Assessing Mangrove Forest Recovery in the British Virgin Islands After Hurricanes Irma and Maria with Sentinel-2 Imagery and Google Earth Engine
Abstract
1. Introduction
1.1. Background
1.2. Objectives
- Determine if remotely sensed Sentinel-2 imagery-derived NDVI and MSIs can be calculated to measure mangrove forest health in the BVI.
- Determine if a time series of remotely sensed Sentinel-2 imagery-derived NDVI and MSIs can be used to measure mangrove forest health recovery in the BVI following the 2017 hurricanes Irma and Maria through 2023.
- Determine if mangrove forest health recovery varies by island and by mangrove forest patch throughout the BVI.
- Assess if mangrove forest health recovery may be a function of a variety of mangrove geospatial, environmental, and human-induced drivers.
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.3. Data Assessment of Forest Health Indexes
2.4. Forest Health Index Validation
2.5. Quantitative Analysis
3. Results
3.1. Results of Calculated Vegetation Health Indexes by Island
3.2. Results of Vegetation Health Recovery by Island and Forest Patch
3.3. Results of Forest Health Index Change Validation
3.4. Results of Quantitative Analysis
4. Discussion
4.1. Remotely Sensed Health Indexes for Mapping Mangrove Forest Health
4.2. Remotely Sensed Health Indexes for Measuring Mangrove Forest Health Recovery
4.3. Remotely Sensed Health Indexes and Variation in Mangrove Forest Health Recovery by Island and Polygon Patch
4.4. Mangrove Forest Health Recovery as a Function of Geospatial, Environmental, and Human-Induced Drivers
4.5. Management Implications of Research Results
4.6. Future Research Directions and Improvements
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AIC | Akaike Information Criterion |
ANCOVA | Analysis of Covariance |
BVI | British Virgin Islands |
CIR | Color Infrared |
ESA | European Space Agency |
GEE | Google Earth Engine |
MSI | Moisture Stress Index |
NDVI | Normalized Difference Vegetation Index |
SR | Surface Reflectance |
TOA | Top of Atmosphere |
References
- Gore, S.; Wynne, S.P.; Myers, A. UK Overseas Territories in the Northeast Caribbean: Anguilla, British Virgin Islands, Montserrat. In World Seas: An Environmental Evaluation; Academic Press: Cambridge, MA, USA, 2019; pp. 549–565. [Google Scholar] [CrossRef]
- Polidoro, B.A.; Carpenter, K.E.; Collins, L.; Duke, N.C.; Ellison, A.M.; Ellison, J.C.; Farnsworth, E.J. The loss of species: Mangrove extinction risk and geographic areas of global concern. PLoS ONE 2010, 5, e10095. [Google Scholar] [CrossRef] [PubMed]
- Primack, R.B.; Tomlinson, P.B. Variation in tropical forest breeding systems. Biotropica 1980, 12, 229–231. [Google Scholar] [CrossRef]
- Government of the Virgin Islands. Mangrove Brochure: Mangroves of the Virgin Islands (British); Conservation & Fisheries Department: Road Town, Tortola, 1 January 2015. Available online: https://bvi.gov.vg/content/mangroves-virgin-islands-british (accessed on 13 September 2024).
- Zhang, K.; Liu, H.; Li, Y.; Xu, H.; Shen, J.; Rhome, J.; Smith, T.J., III. The role of mangroves in attenuating storm surges. Estuar. Coast. Shelf Sci. 2012, 102, 11–23. [Google Scholar] [CrossRef]
- Blankespoor, B.; Dasgupta, S.; Lange, G.M. Mangroves as Protection from Storm Surges in a Changing Climate; WPS7596; World Bank: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- del Valle, A.; Eriksson, M.; Ishizawa, O.A.; Miranda, J.J. Mangroves protect coastal economic activity from hurricanes. Proc. Natl. Acad. Sci. USA 2020, 117, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Asari, N.; Suratman, M.N.; Mohd Ayob, N.A.; Abdul Hamid, N.H. Mangrove as a Natural Barrier to Environmental Risks and Coastal Protection. In Mangroves: Ecology, Biodiversity and Management; Springer: Singapore, 2021; pp. 305–322. [Google Scholar] [CrossRef]
- Miranda, J.J.; Butron, L.; Pantoja, C.; Gunasekera, R. Mangroves as Coastal Protection for Local Economic Activities from Hurricanes in the Caribbean; World Bank Group: Washington, DC, USA, 2021; Available online: https://documents1.worldbank.org/curated/en/174441638210732041/pdf/Mangroves-as-Coastal-Protection-for-Local-Economic-Activities-from-Hurricanes-in-the-Caribbean.pdf (accessed on 13 September 2024).
