025
Viewed by 233
Abstract
Ductile structures have demonstrated the ability to withstand increased seismic intensity levels. Additionally, these structures can be restored to their operational state promptly following the replacement of damaged components post-earthquake. This capability has been a subject of considerable interest and focus in recent [...] Read more.
Ductile structures have demonstrated the ability to withstand increased seismic intensity levels. Additionally, these structures can be restored to their operational state promptly following the replacement of damaged components post-earthquake. This capability has been a subject of considerable interest and focus in recent years. The study presented in this paper introduces an innovative beam-column connection that incorporates V-shaped steel as the replaceable energy-dissipating component. It delineates the structural configuration and design principles of this joint. Furthermore, the paper conducts a detailed analysis of the joint’s failure mode, stress distribution, and strain patterns using ABAQUS 2022 finite element software, thereby elucidating the failure mechanisms, load transfer pathways, and energy dissipation characteristics of the joint. In addition, the study investigates the impact of critical design parameters, including the strength, thickness, and weakening dimensions of the dog-bone energy-dissipating section, as well as the strength and thickness of the V-shaped plate, on the seismic behavior of the beam-column joint. The outcomes demonstrate that the incorporation of V-shaped steel with a configurable replaceable energy-dissipating component into the traditional dog-bone replaceable joint significantly improves the out-of-plane stability. Concurrently, the V-shaped steel undergoes a process of gradual flattening under load, which allows for a larger degree of deformation. In conclusion, the innovative joint design exhibits superior ductility and load-bearing capacity when contrasted with the conventional replaceable dog-bone energy-dissipating section joint. The joint’s equivalent viscous damping coefficient, ranging between 0.252 and 0.331, demonstrates its robust energy dissipation properties. The parametric analysis results indicate that the LY160 and Q235 steel grades are recommended for the dog-bone connector and V-shaped steel connector, respectively. The optimal thickness ranges are 6–10 mm for the dog-bone connector and 2–4 mm for the V-shaped steel connector, while the weakened dimension should preferably be selected within 15–20 mm. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 3162 KiB  
Article
Assessing Mangrove Forest Recovery in the British Virgin Islands After Hurricanes Irma and Maria with Sentinel-2 Imagery and Google Earth Engine
by Michael R. Routhier, Gregg E. Moore, Barrett N. Rock, Stanley Glidden, Matthew Duckett and Susan Zaluski
Remote Sens. 2025, 17(14), 2485; https://doi.org/10.3390/rs17142485 - 17 Jul 2025
Viewed by 863
Abstract
Mangroves form the dominant coastal plant community of low-energy tropical intertidal habitats and provide critical ecosystem services to humans and the environment. However, more frequent and increasingly powerful hurricanes and storm surges are creating additional pressure on the natural resilience of these threatened [...] Read more.
Mangroves form the dominant coastal plant community of low-energy tropical intertidal habitats and provide critical ecosystem services to humans and the environment. However, more frequent and increasingly powerful hurricanes and storm surges are creating additional pressure on the natural resilience of these threatened coastal ecosystems. Advances in remote sensing techniques and approaches are critical to providing robust quantitative monitoring of post-storm mangrove forest recovery to better prioritize the often-limited resources available for the restoration of these storm-damaged habitats. Here, we build on previously utilized spatial and temporal ranges of European Space Agency (ESA) Sentinel satellite imagery to monitor and map the recovery of the mangrove forests of the British Virgin Islands (BVI) since the occurrence of back-to-back category 5 hurricanes, Irma and Maria, on September 6 and 19 of 2017, respectively. Pre- to post-storm changes in coastal mangrove forest health were assessed annually using the normalized difference vegetation index (NDVI) and moisture stress index (MSI) from 2016 to 2023 using Google Earth Engine. Results reveal a steady trajectory towards forest health recovery on many of the Territory’s islands since the storms’ impacts in 2017. However, some mangrove patches are slower to recover, such as those on the islands of Virgin Gorda and Jost Van Dyke, and, in some cases, have shown a continued decline (e.g., Prickly Pear Island). Our work also uses a linear ANCOVA model to assess a variety of geospatial, environmental, and anthropogenic drivers for mangrove recovery as a function of NDVI pre-storm and post-storm conditions. The model suggests that roughly 58% of the variability in the 7-year difference (2016 to 2023) in NDVI may be related by a positive linear relationship with the variable of population within 0.5 km and a negative linear relationship with the variables of northwest aspect vs. southwest aspect, island size, temperature, and slope. Full article
(This article belongs to the Special Issue Remote Sensing in Mangroves IV)
Show Figures

