Post-COVID Condition and Neuroinflammation: Possible Management with Antioxidants
Abstract
1. Introduction
2. Clinical Presentation of PCC
3. Pathophysiological Mechanisms Underlying PCC
4. Neuroinflammation and Oxidative Stress in PCC
Process Involved | Chemical Species Involved | Mechanism of Action |
---|---|---|
ROS | O2•−, H2O2, HO• | These species play a central role in neuroinflammation by inducing oxidative stress and sustained cellular damage to DNA, proteins, and lipids. They activate microglia and trigger the release of pro-inflammatory cytokines (e.g., IL-1β, IL-6), disrupt the BBB, and modify intracellular signaling pathways such as NF-κB, perpetuating the inflammatory cascade. This contributes to cognitive deficits and fatigue [98,100,101,102,103,104,105]. |
RNS | NO•, ONOO− | Induced primarily via iNOS activation, NO• combines with ROS to form ONOO−, a highly reactive molecule that damages lipids, proteins, and nucleic acids. RNS sustain microglial activation, disrupt BBB integrity, and amplify neuroinflammation. Targeting iNOS or scavenging RNS may reduce these effects and alleviate PCC symptoms [99,100,101,106]. |
Lipid Peroxidation Products | MDA, 4-HNE | These molecules compromise neuronal membrane integrity, promote cytokine release, and worsen oxidative stress. They also interfere with cellular signaling and repair processes, contributing to progressive neuronal injury and exacerbating neurocognitive symptoms [96,107,108]. |
Protein Damage | Carbonylated proteins | Accumulated damaged or misfolded proteins initiate further inflammatory responses, impair cell signaling, and hinder tissue repair mechanisms. This perpetuates chronic inflammation and contributes to persistent symptoms such as cognitive impairment and fatigue [96,98]. |
DNA Damage | 8-OHdG | Oxidative DNA lesions like 8-OHdG activate inflammatory and apoptotic signaling pathways. Impaired DNA repair under chronic inflammation conditions accelerates neuronal dysfunction and may underlie long-term cognitive deficits in PCC [98]. |
Proinflammatory Cytokines | IL-1β, IL-6, TNF-α, NLRP3 inflammasome activation | These cytokines are produced in excess in response to immune dysregulation and oxidative stress. They enhance BBB permeability, recruit immune cells into the CNS, and activate microglia, reinforcing neuroinflammation and oxidative damage. This contributes to cognitive dysfunction and mood disorders [99]. |
Neurotransmitters | Glutamate | Inflammatory processes disrupt neurotransmitter synthesis and signaling. Excess glutamate causes excitotoxicity and neuronal death, while reduced levels of serotonin and dopamine impair cognition, mood, and memory. This imbalance is central to “brain fog” and neuropsychiatric symptoms in PCC [98]. |
Cell Death | Ferroptosis | Ferroptosis is triggered by iron-mediated ROS accumulation and lipid peroxidation, especially when the antioxidant enzyme glutathione peroxidase-4 (GPx4) is deficient. Chronic inflammation worsens this process, leading to neuronal death and sustained neuroinflammation, thereby aggravating neurological and cognitive dysfunction in PCC [100]. |
5. Antioxidants in the Management of Neuroinflammatory Diseases
6. Antioxidants as a Possible Treatment in Neuroinflammation Caused by PCC
7. Regulatory Context of Antioxidant Use in PCC
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V.; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [PubMed]
- Correa, E.M.; Vallespin, G.T. COVID persistente. Elementos básicos para el médico de atención primaria. FMC 2022, 29, 481–489. [Google Scholar]
- World Health Organization. A Clinical Case Definition of Post COVID-19 Condition by a Delphi Consensus. Available online: https://iris.who.int/bitstream/handle/10665/345824/WHO-2019-nCoV-Post-COVID-19-condition-Clinical-case-definition-2021.1-eng.pdf (accessed on 3 December 2024).
- Venkatesan, P. NICE guideline on long COVID. Lancet Respir. Med. 2021, 9, 129. [Google Scholar] [PubMed]
- CDC. Long COVID Basics. Available online: https://www.cdc.gov/covid/long-term-effects/?CDC_AAref_Val=https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html? (accessed on 2 March 2025).
- Srikanth, S.; Boulos, J.R.; Dover, T.; Boccuto, L.; Dean, D. Identification and diagnosis of long COVID-19: A scoping review. Prog. Biophys. Mol. Biol. 2023, 182, 1–7. [Google Scholar] [PubMed]
- Staffolani, S.; Iencinella, V.; Cimatti, M.; Tavio, M. Long COVID-19 syndrome as a fourth phase of SARS-CoV-2 infection. Infez. Med. 2022, 30, 22–29. [Google Scholar]
- Song, W.J.; Hui, C.K.M.; Hull, J.H.; Birring, S.S.; McGarvey, L.; Mazzone, S.B.; Chung, K.F. Confronting COVID-19-associated cough and the post-COVID syndrome: Role of viral neurotropism, neuroinflammation, and neuroimmune responses. Lancet Respir. Med. 2021, 9, 533–544. [Google Scholar]
- Iwasaki, M.; Saito, J.; Zhao, H.; Sakamoto, A.; Hirota, K.; Ma, D. Inflammation Triggered by SARS-CoV-2 and ACE2 Augment Drives Multiple Organ Failure of Severe COVID-19: Molecular Mechanisms and Implications. Inflammation 2021, 44, 13–34. [Google Scholar]
- Choi, Y.J.; Seo, Y.B.; Seo, J.W.; Lee, J.; Nham, E.; Seong, H.; Yoon, J.G.; Noh, J.Y.; Cheong, H.J.; Kim, W.J.; et al. Effectiveness of Antiviral Therapy on Long COVID: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 7375. [Google Scholar]
- Heneka, M.T.; Golenbock, D.; Latz, E.; Morgan, D.; Brown, R. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimer’s Res. Ther. 2020, 12, 69. [Google Scholar]
- Low, R.N.; Low, R.J.; Akrami, A. A review of cytokine-based pathophysiology of Long COVID symptoms. Front. Med. 2023, 10, 1011936. [Google Scholar]
- van den Berg, D.F.; Te Velde, A.A. Severe COVID-19: NLRP3 Inflammasome Dysregulated. Front. Immunol. 2020, 11, 1580. [Google Scholar]
- Damiano, S.; Sozio, C.; La Rosa, G.; Santillo, M. NOX-Dependent Signaling Dysregulation in Severe COVID-19: Clues to Effective Treatments. Front. Cell. Infect. Microbiol. 2020, 10, 608435. [Google Scholar]
- Vollbracht, C.; Kraft, K. Oxidative Stress and Hyper-Inflammation as Major Drivers of Severe COVID-19 and Long COVID: Implications for the Benefit of High-Dose Intravenous Vitamin C. Front. Pharmacol. 2022, 13, 899198. [Google Scholar]
- Nordvig, A.S.; Rajan, M.; Lau, J.D.; Kingery, J.R.; Mahmud, M.; Chiang, G.C.; De Leon, M.J.; Goyal, P. Brain fog in long COVID limits function and health status, independently of hospital severity and preexisting conditions. Front. Neurol. 2023, 14, 1150096. [Google Scholar]
- Butler, M.; Pollak, T.A.; Rooney, A.G.; Michael, B.D.; Nicholson, T.R. Neuropsychiatric complications of covid-19. BMJ 2020, 371, m3871. [Google Scholar]
- Cardenas-Rodriguez, N.; Bandala, C.; Vanoye-Carlo, A.; Ignacio-Mejia, I.; Gomez-Manzo, S.; Hernandez-Cruz, E.Y.; Pedraza-Chaverri, J.; Carmona-Aparicio, L.; Hernandez-Ochoa, B. Use of Antioxidants for the Neuro-Therapeutic Management of COVID-19. Antioxidants 2021, 10, 971. [Google Scholar] [CrossRef]
- Sinopoli, A.; Sciurti, A.; Isonne, C.; Santoro, M.M.; Baccolini, V. The Efficacy of Multivitamin, Vitamin A, Vitamin B, Vitamin C, and Vitamin D Supplements in the Prevention and Management of COVID-19 and Long-COVID: An Updated Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients 2024, 16, 1345. [Google Scholar]