Figure 1

19 pages, 42627 KiB  
Article
Molecular Remodeling of the Sperm Proteome Following Varicocele Sclero-Embolization: Implications for Semen Quality Improvement
by Domenico Milardi, Edoardo Vergani, Francesca Mancini, Fiorella Di Nicuolo, Emanuela Teveroni, Emanuele Pierpaolo Vodola, Alessandro Oliva, Giuseppe Grande, Alessandro Cina, Roberto Iezzi, Michela Cicchinelli, Federica Iavarone, Silvia Baroni, Alberto Ferlin, Andrea Urbani and Alfredo Pontecorvi
Proteomes 2025, 13(3), 34; https://doi.org/10.3390/proteomes13030034 - 15 Jul 2025
Viewed by 393
Abstract
Background: Varicocele is a common condition involving the dilation of veins in the scrotum, often linked to male infertility and testicular dysfunction. This study aimed to elucidate the molecular effects of successful varicocele treatment on sperm proteomes following percutaneous sclero-embolization. Methods: High-resolution tandem [...] Read more.
Background: Varicocele is a common condition involving the dilation of veins in the scrotum, often linked to male infertility and testicular dysfunction. This study aimed to elucidate the molecular effects of successful varicocele treatment on sperm proteomes following percutaneous sclero-embolization. Methods: High-resolution tandem mass spectrometry was performed for proteomic profiling of pooled sperm lysates from five patients exhibiting improved semen parameters before and after (3 and 6 months) varicocele sclero-embolization. Data were validated by Western blot analysis. Results: Seven proteins were found exclusively in varicocele patients before surgery—such as stathmin, IFT20, selenide, and ADAM21—linked to inflammation and oxidative stress. After sclero-embolization, 55 new proteins emerged, including antioxidant enzymes like selenoprotein P and GPX3. Thioredoxin (TXN) and peroxiredoxin (PRDX3) were upregulated, indicating restoration of key antioxidant pathways. Additionally, the downregulation of some histones and the autophagy-related protein ATG9A suggests a shift toward an improved chromatin organization and a healthier cellular environment post-treatment. Conclusions: Varicocele treatment that improves sperm quality and fertility parameters leads to significant proteome modulation. These changes include reduced oxidative stress and broadly restored sperm maturation. Despite the limited patient cohort analyzed, these preliminary findings provide valuable insights into how varicocele treatment might enhance male fertility and suggest potential biomarkers for improved male infertility treatment strategies. Full article
(This article belongs to the Section Proteomics of Human Diseases and Their Treatments)
Show Figures

Graphical abstract

18 pages, 4538 KiB  
Article
Effects of Drought Stress on the Growth and Physiological Characteristics of Idesia polycarpa Maxim
by Xiaoyu Lu, Yian Yin, Maolin Yang, Shucheng Zhang, Zhangtai Niu, Lingli Wu and Chan Chen
Horticulturae 2025, 11(7), 834; https://doi.org/10.3390/horticulturae11070834 - 15 Jul 2025
Viewed by 261
Abstract
Idesia polycarpa is a valuable woody oil plant with potential for horticultural and industrial applications. However, limited information is available regarding its drought tolerance during the seedling stage. In this study, one-year-old seedlings were subjected to five treatments based on soil relative water [...] Read more.
Idesia polycarpa is a valuable woody oil plant with potential for horticultural and industrial applications. However, limited information is available regarding its drought tolerance during the seedling stage. In this study, one-year-old seedlings were subjected to five treatments based on soil relative water content (RWC): moderate drought (T1, 40 ± 5%), severe drought (T2, 20 ± 5%), control (CK, 70 ± 5%), and rewatering following moderate (T3) and severe drought stress (T4), with RWC restored to 70 ± 5%. Under drought stress, seedlings exhibited adaptive responses including reduced growth, enhanced antioxidant enzyme activity, osmotic regulation, and changes in endogenous hormone levels. Seedlings showed good tolerance and recovery under moderate drought, but severe drought caused substantial damage and limited post-rewatering recovery. Pearson correlation and principal component analyses revealed that betaine, APX, SA, IAA, ABA, chlorophyll (a + b) content, and crown growth were strongly associated with drought response and could serve as key indicators for drought resistance assessment in I. polycarpa. These findings provide insights into the physiological mechanisms of drought adaptation and support the development of a reliable evaluation system for drought tolerance in this promising species. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

17 pages, 24576 KiB  
Article
Gallic Acid Alleviates Acetaminophen-Induced Acute Liver Injury by Regulating Inflammatory and Oxidative Stress Signaling Proteins
by Jing Zhao, Yuan Zhao, Shuzhe Song, Sai Zhang, Guodong Yang, Yan Qiu and Weishun Tian
Antioxidants 2025, 14(7), 860; https://doi.org/10.3390/antiox14070860 - 14 Jul 2025
Viewed by 351
Abstract
Acetaminophen (APAP) overdose is a major cause of drug-induced liver injury (DILI) globally, which necessitates effective therapies. Gallic acid (GA), a naturally abundant polyphenol, possesses potent antioxidant and anti-inflammatory properties that may overcome the limitations of N-acetylcysteine (NAC), such as its narrow therapeutic [...] Read more.
Acetaminophen (APAP) overdose is a major cause of drug-induced liver injury (DILI) globally, which necessitates effective therapies. Gallic acid (GA), a naturally abundant polyphenol, possesses potent antioxidant and anti-inflammatory properties that may overcome the limitations of N-acetylcysteine (NAC), such as its narrow therapeutic window. This study systematically investigated the hepatoprotective effects and underlying molecular mechanisms of GA against APAP-induced acute liver injury (ALI). Mice received an intraperitoneal injection of APAP (300 mg/kg), followed by an oral administration of GA (50 or 100 mg/kg) or NAC (150 mg/kg) 1 h post-intoxication. Both GA and NAC significantly ameliorated hypertrophy and histopathological damage, as evidenced by reduced serum ALT/AST levels and inflammatory cytokines. TUNEL staining revealed a marked suppression of apoptotic and necrotic cell death, further supported by the downregulation of pro-apoptotic Bax and the upregulation of anti-apoptotic Bcl-2 mRNA expression. GA and NAC treatment restored hepatic glutathione (GSH) content, enhanced antioxidant enzyme gene expression, and reduced malondialdehyde (MDA) accumulation. Mechanistically, GA and NAC inhibited MAPK phosphorylation while activating AMPK signaling. Taken together, these findings demonstrate that GA mitigates APAP-induced ALI by modulating oxidative stress and inflammation through the regulation of MAPK/AMPK signaling proteins. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

25 pages, 330 KiB  
Review
Post-COVID Condition and Neuroinflammation: Possible Management with Antioxidants
by Noemí Cárdenas-Rodríguez, Iván Ignacio-Mejía, César Miguel Mejía-Barradas, Daniel Ortega-Cuellar, Felipe Muñoz-González, Marco Antonio Vargas-Hernández, Exsal Manuel Albores-Méndez, Gabriela Ibáñez-Cervantes, Roberto Medina-Santillán, Aarón Hernández-Ortiz, Elizabeth Herrera-López and Cindy Bandala
Antioxidants 2025, 14(7), 840; https://doi.org/10.3390/antiox14070840 - 8 Jul 2025
Viewed by 2375
Abstract
Post-COVID condition (PCC) is a complex syndrome characterized by the persistence of diverse symptoms—including respiratory, neurological, and psychiatric manifestations—that last for weeks or months after acute Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Epidemiological data indicate a higher prevalence among women and [...] Read more.
Post-COVID condition (PCC) is a complex syndrome characterized by the persistence of diverse symptoms—including respiratory, neurological, and psychiatric manifestations—that last for weeks or months after acute Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Epidemiological data indicate a higher prevalence among women and older adults, with significant impacts on daily functioning. The pathophysiology of PCC is multifactorial, involving immune dysregulation, viral persistence, mitochondrial dysfunction, and oxidative stress, all of which contribute to sustained neuroinflammation. This narrative review examines the clinical features, risk factors, and current evidence on antioxidant-based interventions as potential therapeutic strategies for PCC. A wide range of compounds—including vitamins, polyphenols, and endogenous antioxidants—have shown promise in mitigating neuroinflammation and oxidative damage in both clinical and experimental settings. Antioxidants may help restore redox balance and improve neurological outcomes in affected patients. However, further clinical research is essential to determine their efficacy, safety, and optimal therapeutic protocols. Full article
Show Figures