- Ignacio-Mejia, I.; Bandala, C.; Gonzalez-Zamora, J.F.; Chavez-Galan, L.; Buendia-Roldan, I.; Perez-Torres, K.; Rodriguez-Diaz, M.Z.; Pacheco-Tobon, D.X.; Quintero-Fabian, S.; Vargas-Hernandez, M.A.; et al. Association of Vitamin D Supplementation with Glutathione Peroxidase (GPx) Activity, Interleukine-6 (IL-6) Levels, and Anxiety and Depression Scores in Patients with Post-COVID-19 Condition. Int. J. Mol. Sci. 2025, 26, 4582. [Google Scholar]
- Lopez-Sampalo, A.; Bernal-Lopez, M.R.; Gomez-Huelgas, R. Persistent COVID-19 syndrome. A narrative review. Rev. Clin. Esp. 2022, 222, 241–250. [Google Scholar]
- Vo, H.T.; Dao, T.V.; Do, T.X.; Do, B.N.; Nguyen, T.T.; Pham, K.M.; Vu, V.H.; Pham, L.V.; Nguyen, L.T.H.; Le, L.T.H.; et al. Association between underlying health conditions and long COVID among non-hospitalized and hospitalized individuals as modified by health literacy: A multi-center study. Public Health 2025, 239, 87–93. [Google Scholar]
- Wong, M.C.; Huang, J.; Wong, Y.Y.; Wong, G.L.; Yip, T.C.; Chan, R.N.; Chau, S.W.; Ng, S.C.; Wing, Y.K.; Chan, F.K. Epidemiology, Symptomatology, and Risk Factors for Long COVID Symptoms: Population-Based, Multicenter Study. JMIR Public Health Surveill. 2023, 9, e42315. [Google Scholar] [PubMed]
- Moyo, E.; Chimene, M.; Moyo, P.; Musuka, G.; Mangoya, D.; Murewanhema, G.; Dzinamarira, T. Risk factors and clinical presentations of long COVID in Africa: A scoping review. J. Infect. Public Health 2023, 16, 1982–1988. [Google Scholar]
- Caze, A.B.; Cerqueira-Silva, T.; Bomfim, A.P.; de Souza, G.L.; Azevedo, A.C.; Brasil, M.Q.; Santos, N.R.; Khouri, R.; Dan, J.; Bandeira, A.C.; et al. Prevalence and risk factors for long COVID after mild disease: A cohort study with a symptomatic control group. J. Glob. Health 2023, 13, 06015. [Google Scholar] [PubMed]
- Bello-Chavolla, O.Y.; Fermin-Martinez, C.A.; Ramirez-Garcia, D.; Vargas-Vazquez, A.; Fernandez-Chirino, L.; Basile-Alvarez, M.R.; Sanchez-Castro, P.; Nunez-Luna, A.; Antonio-Villa, N.E. Prevalence and determinants of post-acute sequelae after SARS-CoV-2 infection (Long COVID) among adults in Mexico during 2022: A retrospective analysis of nationally representative data. Lancet Reg. Health Am. 2024, 30, 100688. [Google Scholar] [PubMed]
- Wolff, D.; Drewitz, K.P.; Ulrich, A.; Siegels, D.; Deckert, S.; Sprenger, A.A.; Kuper, P.R.; Schmitt, J.; Munblit, D.; Apfelbacher, C. Allergic diseases as risk factors for Long-COVID symptoms: Systematic review of prospective cohort studies. Clin. Exp. Allergy 2023, 53, 1162–1176. [Google Scholar] [PubMed]
- Subramanian, A.; Nirantharakumar, K.; Hughes, S.; Myles, P.; Williams, T.; Gokhale, K.M.; Taverner, T.; Chandan, J.S.; Brown, K.; Simms-Williams, N.; et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat. Med. 2022, 28, 1706–1714. [Google Scholar]
- Lippi, G.; Sanchis-Gomar, F.; Henry, B.M. COVID-19 and its long-term sequelae: What do we know in 2023? Pol. Arch. Intern. Med. 2023, 133, 16402. [Google Scholar]
- Tsampasian, V.; Elghazaly, H.; Chattopadhyay, R.; Debski, M.; Naing, T.K.P.; Garg, P.; Clark, A.; Ntatsaki, E.; Vassiliou, V.S. Risk Factors Associated With Post-COVID-19 Condition: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2023, 183, 566–580. [Google Scholar]
- Woodrow, M.; Carey, C.; Ziauddeen, N.; Thomas, R.; Akrami, A.; Lutje, V.; Greenwood, D.C.; Alwan, N.A. Systematic Review of the Prevalence of Long COVID. Open Forum Infect. Dis. 2023, 10, ofad233. [Google Scholar]
- Ledford, H. Do vaccines protect against long COVID? What the data say. Nature 2021, 599, 546–548. [Google Scholar]
- Haunhorst, S.; Bloch, W.; Wagner, H.; Ellert, C.; Kruger, K.; Vilser, D.C.; Finke, K.; Reuken, P.; Pletz, M.W.; Stallmach, A.; et al. Long COVID: A narrative review of the clinical aftermaths of COVID-19 with a focus on the putative pathophysiology and aspects of physical activity. Oxf. Open Immunol. 2022, 3, iqac006. [Google Scholar]
- Liu, Y.; Gu, X.; Li, H.; Zhang, H.; Xu, J. Mechanisms of long COVID: An updated review. Chin. Med. J. Pulm. Crit. Care Med. 2023, 1, 231–240. [Google Scholar]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar]
- Kenny, G.; Townsend, L.; Savinelli, S.; Mallon, P.W.G. Long COVID: Clinical characteristics, proposed pathogenesis and potential therapeutic targets. Front. Mol. Biosci. 2023, 10, 1157651. [Google Scholar]
- Turner, S.; Khan, M.A.; Putrino, D.; Woodcock, A.; Kell, D.B.; Pretorius, E. Long COVID: Pathophysiological factors and abnormalities of coagulation. Trends Endocrinol. Metab. 2023, 34, 321–344. [Google Scholar] [PubMed]
- Sun, J.; Xiao, J.; Sun, R.; Tang, X.; Liang, C.; Lin, H.; Zeng, L.; Hu, J.; Yuan, R.; Zhou, P.; et al. Prolonged Persistence of SARS-CoV-2 RNA in Body Fluids. Emerg. Infect. Dis. 2020, 26, 1834–1838. [Google Scholar]
- Pinho, J.R.R.; de Oliveira, K.G.; Sitnik, R.; Maluf, M.M.; Rodrigues, P.H.S.; Santana, R.A.F.; Welter, E.R.; Irony, O. Long term persistence of coronavirus SARS-CoV-2 infection. Einstein 2021, 19, eRC6369. [Google Scholar] [PubMed]
- Kalkeri, R.; Goebel, S.; Sharma, G.D. SARS-CoV-2 Shedding from Asymptomatic Patients: Contribution of Potential Extrapulmonary Tissue Reservoirs. Am. J. Trop. Med. Hyg. 2020, 103, 18–21. [Google Scholar]
- Cheung, C.C.L.; Goh, D.; Lim, X.; Tien, T.Z.; Lim, J.C.T.; Lee, J.N.; Tan, B.; Tay, Z.E.A.; Wan, W.Y.; Chen, E.X.; et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19. Gut 2022, 71, 226–229. [Google Scholar]
- Natarajan, A.; Zlitni, S.; Brooks, E.F.; Vance, S.E.; Dahlen, A.; Hedlin, H.; Park, R.M.; Han, A.; Schmidtke, D.T.; Verma, R.; et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med 2022, 3, 371–387.e9. [Google Scholar]
- Lima, M.; Siokas, V.; Aloizou, A.M.; Liampas, I.; Mentis, A.A.; Tsouris, Z.; Papadimitriou, A.; Mitsias, P.D.; Tsatsakis, A.; Bogdanos, D.P.; et al. Unraveling the Possible Routes of SARS-COV-2 Invasion into the Central Nervous System. Curr. Treat. Options Neurol. 2020, 22, 37. [Google Scholar]
- Matschke, J.; Lutgehetmann, M.; Hagel, C.; Sperhake, J.P.; Schroder, A.S.; Edler, C.; Mushumba, H.; Fitzek, A.; Allweiss, L.; Dandri, M.; et al. Neuropathology of patients with COVID-19 in Germany: A post-mortem case series. Lancet Neurol. 2020, 19, 919–929. [Google Scholar]
- Dantzer, R. Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa. Physiol. Rev. 2018, 98, 477–504. [Google Scholar]
- Shabab, T.; Khanabdali, R.; Moghadamtousi, S.Z.; Kadir, H.A.; Mohan, G. Neuroinflammation pathways: A general review. Int. J. Neurosci. 2017, 127, 624–633. [Google Scholar] [PubMed]
- Zadeh, F.H.; Wilson, D.R.; Agrawal, D.K. Long COVID: Complications, Underlying Mechanisms, and Treatment Strategies. Arch. Microbiol. Immunol. 2023, 7, 36–61. [Google Scholar] [PubMed]
- Mohammadi, S.; Moosaie, F.; Aarabi, M.H. Understanding the Immunologic Characteristics of Neurologic Manifestations of SARS-CoV-2 and Potential Immunological Mechanisms. Mol. Neurobiol. 2020, 57, 5263–5275. [Google Scholar] [PubMed]
- Douaud, G.; Lee, S.; Alfaro-Almagro, F.; Arthofer, C.; Wang, C.; McCarthy, P.; Lange, F.; Andersson, J.L.R.; Griffanti, L.; Duff, E.; et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022, 604, 697–707. [Google Scholar]
- Venkataramani, V.; Winkler, F. Cognitive Deficits in Long COVID-19. N. Engl. J. Med. 2022, 387, 1813–1815. [Google Scholar]
- Reiken, S.; Sittenfeld, L.; Dridi, H.; Liu, Y.; Liu, X.; Marks, A.R. Alzheimer’s-like signaling in brains of COVID-19 patients. Alzheimer’s Dement. 2022, 18, 955–965. [Google Scholar]