Graphical abstract

18 pages, 959 KiB  
Article
Response to Training in Emotion Recognition Function for Mild TBI/PTSD Survivors: Pilot Study
by J. Kay Waid-Ebbs, Kristen Lewandowski, Yi Zhang, Samantha Graham and Janis J. Daly
Brain Sci. 2025, 15(7), 728; https://doi.org/10.3390/brainsci15070728 - 8 Jul 2025
Viewed by 701
Abstract
Background/Objectives: For those with comorbid mild traumatic brain injury/post-traumatic stress disorder (mTBI/PTSD), deficits are common with regard to recognition of emotion expression in others. These deficits can cause isolation and suicidal ideation. For mTBI/PTSD, there is a dearth of information regarding effective treatment. [...] Read more.
Background/Objectives: For those with comorbid mild traumatic brain injury/post-traumatic stress disorder (mTBI/PTSD), deficits are common with regard to recognition of emotion expression in others. These deficits can cause isolation and suicidal ideation. For mTBI/PTSD, there is a dearth of information regarding effective treatment. In pilot work, we developed and tested an innovative treatment to improve recognition of both affect (facial expression of emotion) and prosody (spoken expression of emotion). Methods: We enrolled eight Veterans with mTBI/PTSD and administered eight treatment sessions. Measures included the following: Florida Affect Battery (FAB), a test of emotion recognition of facial affect and spoken prosody; Attention Index of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS); and Emotion Recognition Test (ERT), a speed test of facial emotion recognition. Results: There was a significant treatment response according to the FAB (p = 0.01, effect size = 1.2); RBANS attention index (p = 0.04, effect size = 0.99); and trending toward significance for the ERT (0.17, effect size 0.75). Participants were able to engage actively in all eight sessions and provided qualitative evidence supporting generalization of the training to interpersonal relationships. Conclusions: Our data show promising clinical potential and warrant future research, given the importance of developing novel interventions to train and restore recognition of emotion in Veterans with mTBI/PTSD. Full article
(This article belongs to the Special Issue At the Frontiers of Neurorehabilitation: 3rd Edition)
Show Figures

Figure 1

24 pages, 8054 KiB  
Article
INHIBITION OF THE PROSTAGLANDIN-DEGRADING ENZYME 15-PGDH AMELIORATES MASH-ASSOCIATED APOPTOSIS AND FIBROSIS IN MICE
by Utibe-Abasi S. Udoh, Mathew Steven Schade, Jacqueline A. Sanabria, Pradeep Kumar Rajan, Rodrigo Aguilar, Micheal Andryka, Alexei Gorka, Sandrine V. Pierre and Juan Sanabria
Cells 2025, 14(13), 987; https://doi.org/10.3390/cells14130987 - 27 Jun 2025
Viewed by 1501
Abstract
Background. Metabolic dysfunction-associated steatotic liver disease (MASLD) affects more than 30% of the world population. Progression to its inflammatory state, MASH, is associated with increasing liver fibrosis, leading to end-stage liver disease (ESLD) and hepatocellular carcinoma (HCC). SW033291, an inhibitor of 15-PGDH [...] Read more.
Background. Metabolic dysfunction-associated steatotic liver disease (MASLD) affects more than 30% of the world population. Progression to its inflammatory state, MASH, is associated with increasing liver fibrosis, leading to end-stage liver disease (ESLD) and hepatocellular carcinoma (HCC). SW033291, an inhibitor of 15-PGDH (the PGE2 degradation enzyme), has been shown to increase in vivo regeneration of liver parenchyma, ameliorating oxidative stress and inflammation. We hypothesized that SW033291 abrogates MASH progression by inducing a paucity of the initial apoptotic switch and restoring physiological collagen’s microenvironment. Methods. The expression levels of the cell metabolic proteins FOXO1, mTOR, and SIRT7 were determined in a diet-induced MASH-mouse model at 16, 20, and 24 weeks. Non-targeted metabolomics in mouse plasma were measured by LC-MS/MS. Liver morphology and apoptotic activity were quantified by the NAS score and TUNEL assay, respectively. Statistical analyses between groups (NMC, HFD, and SW033291) were determined by ANOVA, t-test/Tukey’s post hoc test using GraphPad Prism. Metabolomics data were analyzed using R-lab. Results. The treated group showed significant decreases in total body fat, cellular oxidative stress, and inflammation and an increase in total lean mass with improved insulin resistance and favorable modulation of metabolic protein expressions (p < 0.05). SW033291 significantly decreased GS:SG, citric acid, and corticosterone, NAS scores (9.4 ± 0.2 vs. 6.2 ± 0.1, p < 0.05), liver fibrosis scores (1.3 ± 0.5 vs. 0.25 ± 0.1, p < 0.05), and apoptotic activity (43.9 ± 4.6 vs. 0.38 ± 0.1%, p < 0.05) compared with controls at 24W. Conclusions. The inhibition of 15-PGDH appears to normalize the metabolic and morphological disturbances during MASH progression with a paucity of the initial apoptotic switch, restoring normal collagen architecture. SW033291 warrants further investigation for its translation. Full article
(This article belongs to the Special Issue Cellular Pathology: Emerging Discoveries and Perspectives in the USA)
Show Figures

Figure 1

29 pages, 4175 KiB  
Article
Assessing Long-Term Post-Conflict Air Pollution: Trends and Implications for Air Quality in Mosul, Iraq
by Zena Altahaan and Daniel Dobslaw
Atmosphere 2025, 16(7), 756; https://doi.org/10.3390/atmos16070756 - 20 Jun 2025
Viewed by 615
Abstract
Prolonged conflicts in Iraq over the past four decades have profoundly disrupted environmental systems, not only through immediate post-conflict emissions—such as residues from munitions and explosives—but also via long-term infrastructural collapse, population displacement, and unsustainable resource practices. Despite growing concern over air quality [...] Read more.
Prolonged conflicts in Iraq over the past four decades have profoundly disrupted environmental systems, not only through immediate post-conflict emissions—such as residues from munitions and explosives—but also via long-term infrastructural collapse, population displacement, and unsustainable resource practices. Despite growing concern over air quality in conflict-affected regions, comprehensive assessments integrating long-term data and localized measurements remain scarce. This study addresses this gap by analyzing the environmental consequences of sustained instability in Mosul, focusing on air pollution trends using both remote sensing data (1983–2023) and in situ monitoring of key pollutants—including PM2.5, PM10, TVOCs, NO2, SO2, and formaldehyde—at six urban sites during 2022–2023. The results indicate marked seasonal variations, with winter peaks in combustion-related pollutants (NO2, SO2) and elevated particulate concentrations in summer driven by sandstorm activity. Annual average concentrations of all six pollutants increased by 14–51%, frequently exceeding WHO air quality guidelines. These patterns coincide with worsening meteorological conditions, including higher temperatures, reduced rainfall, and more frequent storms, suggesting synergistic effects between climate stress and pollution. The findings highlight severe public health risks and emphasize the urgent need for integrated urban recovery strategies that promote sustainable infrastructure, environmental restoration, and resilience to climate change. Full article
Show Figures