- Fogarty, H.; Townsend, L.; Morrin, H.; Ahmad, A.; Comerford, C.; Karampini, E.; Englert, H.; Byrne, M.; Bergin, C.; O’Sullivan, J.M.; et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J. Thromb. Haemost. 2021, 19, 2546–2553. [Google Scholar]
- Szewczykowski, C.; Mardin, C.; Lucio, M.; Wallukat, G.; Hoffmanns, J.; Schroder, T.; Raith, F.; Rogge, L.; Heltmann, F.; Moritz, M.; et al. Long COVID: Association of Functional Autoantibodies against G-Protein-Coupled Receptors with an Impaired Retinal Microcirculation. Int. J. Mol. Sci. 2022, 23, 7209. [Google Scholar] [PubMed]
- Dusedau, H.P.; Steffen, J.; Figueiredo, C.A.; Boehme, J.D.; Schultz, K.; Erck, C.; Korte, M.; Faber-Zuschratter, H.; Smalla, K.H.; Dieterich, D.; et al. Influenza A Virus (H1N1) Infection Induces Microglial Activation and Temporal Dysbalance in Glutamatergic Synaptic Transmission. mBio 2021, 12, e0177621. [Google Scholar]
- Wang, P.; Jin, L.; Zhang, M.; Wu, Y.; Duan, Z.; Guo, Y.; Wang, C.; Guo, Y.; Chen, W.; Liao, Z.; et al. Blood-brain barrier injury and neuroinflammation induced by SARS-CoV-2 in a lung-brain microphysiological system. Nat. Biomed. Eng. 2024, 8, 1053–1068. [Google Scholar]
- Pellegrini, L.; Albecka, A.; Mallery, D.L.; Kellner, M.J.; Paul, D.; Carter, A.P.; James, L.C.; Lancaster, M.A. SARS-CoV-2 Infects the Brain Choroid Plexus and Disrupts the Blood-CSF Barrier in Human Brain Organoids. Cell Stem Cell 2020, 27, 951–961.e5. [Google Scholar] [PubMed]
- Valizadeh, H.; Abdolmohammadi-Vahid, S.; Danshina, S.; Ziya Gencer, M.; Ammari, A.; Sadeghi, A.; Roshangar, L.; Aslani, S.; Esmaeilzadeh, A.; Ghaebi, M.; et al. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int. Immunopharmacol. 2020, 89, 107088. [Google Scholar]
- Roczkowsky, A.; Limonta, D.; Fernandes, J.P.; Branton, W.G.; Clarke, M.; Hlavay, B.; Noyce, R.S.; Joseph, J.T.; Ogando, N.S.; Das, S.K.; et al. COVID-19 Induces Neuroinflammation and Suppresses Peroxisomes in the Brain. Ann. Neurol. 2023, 94, 531–546. [Google Scholar]
- Kwon, J.S.; Kim, J.Y.; Kim, M.C.; Park, S.Y.; Kim, B.N.; Bae, S.; Cha, H.H.; Jung, J.; Kim, M.J.; Lee, M.J.; et al. Factors of Severity in Patients with COVID-19: Cytokine/Chemokine Concentrations, Viral Load, and Antibody Responses. Am. J. Trop. Med. Hyg. 2020, 103, 2412–2418. [Google Scholar]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar]
- Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.C.; Uhl, S.; Hoagland, D.; Moller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020, 181, 1036–1045.e9. [Google Scholar]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar]
- Xu, Z.S.; Shu, T.; Kang, L.; Wu, D.; Zhou, X.; Liao, B.W.; Sun, X.L.; Zhou, X.; Wang, Y.Y. Temporal profiling of plasma cytokines, chemokines and growth factors from mild, severe and fatal COVID-19 patients. Signal Transduct. Target. Ther. 2020, 5, 100. [Google Scholar] [PubMed]
- Neufeldt, C.J.; Cerikan, B.; Cortese, M.; Frankish, J.; Lee, J.Y.; Plociennikowska, A.; Heigwer, F.; Prasad, V.; Joecks, S.; Burkart, S.S.; et al. SARS-CoV-2 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-kappaB. Commun. Biol. 2022, 5, 45. [Google Scholar]
- Lundstrom, K.; Hromic-Jahjefendic, A.; Bilajac, E.; Aljabali, A.A.A.; Baralic, K.; Sabri, N.A.; Shehata, E.M.; Raslan, M.; Ferreira, A.C.B.H.; Orlandi, L.; et al. COVID-19 signalome: Pathways for SARS-CoV-2 infection and impact on COVID-19 associated comorbidity. Cell. Signal. 2023, 101, 110495. [Google Scholar]
- Premraj, L.; Kannapadi, N.V.; Briggs, J.; Seal, S.M.; Battaglini, D.; Fanning, J.; Suen, J.; Robba, C.; Fraser, J.; Cho, S.M. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: A meta-analysis. J. Neurol. Sci. 2022, 434, 120162. [Google Scholar] [PubMed]
- Xu, E.; Xie, Y.; Al-Aly, Z. Long-term neurologic outcomes of COVID-19. Nat. Med. 2022, 28, 2406–2415. [Google Scholar]
- Braga, J.; Lepra, M.; Kish, S.J.; Rusjan, P.M.; Nasser, Z.; Verhoeff, N.; Vasdev, N.; Bagby, M.; Boileau, I.; Husain, M.I.; et al. Neuroinflammation After COVID-19 With Persistent Depressive and Cognitive Symptoms. JAMA Psychiatry 2023, 80, 787–795. [Google Scholar] [PubMed]
- Maamar, M.; Artime, A.; Pariente, E.; Fierro, P.; Ruiz, Y.; Gutierrez, S.; Tobalina, M.; Diaz-Salazar, S.; Ramos, C.; Olmos, J.M.; et al. Post-COVID-19 syndrome, low-grade inflammation and inflammatory markers: A cross-sectional study. Curr. Med. Res. Opin. 2022, 38, 901–909. [Google Scholar]
- Di Stadio, A.; Bernitsas, E.; La Mantia, I.; Brenner, M.J.; Ralli, M.; Vaira, L.A.; Colizza, A.; Cavaliere, C.; Laudani, M.; Frohman, T.C.; et al. Targeting Neuroinflammation to Alleviate Chronic Olfactory Dysfunction in Long COVID: A Role for Investigating Disease-Modifying Therapy (DMT)? Life 2023, 13, 226. [Google Scholar] [CrossRef]
- Diez-Cirarda, M.; Yus-Fuertes, M.; Sanchez-Sanchez, R.; Gonzalez-Rosa, J.J.; Gonzalez-Escamilla, G.; Gil-Martinez, L.; Delgado-Alonso, C.; Gil-Moreno, M.J.; Valles-Salgado, M.; Cano-Cano, F.; et al. Hippocampal subfield abnormalities and biomarkers of pathologic brain changes: From SARS-CoV-2 acute infection to post-COVID syndrome. EBioMedicine 2023, 94, 104711. [Google Scholar]
- Vints, W.A.J.; Valatkeviciene, K.; Levin, O.; Weerasekera, A.; Jesmanas, S.; Kusleikiene, S.; Cesnaitiene, V.J.; Himmelreich, U.; Verbunt, J.A.; Ratai, E.M.; et al. Hippocampal neurometabolic and structural changes from pre-to post-COVID-19: A case-series study. Magn. Reson. Imaging 2024, 109, 249–255. [Google Scholar] [PubMed]
- Farhadian, S.F.; Reisert, H.D.; McAlpine, L.; Chiarella, J.; Kosana, P.; Yoon, J.; Spudich, S. Self-Reported Neuropsychiatric Post-COVID-19 Condition and CSF Markers of Neuroinflammation. JAMA Netw. Open 2023, 6, e2342741. [Google Scholar]
- Akanchise, T.; Angelova, A. Potential of Nano-Antioxidants and Nanomedicine for Recovery from Neurological Disorders Linked to Long COVID Syndrome. Antioxidants 2023, 12, 393. [Google Scholar] [CrossRef]
- Al-Hakeim, H.K.; Al-Rubaye, H.T.; Al-Hadrawi, D.S.; Almulla, A.F.; Maes, M. Long-COVID post-viral chronic fatigue and affective symptoms are associated with oxidative damage, lowered antioxidant defenses and inflammation: A proof of concept and mechanism study. Mol. Psychiatry 2023, 28, 564–578. [Google Scholar]
- Brown, G.C.; Bal-Price, A. Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol. Neurobiol. 2003, 27, 325–355. [Google Scholar]
- Azargoonjahromi, A. Dual role of nitric oxide in Alzheimer’s disease. Nitric Oxide 2023, 134–135, 23–37. [Google Scholar]
- Radi, R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA 2018, 115, 5839–5848. [Google Scholar] [PubMed]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar]
- Bhusal, A.; Afridi, R.; Lee, W.H.; Suk, K. Bidirectional Communication Between Microglia and Astrocytes in Neuroinflammation. Curr. Neuropharmacol. 2023, 21, 2020–2029. [Google Scholar]
- Liu, L.R.; Liu, J.C.; Bao, J.S.; Bai, Q.Q.; Wang, G.Q. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Front. Immunol. 2020, 11, 1024. [Google Scholar]
- Pang, Q.M.; Chen, S.Y.; Xu, Q.J.; Zhang, M.; Liang, D.F.; Fu, S.P.; Yu, J.; Liu, Z.L.; Zhang, Q.; Zhang, T. Effects of astrocytes and microglia on neuroinflammation after spinal cord injury and related immunomodulatory strategies. Int. Immunopharmacol. 2022, 108, 108754. [Google Scholar] [PubMed]
- Garland, E.F.; Hartnell, I.J.; Boche, D. Microglia and Astrocyte Function and Communication: What Do We Know in Humans? Front. Neurosci. 2022, 16, 824888. [Google Scholar]
- Cobb, C.A.; Cole, M.P. Oxidative and nitrative stress in neurodegeneration. Neurobiol. Dis. 2015, 84, 4–21. [Google Scholar]
- Pocernich, C.B.; Butterfield, D.A. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim. Biophys. Acta 2012, 1822, 625–630. [Google Scholar]
- Schulz, J.B.; Lindenau, J.; Seyfried, J.; Dichgans, J. Glutathione, oxidative stress and neurodegeneration. Eur. J. Biochem. 2000, 267, 4904–4911. [Google Scholar]
- Brown, G.C.; Neher, J.J. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol. Neurobiol. 2010, 41, 242–247. [Google Scholar]
- Teleanu, D.M.; Niculescu, A.-G.; Lungu, I.I.; Radu, C.I.; Vladacenco, O.; Roza, E.; Costachescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [PubMed]
- Thapa, A.; Carroll, N.J. Dietary Modulation of Oxidative Stress in Alzheimer’s Disease. Int. J. Mol. Sci. 2017, 18, 1583. [Google Scholar]
- Welcome, M.O.; Mastorakis, N.E. Neuropathophysiology of coronavirus disease 2019: Neuroinflammation and blood brain barrier disruption are critical pathophysiological processes that contribute to the clinical symptoms of SARS-CoV-2 infection. Inflammopharmacology 2021, 29, 939–963. [Google Scholar]
- Zhang, J.; Hom, K.; Zhang, C.; Nasr, M.; Gerzanich, V.; Zhang, Y.; Tang, Q.; Xue, F.; Simard, J.M.; Zhao, R.Y. SARS-CoV-2 ORF3a Protein as a Therapeutic Target against COVID-19 and Long-Term Post-Infection Effects. Pathogens 2024, 13, 75. [Google Scholar]
- Stufano, A.; Isgro, C.; Palese, L.L.; Caretta, P.; De Maria, L.; Lovreglio, P.; Sardanelli, A.M. Oxidative Damage and Post-COVID Syndrome: A Cross-Sectional Study in a Cohort of Italian Workers. Int. J. Mol. Sci. 2023, 24, 7445. [Google Scholar] [PubMed]
- Vlaming-van Eijk, L.E.; Bulthuis, M.L.C.; van der Gun, B.T.F.; Wold, K.I.; Veloo, A.C.M.; Vincenti Gonzalez, M.F.; de Borst, M.H.; den Dunnen, W.F.A.; Hillebrands, J.L.; van Goor, H.; et al. Systemic oxidative stress associates with the development of post-COVID-19 syndrome in non-hospitalized individuals. Redox Biol. 2024, 76, 103310. [Google Scholar]
- Kell, D.B.; Pretorius, E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: Evidence, mechanisms, and therapeutic implications. Biochem. J. 2022, 479, 1653–1708. [Google Scholar] [PubMed]
- Valavanidis, A.; Vlachogianni, T.; Fiotakis, C. 8-hydroxy-2′-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health 2009, 27, 120–139. [Google Scholar]
- Valavanidis, A.; Vlachogianni, T.; Fiotakis, K. Tobacco smoke: Involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int. J. Environ. Res. Public Health 2009, 6, 445–462. [Google Scholar] [PubMed]
- Krcmova, L.K.; Javorska, L.; Matousova, K.; Smahel, P.; Skala, M.; Kopecky, M.; Suwanvecho, C.; Privratska, N.; Turonova, D.; Melichar, B. Evaluation of inflammatory biomarkers and vitamins in hospitalized patients with SARS-CoV-2 infection and post-COVID syndrome. Clin. Chem. Lab. Med. 2024, 62, 1217–1227. [Google Scholar]
- Horowitz, R.I.; Freeman, P.R. Three novel prevention, diagnostic, and treatment options for COVID-19 urgently necessitating controlled randomized trials. Med. Hypotheses 2020, 143, 109851. [Google Scholar]
- Kankaya, S.; Yavuz, F.; Tari, A.; Aygun, A.B.; Gunes, E.G.; Bektan Kanat, B.; Ulugerger Avci, G.; Yavuzer, H.; Dincer, Y. Glutathione-related antioxidant defence, DNA damage, and DNA repair in patients suffering from post-COVID conditions. Mutagenesis 2023, 38, 216–226. [Google Scholar]
- Semenova, N.; Vyrupaeva, E.; Kolesnikov, S.; Darenskaya, M.; Nikitina, O.; Rychkova, L.; Kolesnikova, L. Persistent Post COVID-19 Endothelial Dysfunction and Oxidative Stress in Women. Pathophysiology 2024, 31, 436–457. [Google Scholar] [CrossRef]
- Kim, D.W.; Lee, K.T.; Kwon, J.; Lee, H.J.; Lee, D.; Mar, W. Neuroprotection against 6-OHDA-induced oxidative stress and apoptosis in SH-SY5Y cells by 5,7-Dihydroxychromone: Activation of the Nrf2/ARE pathway. Life Sci. 2015, 130, 25–30. [Google Scholar]
- Guo, M.; Lu, H.; Qin, J.; Qu, S.; Wang, W.; Guo, Y.; Liao, W.; Song, M.; Chen, J.; Wang, Y. Biochanin A Provides Neuroprotection Against Cerebral Ischemia/Reperfusion Injury by Nrf2-Mediated Inhibition of Oxidative Stress and Inflammation Signaling Pathway in Rats. Med. Sci. Monit. 2019, 25, 8975–8983. [Google Scholar] [PubMed]
- Song, Y.; Wang, L.B.; Bei, Y.; Qin, D.X.; Ai, L.Y.; Ma, Q.Z.; Lin, P.Y. Carvacryl acetate, a semisynthetic monoterpenic ester obtained from essential oils, provides neuroprotection against cerebral ischemia reperfusion-induced oxidative stress injury via the Nrf2 signalling pathway. Food Funct. 2020, 11, 1754–1763. [Google Scholar] [PubMed]
- Kanzaki, H.; Shinohara, F.; Kajiya, M.; Kodama, T. The Keap1/Nrf2 protein axis plays a role in osteoclast differentiation by regulating intracellular reactive oxygen species signaling. J. Biol. Chem. 2013, 288, 23009–23020. [Google Scholar]
- Tu, W.; Wang, H.; Li, S.; Liu, Q.; Sha, H. The Anti-Inflammatory and Anti-Oxidant Mechanisms of the Keap1/Nrf2/ARE Signaling Pathway in Chronic Diseases. Aging Dis. 2019, 10, 637–651. [Google Scholar]
- Ahmed, S.M.U.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Et Biophys. Acta Mol. Basis Dis. 2017, 1863, 585–597. [Google Scholar]
- Yehia, A.; Abulseoud, O.A. Melatonin: A ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration. Mol. Neurodegener. 2024, 19, 36. [Google Scholar]
- Mohamed, M.S.; Johansson, A.; Jonsson, J.; Schioth, H.B. Dissecting the Molecular Mechanisms Surrounding Post-COVID-19 Syndrome and Neurological Features. Int. J. Mol. Sci. 2022, 23, 4275. [Google Scholar]
- Migliore, L.; Coppede, F. Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat. Res. 2009, 674, 73–84. [Google Scholar]
- Clemente-Suarez, V.J.; Redondo-Florez, L.; Beltran-Velasco, A.I.; Ramos-Campo, D.J.; Belinchon-deMiguel, P.; Martinez-Guardado, I.; Dalamitros, A.A.; Yanez-Sepulveda, R.; Martin-Rodriguez, A.; Tornero-Aguilera, J.F. Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities. Biomedicines 2023, 11, 2488. [Google Scholar] [CrossRef]
- Erickson, M.A.; Banks, W.A. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J. Cereb. Blood Flow Metab. 2013, 33, 1500–1513. [Google Scholar]
- Vawter, M.P.; Dillon-Carter, O.; Tourtellotte, W.W.; Carvey, P.; Freed, W.J. TGFbeta1 and TGFbeta2 concentrations are elevated in Parkinson’s disease in ventricular cerebrospinal fluid. Exp. Neurol. 1996, 142, 313–322. [Google Scholar] [PubMed]
- Ebrahimi, M.; Mousavi, S.R.; Toussi, A.G.; Reihani, H.; Bagherian, F. Comparing the Therapeutic Effectiveness of N-acetylcysteine with the Combination of N-acetyl Cysteine and Cimetidine in Acute Acetaminophen Toxicity: A Double-Blinded Clinical Trial. Electron. Physician 2015, 7, 1310–1317. [Google Scholar] [PubMed]
- Chung, Y.C.; Bok, E.; Huh, S.H.; Park, J.Y.; Yoon, S.H.; Kim, S.R.; Kim, Y.S.; Maeng, S.; Park, S.H.; Jin, B.K. Cannabinoid receptor type 1 protects nigrostriatal dopaminergic neurons against MPTP neurotoxicity by inhibiting microglial activation. J. Immunol. 2011, 187, 6508–6517. [Google Scholar] [PubMed]
- Travica, N.; Ried, K.; Sali, A.; Scholey, A.; Hudson, I.; Pipingas, A. Vitamin C Status and Cognitive Function: A Systematic Review. Nutrients 2017, 9, 960. [Google Scholar] [CrossRef]