Figure 1

29 pages, 10703 KiB  
Article
Enhanced Therapeutic Efficacy of Omeprazole Nanosuspension in Ethanol-Induced Gastric Ulcer: A Focus on Oxidative Stress and Inflammatory Pathways
by Mody Albalawi and Sahar Khateeb
Biomolecules 2025, 15(6), 902; https://doi.org/10.3390/biom15060902 - 19 Jun 2025
Viewed by 732
Abstract
Gastric ulcer is a concerning condition that affects numerous individuals globally. Omeprazole (OMP), a well-known drug for treating stomach ulcers, has been associated with several adverse effects and limited solubility. The study aimed to create an omeprazole nanosuspension (OMP-NS) with improved solubility and [...] Read more.
Gastric ulcer is a concerning condition that affects numerous individuals globally. Omeprazole (OMP), a well-known drug for treating stomach ulcers, has been associated with several adverse effects and limited solubility. The study aimed to create an omeprazole nanosuspension (OMP-NS) with improved solubility and bioavailability. Additionally, the study investigated the potential therapeutic effects of OMP-NS on ethanol-induced gastric injury in rats, comparing it to traditional OMP therapy to identify novel therapeutic alternatives. The characterization of the OMP-NS was assessed using DLS, TEM, XRD, FTIR, UV spectrophotometric analysis, in vitro release studies, and entrapment efficiency (EE) assays. A total of 24 male Wistar albino rats (weighing 150–200 g, aged 8–10 weeks) were randomly divided into four groups (six rats/group). Gastric injury was induced using absolute ethanol (5 mL/kg), followed by oral administration of either OMP or OMP-NS (20 mg/kg) for 7 days. Data were analyzed using one-way ANOVA accompanied by the Bonferroni post hoc test or the Kruskal–Wallis test, based on data distribution, with significance set at p < 0.05. The OMP-NS demonstrated a Z-average diameter of 216.1 nm, a polydispersity index of 0.2, and a zeta potential of −19.6 mV. The particles were predominantly spherical with an average size of 67.28 nm. In vitro release studies showed 97.78% release at 8 h, with an EE% of 96.97%. Ethanol-induced gastric ulcers were associated with oxidative stress, characterized by elevated levels of NADPH, ROS, MDA, and NO, while the level of SOD was reduced. It was accompanied by increased inflammatory markers HMGB1, which subsequently increased TLR-2, MyD88, NF-κBp56, NLRP3, TNF-α, IL-1β, and IL-6 levels; conversely, a significant decrease in Nrf2/PPAR-γ/SIRT1 levels was observed. In contrast, OMP-NS administration significantly reduced oxidative stress and inflammatory markers, restored SOD activity, and upregulated protective pathways Nrf2/PPAR-γ/SIRT1 more effectively than conventional OMP therapy. In conclusion, OMP-NS represents a promising therapeutic strategy with notable anti-inflammatory and anti-ulcerogenic effects in ethanol-induced gastric ulcers. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Graphical abstract

13 pages, 428 KiB  
Article
Effects of a Capsaicin-Based Phytogenic Solution on Intestinal Permeability, Serum Amino Acid Concentrations, and Digestibility in Heat-Stressed Growing Pigs
by Miguel Cervantes, Panagiotis Sakkas, José A. Valle, Néstor Arce, Ernesto Avelar, Nicolas Quilichini and Adriana Morales
Animals 2025, 15(12), 1757; https://doi.org/10.3390/ani15121757 - 14 Jun 2025
Viewed by 517
Abstract
A Capsicum spp.-based phytogenic solution (PHY) improved the performance and thermal tolerance of heat-stressed (HS) growing pigs. Two trials were conducted to further evaluate the HS pig response to supplemental PHY. Trial 1: The effects on the serum concentrations of amino acids (AAs) [...] Read more.
A Capsicum spp.-based phytogenic solution (PHY) improved the performance and thermal tolerance of heat-stressed (HS) growing pigs. Two trials were conducted to further evaluate the HS pig response to supplemental PHY. Trial 1: The effects on the serum concentrations of amino acids (AAs) and the gene expression of tight junction proteins in the jejunum and ileum were assessed with 42 pigs (Landrace-Hampshire-Duroc; 27.0 ± 4.5 kg BW). There were three treatments (14 replicates): pigs under thermoneutral (TN) conditions fed control diet (TN-C); and HS pigs fed control diet without (HS-C) or with PHY (HS-PHY). Trial 2: Two-period digestion trial with eight ileal-cannulated pigs to analyze apparent ileal digestibility (AID) of AAs. Period 1: All TN pigs, fed the control (TN-C) or PHY-supplemented (TN-PHY) diet. Period 2: All HS pigs, fed the same diet as in period 1 (HS-C and HS-PHY). The control diet was based on wheat–soybean meal. In the jejunum, HS-C pigs had reduced occludin gene expression (p < 0.01) compared to TN-C pigs. HS-PHY pigs increased claudin-2 and tight-junction-protein-1 gene expression compared to HS-C (p < 0.05). In the ileum, HS-C and HS-PHY pigs had reduced occludin gene expression (p < 0.01). The serum concentrations of AAs decreased in HS-C compared to TN-C pigs (p < 0.05); except for arginine and isoleucine, HS-PHY pigs partially recovered serum AA levels. HS tended to reduce (p < 0.10; lysine and methionine) and reduced (p < 0.05) the AID of essential AAs. PHY did not mitigate the HS-associated reduced AA digestibility. In conclusion, these results support the concept that a phytogenic solution improves intestinal integrity and partially restores the post-absorption metabolism of amino acids, independent of the amino acid digestibility of heat-stressed pigs. Full article
(This article belongs to the Special Issue Plant Extracts as Feed Additives in Animal Nutrition and Health)
Show Figures