- Gromova, O.A.; Torshin, I.Y.; Pronin, A.V.; Kilchevsky, M.A. [Synergistic application of zinc and vitamin C to support memory, attention and the reduction of the risk of the neurological diseases]. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova 2017, 117, 112–119. [Google Scholar]
- Man Anh, H.; Linh, D.M.; My Dung, V.; Thi Phuong Thao, D. Evaluating Dose- and Time-Dependent Effects of Vitamin C Treatment on a Parkinson’s Disease Fly Model. Park. Dis. 2019, 2019, 9720546. [Google Scholar]
- Barletta, M.A.; Marino, G.; Spagnolo, B.; Bianchi, F.P.; Falappone, P.C.F.; Spagnolo, L.; Gatti, P. Coenzyme Q10 + alpha lipoic acid for chronic COVID syndrome. Clin. Exp. Med. 2023, 23, 667–678. [Google Scholar]
- Yau, Y.F.; Cheah, I.K.; Mahendran, R.; Tang, R.M.; Chua, R.Y.; Goh, R.E.; Feng, L.; Li, J.; Kua, E.H.; Chen, C.; et al. Investigating the efficacy of ergothioneine to delay cognitive decline in mild cognitively impaired subjects: A pilot study. J. Alzheimer’s Dis. 2024, 102, 841–854. [Google Scholar]
- Uchida, K.; Meno, K.; Korenaga, T.; Liu, S.; Suzuki, H.; Baba, Y.; Tagata, C.; Araki, Y.; Tsunemi, S.; Aso, K.; et al. Effect of matcha green tea on cognitive functions and sleep quality in older adults with cognitive decline: A randomized controlled study over 12 months. PLoS ONE 2024, 19, e0309287. [Google Scholar]
- Borda, M.G.; Barreto, G.E.; Baldera, J.P.; de Lucia, C.; Khalifa, K.; Bergland, A.K.; Pola, I.; Botero-Rodriguez, F.; Siow, R.C.; Kivipelto, M.; et al. A randomized, placebo-controlled trial of purified anthocyanins on cognitive function in individuals at elevated risk for dementia: Analysis of inflammatory biomarkers toward personalized interventions. Exp. Gerontol. 2024, 196, 112569. [Google Scholar]
- Chatzikostopoulos, T.; Gialaouzidis, M.; Koutoupa, A.; Tsolaki, M. The Effects of Pomegranate Seed Oil on Mild Cognitive Impairment. J. Alzheimer’s Dis. 2024, 97, 1961–1970. [Google Scholar]
- Vina, J.; Borras, C.; Mas-Bargues, C. Genistein, A Phytoestrogen, Delays the Transition to Dementia in Prodromal Alzheimer’s Disease Patients. J. Alzheimer’s Dis. 2024, 101, S275–S283. [Google Scholar]
- Navabi, S.M.; Elieh-Ali-Komi, D.; Afshari, D.; Goudarzi, F.; Mohammadi-Noori, E.; Heydari, K.; Heydarpour, F.; Kiani, A. Adjunctive silymarin supplementation and its effects on disease severity, oxidative stress, and inflammation in patients with Alzheimer’s disease. Nutr. Neurosci. 2024, 27, 1077–1087. [Google Scholar] [PubMed]
- Choi, W.Y.; Lee, W.K.; Kim, T.H.; Ryu, Y.K.; Park, A.; Lee, Y.J.; Heo, S.J.; Oh, C.; Chung, Y.C.; Kang, D.H. The Effects of Spirulina maxima Extract on Memory Improvement in Those with Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2022, 14, 3714. [Google Scholar] [PubMed]
- Ghiasian, M.; Nafisi, H.; Ranjbar, A.; Mohammadi, Y.; Ataei, S. Antioxidative effects of silymarin on the reduction of liver complications of fingolimod in patients with relapsing-remitting multiple sclerosis: A clinical trial study. J. Biochem. Mol. Toxicol. 2021, 35, e22800. [Google Scholar]
- Jallouli, S.; Jallouli, D.; Damak, M.; Sakka, S.; Ghroubi, S.; Mhiri, C.; Driss, T.; de Marco, G.; Ayadi, F.; Hammouda, O. 12-week melatonin intake attenuates cardiac autonomic dysfunction and oxidative stress in multiple sclerosis patients: A randomized controlled trial. Metab. Brain Dis. 2024, 40, 52. [Google Scholar]
- Kouchaki, E.; Rafiei, H.; Ghaderi, A.; Azadchehr, M.J.; Safa, F.; Omidian, K.; Khodabakhshi, A.; Vahid, F.; Rezapoor-Kafteroodi, B.; Banafshe, H.R.; et al. Effects of crocin on inflammatory biomarkers and mental health status in patients with multiple sclerosis: A randomized, double-blinded clinical trial. Mult. Scler. Relat. Disord. 2024, 83, 105454. [Google Scholar]
- Hajiluian, G.; Karegar, S.J.; Shidfar, F.; Aryaeian, N.; Salehi, M.; Lotfi, T.; Farhangnia, P.; Heshmati, J.; Delbandi, A.A. The effects of Ellagic acid supplementation on neurotrophic, inflammation, and oxidative stress factors, and indoleamine 2, 3-dioxygenase gene expression in multiple sclerosis patients with mild to moderate depressive symptoms: A randomized, triple-blind, placebo-controlled trial. Phytomedicine 2023, 121, 155094. [Google Scholar]
- Krysko, K.M.; Bischof, A.; Nourbakhsh, B.; Henry, R.G.; Revirajan, N.; Manguinao, M.; Nguyen, K.; Akula, A.; Li, Y.; Waubant, E. A pilot study of oxidative pathways in MS fatigue: Randomized trial of N-acetyl cysteine. Ann. Clin. Transl. Neurol. 2021, 8, 811–824. [Google Scholar]
- Mohammad Soleymani, S.; Assarzadegan, F.; Habibi, S.A.H.; Mahboubi, A.; Esmaily, H. The effect of crocin on movement disorders and oxidative DNA damage in Parkinson’s disease: Insights from a randomized controlled trial. Park. Relat. Disord. 2024, 126, 107051. [Google Scholar]
- Zali, A.; Hajyani, S.; Salari, M.; Tajabadi-Ebrahimi, M.; Mortazavian, A.M.; Pakpour, B. Co-administration of probiotics and vitamin D reduced disease severity and complications in patients with Parkinson’s disease: A randomized controlled clinical trial. Psychopharmacology 2024, 241, 1905–1914. [Google Scholar]
- Pantzaris, M.; Loukaides, G.; Paraskevis, D.; Kostaki, E.G.; Patrikios, I. Neuroaspis PLP10, a nutritional formula rich in omega-3 and omega-6 fatty acids with antioxidant vitamins including gamma-tocopherol in early Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin. Neurol. Neurosurg. 2021, 210, 106954. [Google Scholar]
- Aristotelous, P.; Stefanakis, M.; Pantzaris, M.; Pattichis, C.S.; Calder, P.C.; Patrikios, I.S.; Sakkas, G.K.; Giannaki, C.D. The Effects of Specific Omega-3 and Omega-6 Polyunsaturated Fatty Acids and Antioxidant Vitamins on Gait and Functional Capacity Parameters in Patients with Relapsing-Remitting Multiple Sclerosis. Nutrients 2021, 13, 3661. [Google Scholar] [CrossRef] [PubMed]
- Petrou, P.; Ginzberg, A.; Binyamin, O.; Karussis, D. Beneficial effects of a nano formulation of pomegranate seed oil, GranaGard, on the cognitive function of multiple sclerosis patients. Mult. Scler. Relat. Disord. 2021, 54, 103103. [Google Scholar] [PubMed]
- Anti-Oxidant Treatment of Alzheimer’s Disease. Available online: https://clinicaltrials.gov/study/NCT00117403?term=NCT00117403&rank=1 (accessed on 11 May 2025).
- The Effect of Black Mulberry (Morus Nigra) Consumption on Cognitive Functions. Available online: https://clinicaltrials.gov/study/NCT05406648?term=NCT05406648&rank=1 (accessed on 11 May 2025).
- ASURE: Alzheimer Study Using oRal Edaravone. Available online: https://clinicaltrials.gov/study/NCT05323812?term=NCT05323812&rank=1 (accessed on 11 May 2025).
- Causal Effect of Coenzyme Q10 Nutrition and Cognitive Dysfunction in the Metabolic Storm (Hyperglycemia and Sarcopenia) and Brain-Derived Neurotrophic Factor. Available online: https://clinicaltrials.gov/study/NCT06040905?term=NCT06040905&rank=1 (accessed on 11 May 2025).
- A Randomised Controlled Trial, of N-Acetyl Cysteine (NAC), for Premanifest Huntingtin Gene Expansion Carriers (NAC-preHD). Available online: https://clinicaltrials.gov/study/NCT05509153?term=NCT05509153&rank=1 (accessed on 11 May 2025).
- Neuroprotection With N-acetyl Cysteine for Patients With Progressive Multiple Sclerosis (NACPMS). Available online: https://clinicaltrials.gov/study/NCT05122559?term=NCT05122559&rank=1 (accessed on 11 May 2025).
- Pezzini, A.; Padovani, A. Lifting the mask on neurological manifestations of COVID-19. Nat. Rev. Neurol. 2020, 16, 636–644. [Google Scholar]
- Chowdhury, B.; Sharma, A.; Satarker, S.; Mudgal, J.; Nampoothiri, M. Dialogue between Neuroinflammation and Neurodegenerative Diseases in COVID-19. J. Environ. Pathol. Toxicol. Oncol. 2021, 40, 37–49. [Google Scholar] [PubMed]
- Gomez-Rial, J.; Rivero-Calle, I.; Salas, A.; Martinon-Torres, F. Role of Monocytes/Macrophages in Covid-19 Pathogenesis: Implications for Therapy. Infect. Drug Resist. 2020, 13, 2485–2493. [Google Scholar]
- Zambrano, K.; Castillo, K.; Penaherrera, S.; Vasconez, H.C.; Caicedo, A.; Gavilanes, A.W.D. Understanding Post-COVID-19: Mechanisms, Neurological Complications, Current Treatments, and Emerging Therapies. Int. J. Gen. Med. 2024, 17, 6303–6321. [Google Scholar]
- Liu, Y.; Du, X.; Chen, J.; Jin, Y.; Peng, L.; Wang, H.H.X.; Luo, M.; Chen, L.; Zhao, Y. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J. Infect. 2020, 81, e6–e12. [Google Scholar]
- Zhang, B.; Zhou, X.; Zhu, C.; Song, Y.; Feng, F.; Qiu, Y.; Feng, J.; Jia, Q.; Song, Q.; Zhu, B.; et al. Immune Phenotyping Based on the Neutrophil-to-Lymphocyte Ratio and IgG Level Predicts Disease Severity and Outcome for Patients With COVID-19. Front. Mol. Biosci. 2020, 7, 157. [Google Scholar]
- Olagnier, D.; Farahani, E.; Thyrsted, J.; Blay-Cadanet, J.; Herengt, A.; Idorn, M.; Hait, A.; Hernaez, B.; Knudsen, A.; Iversen, M.B.; et al. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat. Commun. 2020, 11, 4938, Corrected in Nat. Commun. 2020, 11, 5419. [Google Scholar] [PubMed]
- Sukocheva, O.A.; Maksoud, R.; Beeraka, N.M.; Madhunapantula, S.V.; Sinelnikov, M.; Nikolenko, V.N.; Neganova, M.E.; Klochkov, S.G.; Amjad Kamal, M.; Staines, D.R.; et al. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndrome. J. Adv. Res. 2022, 40, 179–196. [Google Scholar] [PubMed]
- Bonaventura, A.; Vecchie, A.; Dagna, L.; Martinod, K.; Dixon, D.L.; Van Tassell, B.W.; Dentali, F.; Montecucco, F.; Massberg, S.; Levi, M.; et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 2021, 21, 319–329. [Google Scholar] [PubMed]
- Nazerian, Y.; Ghasemi, M.; Yassaghi, Y.; Nazerian, A.; Hashemi, S.M. Role of SARS-CoV-2-induced cytokine storm in multi-organ failure: Molecular pathways and potential therapeutic options. Int. Immunopharmacol. 2022, 113, 109428. [Google Scholar]
- Muhammad, Y.; Kani, Y.A.; Iliya, S.; Muhammad, J.B.; Binji, A.; El-Fulaty Ahmad, A.; Kabir, M.B.; Umar Bindawa, K.; Ahmed, A. Deficiency of antioxidants and increased oxidative stress in COVID-19 patients: A cross-sectional comparative study in Jigawa, Northwestern Nigeria. SAGE Open Med. 2021, 9, 2050312121991246. [Google Scholar]
- Turton, N.; Millichap, L.; Hargreaves, I.P. Potential Biomarkers of Mitochondrial Dysfunction Associated with COVID-19 Infection. Adv. Exp. Med. Biol. 2023, 1412, 211–224. [Google Scholar]
- Hanson, B.A.; Visvabharathy, L.; Orban, Z.S.; Jimenez, M.; Batra, A.; Liotta, E.M.; DeLisle, R.K.; Klausner, J.D.; Cohen, P.; Padhye, A.S.; et al. Plasma proteomics show altered inflammatory and mitochondrial proteins in patients with neurologic symptoms of post-acute sequelae of SARS-CoV-2 infection. Brain Behav. Immun. 2023, 114, 462–474. [Google Scholar]
- Siekacz, K.; Kumor-Kisielewska, A.; Milkowska-Dymanowska, J.; Pietrusinska, M.; Bartczak, K.; Majewski, S.; Stanczyk, A.; Piotrowski, W.J.; Bialas, A.J. Oxidative Biomarkers Associated with the Pulmonary Manifestation of Post-COVID-19 Complications. J. Clin. Med. 2023, 12, 4253. [Google Scholar]
- Skesters, A.; Lece, A.; Kustovs, D.; Zolovs, M. Selenium Status and Oxidative Stress in SARS-CoV-2 Patients. Medicina 2023, 59, 527. [Google Scholar]
- Karim, A.; Muhammad, T.; Iqbal, M.S.; Qaisar, R. Elevated plasma CAF22 are incompletely restored six months after COVID-19 infection in older men. Exp. Gerontol. 2023, 171, 112034. [Google Scholar]
- Ernst, T.; Ryan, M.C.; Liang, H.J.; Wang, J.P.; Cunningham, E.; Saleh, M.G.; Kottilil, S.; Chang, L. Neuronal and Glial Metabolite Abnormalities in Participants With Persistent Neuropsychiatric Symptoms After COVID-19: A Brain Proton Magnetic Resonance Spectroscopy Study. J. Infect. Dis. 2023, 228, 1559–1570. [Google Scholar] [PubMed]
- Di Stadio, A.; D’Ascanio, L.; Vaira, L.A.; Cantone, E.; De Luca, P.; Cingolani, C.; Motta, G.; De Riu, G.; Vitelli, F.; Spriano, G.; et al. Ultramicronized Palmitoylethanolamide and Luteolin Supplement Combined with Olfactory Training to Treat Post-COVID-19 Olfactory Impairment: A Multi-Center Double-Blinded Randomized Placebo- Controlled Clinical Trial. Curr. Neuropharmacol. 2022, 20, 2001–2012. [Google Scholar] [PubMed]
- Versace, V.; Ortelli, P.; Dezi, S.; Ferrazzoli, D.; Alibardi, A.; Bonini, I.; Engl, M.; Maestri, R.; Assogna, M.; Ajello, V.; et al. Co-ultramicronized palmitoylethanolamide/luteolin normalizes GABA(B)-ergic activity and cortical plasticity in long COVID-19 syndrome. Clin. Neurophysiol. 2023, 145, 81–88. [Google Scholar]
- Tosato, M.; Calvani, R.; Picca, A.; Ciciarello, F.; Galluzzo, V.; Coelho-Junior, H.J.; Di Giorgio, A.; Di Mario, C.; Gervasoni, J.; Gremese, E.; et al. Effects of l-Arginine Plus Vitamin C Supplementation on Physical Performance, Endothelial Function, and Persistent Fatigue in Adults with Long COVID: A Single-Blind Randomized Controlled Trial. Nutrients 2022, 14, 4984. [Google Scholar] [PubMed]
- Noce, A.; Marrone, G.; Di Lauro, M.; Vita, C.; Montalto, G.; Giorgino, G.; Chiaramonte, C.; D’Agostini, C.; Bernardini, S.; Pieri, M. Potential Anti-Inflammatory and Anti-Fatigue Effects of an Oral Food Supplement in Long COVID Patients. Pharmaceuticals 2024, 17, 463. [Google Scholar]
- Charoenporn, V.; Tungsukruthai, P.; Teacharushatakit, P.; Hanvivattanakul, S.; Sriyakul, K.; Sukprasert, S.; Kamalashiran, C.; Tungsukruthai, S.; Charernboon, T. Effects of an 8-week high-dose vitamin D supplementation on fatigue and neuropsychiatric manifestations in post-COVID syndrome: A randomized controlled trial. Psychiatry Clin. Neurosci. 2024, 78, 595–604. [Google Scholar]
- Hansen, K.S.; Mogensen, T.H.; Agergaard, J.; Schiottz-Christensen, B.; Ostergaard, L.; Vibholm, L.K.; Leth, S. High-dose coenzyme Q10 therapy versus placebo in patients with post COVID-19 condition: A randomized, phase 2, crossover trial. Lancet Reg. Health Eur. 2023, 24, 100539. [Google Scholar]
- Cash, A.; Kaufman, D.L. Oxaloacetate Treatment For Mental And Physical Fatigue In Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Long-COVID fatigue patients: A non-randomized controlled clinical trial. J. Transl. Med. 2022, 20, 295. [Google Scholar]
- Kharaeva, Z.; Shokarova, A.; Shomakhova, Z.; Ibragimova, G.; Trakhtman, P.; Trakhtman, I.; Chung, J.; Mayer, W.; De Luca, C.; Korkina, L. Fermented Carica papaya and Morinda citrifolia as Perspective Food Supplements for the Treatment of Post-COVID Symptoms: Randomized Placebo-Controlled Clinical Laboratory Study. Nutrients 2022, 14, 2203. [Google Scholar]
- Pozdnyakova, D.D.; Bakhareva, T.A.; Baranova, I.A.; Selemir, V.D.; Chuchalin, A.G. [Rehabilitation program of post-COVID-19 syndrome with the use of nitric oxide and molecular hydrogen]. Ter. Arkhiv 2024, 96, 260–265. [Google Scholar]
- Naureen, Z.; Dautaj, A.; Nodari, S.; Fioretti, F.; Dhuli, K.; Anpilogov, K.; Lorusso, L.; Paolacci, S.; Michelini, S.; Guda, T.; et al. Proposal of a food supplement for the management of post-COVID syndrome. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 67–73. [Google Scholar] [PubMed]