Figure 1

17 pages, 3627 KiB  
Article
Stress Distribution on Endodontically Treated Anterior Teeth Restored via Different Ceramic Materials with Varying Post Lengths Versus Endocrown—A 3D Finite Element Analysis
by Mai Soliman, Nawaf Almutairi, Ali Alenezi, Raya Alenezi, Amal Abdallah A. Abo-Elmagd and Manal M. Abdelhafeez
J. Funct. Biomater. 2025, 16(6), 221; https://doi.org/10.3390/jfb16060221 - 12 Jun 2025
Viewed by 1006
Abstract
Objective: This study aims to evaluate the stress distribution on endodontically treated anterior teeth restored using different restorative materials and different post lengths versus endocrowns employing finite element analysis (FEA). Methods: An extracted human central incisor tooth with a fully formed apex was [...] Read more.
Objective: This study aims to evaluate the stress distribution on endodontically treated anterior teeth restored using different restorative materials and different post lengths versus endocrowns employing finite element analysis (FEA). Methods: An extracted human central incisor tooth with a fully formed apex was scanned using high-resolution cone beam computed tomography (CBCT) to generate 3D finite element models. Six models of restorations of badly destructed central incisor were grouped according to the type of ceramic material and post length versus endocrown restorations. Group V-L: Vita Enamic, long post (10 mm intra-radicular), Group C-L: Celtra Duo, long post (10 mm intra-radicular), Group V-Sh: Vita Enamic, short post (3 mm intra-radicular), Group C-Sh: Celtra Duo, short post (3 mm intra-radicular), Group V-E: Vita Enamic endocrown (3 mm intra-radicular), and Group C-E: Celtra Duo endocrown (3 mm intra-radicular). A static load of 200 N was applied to the palatal surface at a 45 degree angle to the tooth’s long axis. The maximum equivalent von Mises stress and maximum principal stress were analyzed at four locations: the finish line, coronal third of the root (12 mm from the apex), middle third of the root (8 mm from the apex), and apical third of the root (4 mm from the apex). Results: Group C-L exhibited the highest maximum VM stress and PS at the finish line, in addition to the highest maximum VM stress and PS at the root apical third, while group C-Sh reported the least maximum VM stress at the root apical third among the groups. All Celtra Duo groups reported higher maximum VM stress than the corresponding groups of Vita Enamic at the finish line and root coronal thirds. However, at the root middle and apical thirds, both materials recorded similar stresses. Conclusions: Short posts and Vita Enamic endocrowns showed minimal stress, especially at the finish line, while long posts increased stress and fracture risk. The findings support conservative restorations without posts, although clinical validation is needed to confirm their long-term effectiveness and safety. Full article
(This article belongs to the Special Issue Advances in Restorative Dentistry Materials)
Show Figures

Figure 1

Back to TopTop