- Joung, J.Y.; Lee, J.S.; Choi, Y.; Kim, Y.J.; Oh, H.M.; Seo, H.S.; Son, C.G. Evaluating myelophil, a 30% ethanol extract of Astragalus membranaceus and Salvia miltiorrhiza, for alleviating fatigue in long COVID: A real-world observational study. Front. Pharmacol. 2024, 15, 1394810. [Google Scholar]
- Kim, T.-H.; Yoon, J.; Kim, S.; Kang, B.-K.; Kang, J.W.; Kwon, S. Herbal Medicines for Long COVID: A Phase 2 Pilot Clinical Study. Heliyon 2024, 10, e37920. [Google Scholar] [PubMed]
- Satoh, T.; Trudler, D.; Oh, C.K.; Lipton, S.A. Potential Therapeutic Use of the Rosemary Diterpene Carnosic Acid for Alzheimer’s Disease, Parkinson’s Disease, and Long-COVID through NRF2 Activation to Counteract the NLRP3 Inflammasome. Antioxidants 2022, 11, 124. [Google Scholar]
- Hussain, A.; Kausar, T.; Sehar, S.; Sarwar, A.; Ashraf, A.H.; Jamil, M.A.; Noreen, S.; Rafique, A.; Iftikhar, K.; Aslam, J.; et al. Utilization of pumpkin, pumpkin powders, extracts, isolates, purified bioactives and pumpkin based functional food products: A key strategy to improve health in current post COVID 19 period: An updated review. Appl. Food Res. 2022, 2, 100241. [Google Scholar]
- Pakkir Maideen, N.M.; Hassan Jumale, A.; Ramadan Barakat, I.; Khalifa Albasti, A. Potential of Black Seeds (Nigella sativa) in the Management of Long COVID or Post-acute Sequelae of COVID-19 (PASC) and Persistent COVID-19 Symptoms—An Insight. Infect. Disord. Drug Targets 2023, 23, e230223213955. [Google Scholar] [PubMed]
- Clinical Tryals.gov. Feasibility of Cannabidiol for the Treatment of Long COVID. Available online: https://clinicaltrials.gov/study/NCT04997395?term=Feasibility%20of%20Cannabidiol%20for%20the%20Treatment%20of%20Long%20COVID&rank=1 (accessed on 16 December 2024).
- Clinical Tryals.gov. Effects of PEA-LUT on Frontal Lobe Functions and GABAergic Transmission in Long-COVID Patients (PL-PC19). Available online: https://clinicaltrials.gov/study/NCT05311852?term=NCT05311852&rank=1 (accessed on 16 December 2024).
- Clinical Tryals.gov. Clinical Trial of Niagen to Examine Recovery in People with Persistent Cognitive and Physical Symptoms After COVID-19 Illness (Long-COVID). Available online: https://clinicaltrials.gov/study/NCT04809974 (accessed on 16 December 2024).
- Clinical Tryals.gov. Pilot Study Into LDN and NAD+ for Treatment of Patients with Post-COVID-19 Syndrome. Available online: https://clinicaltrials.gov/study/NCT04604704 (accessed on 16 December 2024).
- Clinical Tryals.gov. Feasibility Pilot Clinical Trial of Omega-3 Supplement vs. Placebo for Post COVID-19 Recovery Among Health Care Workers. Available online: https://clinicaltrials.gov/study/NCT05121766 (accessed on 16 December 2024).
- Clinical Tryals.gov. Evaluation of Treatment with Viusid in Post-COVID-19 Syndrome. Available online: https://clinicaltrials.gov/study/NCT06437210?term=NCT06437210&rank=1 (accessed on 16 December 2024).
- Clinical Tryals.gov. COVID-19 Sequelae: Treatment and Monitoring. A Dietary Supplement Based on Sea Urchin Eggs with Echinochroma A. Available online: https://clinicaltrials.gov/study/NCT05531019?term=NCT05531019&rank=1 (accessed on 16 December 2024).
- Clinical Tryals.gov. Use of 1-MNA to Improve Exercise Tolerance and Fatigue in Patients After COVID-19. Available online: https://clinicaltrials.gov/study/NCT04961476?term=NCT04961476&rank=1 (accessed on 16 December 2024).
- Clinical Tryals.gov. Olfactory Disfunction and Co-ultraPEALut. Available online: https://clinicaltrials.gov/study/NCT04853836?term=NCT04853836&rank=1 (accessed on 17 December 2024).
- Clinical Tryals.gov. Examining the Function of Cs4 on Post-COVID-19 Disorders. Available online: https://clinicaltrials.gov/study/NCT06054438?term=NCT06054438&rank=1 (accessed on 15 December 2024).
- Bigman, G.; Rusu, M.E.; Shelawala, N.; Sorkin, J.D.; Beamer, B.A.; Ryan, A.S. A Comprehensive Scoping Review on Diet and Nutrition in Relation to Long COVID-19 Symptoms and Recovery. Nutrients 2025, 17, 1802. [Google Scholar] [CrossRef]
- Jebrini, T.; Stubbe, H.C.; Ruzicka, M.; Adorjan, K. Neurocognitive challenges Post-COVID: Current perspectives and future solutions. Eur. Arch. Psychiatry Clin. Neurosci. 2025, 275, 1–3. [Google Scholar]
- Tenorio, M.C.D.S.; Graciliano, N.G.; Moura, F.A.; de Oliveira, A.C.M.; Goulart, M.O.F. N-Acetylcysteine (NAC): Impacts on Human Health. Antioxidants 2021, 10, 967. [Google Scholar] [CrossRef]
- Dietz, T.K.; Brondstater, K.N. Long COVID management: A mini review of current recommendations and underutilized modalities. Front. Med. 2024, 11, 1430444. [Google Scholar]
- Yotsuyanagi, H.; Ohmagari, N.; Doi, Y.; Yamato, M.; Fukushi, A.; Imamura, T.; Sakaguchi, H.; Sonoyama, T.; Sanaki, T.; Ichihashi, G.; et al. Prevention of post COVID-19 condition by early treatment with ensitrelvir in the phase 3 SCORPIO-SR trial. Antivir. Res. 2024, 229, 105958. [Google Scholar]
- Chen, L.Z.; Cai, Q.; Zheng, P.F. Mitochondrial metabolic rescue in post-COVID-19 syndrome: MR spectroscopy insights and precision nutritional therapeutics. Front. Immunol. 2025, 16, 1597370. [Google Scholar]
- Mokhtari, V.; Afsharian, P.; Shahhoseini, M.; Kalantar, S.M.; Moini, A. A Review on Various Uses of N-Acetyl Cysteine. Cell J. 2017, 19, 11–17. [Google Scholar]
- Millea, P.J. N-acetylcysteine: Multiple clinical applications. Am. Fam. Physician 2009, 80, 265–269. [Google Scholar]
- Bansal, R.K.; Tyagi, P.; Sharma, P.; Singla, V.; Arora, V.; Bansal, N.; Kumar, A.; Arora, A. Iatrogenic hypervitaminosis D as an unusual cause of persistent vomiting: A case report. J. Med. Case Rep. 2014, 8, 74. [Google Scholar] [PubMed]
- Tebben, P.J.; Singh, R.J.; Kumar, R. Vitamin D-Mediated Hypercalcemia: Mechanisms, Diagnosis, and Treatment. Endocr. Rev. 2016, 37, 521–547. [Google Scholar] [PubMed]
- Chandimali, N.; Bak, S.G.; Park, E.H.; Lim, H.J.; Won, Y.S.; Kim, E.K.; Park, S.I.; Lee, S.J. Free radicals and their impact on health and antioxidant defenses: A review. Cell Death Discov. 2025, 11, 19. [Google Scholar]
- Dzah, C.; Zhang, H.; Gobe, V.; Asante-Donyinah, D.; Duan, Y. Anti- and pro-oxidant properties of polyphenols and their role in modulating glutathione synthesis, activity and cellular redox potential: Potential synergies for disease management. Adv. Redox Res. 2024, 11, 100099. [Google Scholar]
- Morris, G.; Gevezova, M.; Sarafian, V.; Maes, M. Redox regulation of the immune response. Cell. Mol. Immunol. 2022, 19, 1079–1101. [Google Scholar]
- Pedre, B.; Barayeu, U.; Ezerina, D.; Dick, T.P. The mechanism of action of N-acetylcysteine (NAC): The emerging role of H(2)S and sulfane sulfur species. Pharmacol. Ther. 2021, 228, 107916. [Google Scholar]
- Robien, K.; Oppeneer, S.J.; Kelly, J.A.; Hamilton-Reeves, J.M. Drug-vitamin D interactions: A systematic review of the literature. Nutr. Clin. Pract. 2013, 28, 194–208. [Google Scholar] [PubMed]
Protocol Name | Study Information | Intervention | Neurological Condition PCC Associated Under Evaluation. | Results |
---|---|---|---|---|
Magnesium and Vitamin D Combination for Post-COVID Syndrome. NCT05630339 [175] | Interventional double-blinded randomized parallel assignment placebo-controlled study. Double masking. Phase Not applicable Sponsor: Coordinación de Investigación en Salud, Mexico State: Completed N = 150 | Magnesium chloride: 650 mg capsule containing 340 mg magnesium chloride to be taken twice daily with food. Vitamin D: 4000 IU vitamin D tablets, one tablet administered at bedtime. | Fatigue, anxiety, depression for 4 months. | No results posted |
Feasibility Study of Cannabidiol for the Treatment of Long COVID. NCT04997395 [175] | Interventional Single group assignment. Without masking Phase 2 Sponsor: Bod Australia State: Completed N = 12 | The treatment consists of cannabidiol (CBD) (MediCabilis 5%) administration. The first 2 weeks at a dose of 1 mL twice daily (total dose 2 mL = 100 mg CBD and 4 mg of tetrahydrocannabinol, THC). There will be an option to further increase the dose up to a total dose of 3 mL per day (150 mg CBD and 6 mg THC) at the one-month follow-up visit. | Fatigue, pain, anxiety, depression, sleep quality for 20 weeks. | No results posted |
Effects of PEA-LUT on Frontal Lobe Functions and GABAergic Transmission in Long-COVID Patients (PL-PC19). NCT05311852 [176] | Interventional double-blinded randomized parallel assignment placebo-controlled study. Double Masking. Phase not applicable Sponsor: Hospital of Vipiteno, Sterzing, Italy State: Completed N = 34 | Granulated PEA-LUT dosage will be 700/70 mg 2 times/day. | GABA-ergic neurotransmission, synaptic plasticity, cognition, and fatigue for 8 weeks. | No results posted |
Clinical Trial of Niagen to Examine Recovery in People With Persistent Cognitive and Physical Symptoms After COVID-19 Illness (Long-COVID). NCT04809974 [177] | Interventional double-blinded randomized parallel assignment placebo-controlled study. Quadruple masking. Phase 4 Sponsor: Clinical Translational Unit Research, USA State: Completed N = 37 (intervention) N = 21 (placebo) | Participants will take 2 g of Niagen (vitamin B3) capsules daily. | Cognitive functioning, depression and anxiety for 22 weeks. | The patients showed improvement in memory, attention, language and visuospatial functioning and an improved fatigue, depression and anxiety. Some patients possibly or definitively showed adverse effects: bruising on legs (1), nausea (5), heartburn/reflux (4), cold sweats (1) constipation (1), gastrointestinal discomfort (5) joint aching (1), finger stiffness (1), muscle cramps (1), headaches (3), dizziness and vertigo (3), needle prick sensations (1), worsening sleep (1), rash (2), acne (1), dry skin (1), skin rashes (1) and flushing/facial flushing (2). The authors acknowledged the small sample size, COVID-19 infection status was based on self-report and only inclusion of individuals experiencing brain fog as limitations of the study. |
Pilot Study Into LDN and NAD+ for Treatment of Patients with Post-COVID-19 Syndrome. NCT04604704 [178] | Interventional single group assignment. Without masking (open label) Phase 2 Sponsor: AgelessRx State: Completed N = 36 | Low Dose Naltrexone (LDN) will be used at a dosage of 4.5 mg/day, which will be taken orally as tablets. NAD+ will be administered using the IontoPatch iontophoresis patch containing 400 mg of nicotinamide adenine dinucleotide (NAD+) solution, which is worn on the skin once a week for 4–6 h. | Fatigue and quality of life for 12 weeks. | The patients showed improvement in fatigue symptoms and in physical and mental health. Patients showed skin irritation (11 cases) as an adverse effect. |
Feasibility Pilot Clinical Trial of Omega-3 Supplement vs. Placebo for Post-COVID-19 Recovery Among Health Care Workers. NCT05121766 [179] | Interventional randomized parallel assignment placebo-controlled. Quadruple Masking Phase 1 Sponsor: Hackensack Meridian Health State: Terminated N = 7 (intervention) N = 10 (Placebo) | Omega-3 (Eicosapentaenoic acid, EPA + docosahexaenoic acid, DHA)—Dose is 2100 mg per day via 3 mini-capsules, 2×/day (a total of 6 mini-capsules per day). Each capsule contains 252 mg of EPA and 102 mg of DHA. | Fatigue, anosmia and ageusia for 12 weeks. | The patients did not show improvement in fatigue, anosmia and ageusia. Only one patient showed excessive fatigue as adverse effect. |
Evaluation of Treatment with Viusid in Post-COVID-19 Syndrome. NCT06437210 [180] | Interventional randomized single group assignment. Quadruple masking. Phase not applicable Sponsor: Catalysis SL Status: Completed N = 200 | Oral administration of Viusid, a nutritional supplement containing ascorbic acid, zinc and glycyrrhizic acid, oral solution 30 mL 3 times daily with meals (breakfast, lunch, and dinner). | Fatigue, pain, insomnia, depression, anxiety, headache, anosmia and ageusia for 30 days. | No results posted |
COVID-19 Sequelae: Treatment and Monitoring. A Dietary Supplement Based on Sea Urchin Eggs With Echinochroma A. NCT05531019 [181] | Interventional blinded randomized parallel assignment placebo-controlled study. Quadruple masking Phase no applicable Sponsor: Fernando Saldarini, Hospital Donación Francisco Santojanni Status: Completed N = 54 | Dietary supplementation with 0.025% Echinochrome A (ingested 3 mL twice daily) and 1.5 mg daily consumption of sea urchin egg extract (Arbacia dufresnii). | Headache, sleep disorders, dysgeusia, myalgia, arthralgia, sleep quality, fatigue, change in emotions, anxiety and depression for 90 days. | No results posted |
Use of 1-MNA to Improve Exercise Tolerance and Fatigue in Patients After COVID-19. NCT04961476 [182] | Observational and prospective Phase not applicable Sponsor: Medical Center, Saint Family Hospital, Poland Status: Completed N = 50 | 1-Methylnicotinamide (1-MNA) supplementation. | Fatigue for 1 month. | No results posted |
Olfactory Disfunction and Co-ultraPEALut. NCT04853836 [183] | Interventional double-blinded randomized parallel assignment placebo-controlled study. Double masking Phase 4 Sponsor: Arianna Di Stadio, University of Perugia Status: Completed N = 200 | co-ultraPEALut (Glialia®, 700 PEA + 70 Luteolin) 1 sachet daily. | Parosmia for 90 days. | No results posted |
Examining the Function of Cs-4 on Post-COVID-19 Disorders. NCT06054438 [184] | Interventional randomized crossover assignment. Without masking (open label) Phase not applicable Sponsor: Status: Completed N = 110 | Participants will take one capsule (0.4 g) of the Chinese medicine nutritional supplement fermented by Cordyceps 4 times a day. | Insomnia, fatigue, anxiety and depression for 12 weeks. | No results posted |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cárdenas-Rodríguez, N.; Ignacio-Mejía, I.; Mejía-Barradas, C.M.; Ortega-Cuellar, D.; Muñoz-González, F.; Vargas-Hernández, M.A.; Albores-Méndez, E.M.; Ibáñez-Cervantes, G.; Medina-Santillán, R.; Hernández-Ortiz, A.; et al. Post-COVID Condition and Neuroinflammation: Possible Management with Antioxidants. Antioxidants 2025, 14, 840. https://doi.org/10.3390/antiox14070840
Cárdenas-Rodríguez N, Ignacio-Mejía I, Mejía-Barradas CM, Ortega-Cuellar D, Muñoz-González F, Vargas-Hernández MA, Albores-Méndez EM, Ibáñez-Cervantes G, Medina-Santillán R, Hernández-Ortiz A, et al. Post-COVID Condition and Neuroinflammation: Possible Management with Antioxidants. Antioxidants. 2025; 14(7):840. https://doi.org/10.3390/antiox14070840
Chicago/Turabian StyleCárdenas-Rodríguez, Noemí, Iván Ignacio-Mejía, César Miguel Mejía-Barradas, Daniel Ortega-Cuellar, Felipe Muñoz-González, Marco Antonio Vargas-Hernández, Exsal Manuel Albores-Méndez, Gabriela Ibáñez-Cervantes, Roberto Medina-Santillán, Aarón Hernández-Ortiz, and et al. 2025. "Post-COVID Condition and Neuroinflammation: Possible Management with Antioxidants" Antioxidants 14, no. 7: 840. https://doi.org/10.3390/antiox14070840
APA StyleCárdenas-Rodríguez, N., Ignacio-Mejía, I., Mejía-Barradas, C. M., Ortega-Cuellar, D., Muñoz-González, F., Vargas-Hernández, M. A., Albores-Méndez, E. M., Ibáñez-Cervantes, G., Medina-Santillán, R., Hernández-Ortiz, A., Herrera-López, E., & Bandala, C. (2025). Post-COVID Condition and Neuroinflammation: Possible Management with Antioxidants. Antioxidants, 14(7), 840. https://doi.org/10.3390/antiox14070840