- Ellison, J.C. Mangrove retreat with rising sea-level, Bermuda. Estuar. Coast. Shelf Sci. 2023, 37, 75–87. [Google Scholar] [CrossRef]
- Saintilan, N.; Khan, N.S.; Ashe, E.; Kelleway, J.J.; Rogers, K.; Woodroffe, C.D.; Horton, B.P. Thresholds of mangrove survival under rapid sea level rise. Science 2020, 368, 1118–1121. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhao, Q.; Li, J.; Jian, S.; Ren, H. Mangrove succession enriches the sediment microbial community in South China. Sci. Rep. 2016, 6, 27468. [Google Scholar] [CrossRef] [PubMed]
- Laegdsgaard, P.; Johnson, C.R. Mangrove habitats as nurseries: Unique assemblages of juvenile fish in subtropical mangroves in eastern Australia. Mar. Ecol. Prog. Ser. 1995, 126, 67–81. [Google Scholar] [CrossRef]
- Martin, T.S.H.; Olds, A.D.; Pitt, K.A.; Johnston, A.B.; Butler, I.R.; Maxwell, P.S.; Connolly, R.M. Effective protection of fish on inshore coral reefs depends on the scale of mangrove–reef connectivity. Mar. Ecol. Prog. Ser. 2015, 527, 157–165. [Google Scholar] [CrossRef]
- Lefcheck, J.S.; Hughes, B.B.; Johnson, A.J.; Pfirrmann, B.W.; Rasher, D.B.; Smyth, A.R.; Williams, B.L.; Beck, M.W.; Orth, R.J. Are coastal habitats important nurseries? A meta-analysis. Conserv. Lett. 2019, 12, e12645. [Google Scholar] [CrossRef]
- Spalding, M.; Parrett, C.L. Global patterns in mangrove recreation and tourism. Mar. Policy 2019, 110, 103540. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves are among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Richards, D.R.; Thompson, B.S.; Wijedasa, L. Quantifying net loss of global mangrove carbon stocks from 20 years of land cover change. Nat. Commun. 2020, 11, 4260. [Google Scholar] [CrossRef] [PubMed]
- Ellison, A.M.; Farnsworth, E.J. Anthropogenic disturbance of Caribbean mangrove ecosystems: Past impacts, present trends, and future predictions. Biotropica 1996, 1, 549–565. [Google Scholar] [CrossRef]
- Bender, M.A.; Knutson, T.R.; Tuleya, R.E.; Sirutis, J.J.; Vecchi, G.A.; Garner, S.T.; Held, I.M. Modeled Impact of Anthropogenic Warming on the Frequency of Intense Atlantic Hurricanes. Science 2010, 327, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Durgan, S.D.; Lagomasino, D. Modeling risk of mangroves to tropical cyclones: A case study of Hurricane Irma. Estuar. Coast. Shelf Sci. 2019, 224, 108–116. [Google Scholar] [CrossRef]
- Mo, Y.; Simard, M.; Hall, J.W. Tropical cyclone risk to global mangrove ecosystems: Potential future regional shifts. Front. Ecol. Environ. 2023, 21, 269–274. [Google Scholar] [CrossRef]
- Gilman, E.; Ellison, J.; Duke, N.C.; Field, C. Threats to mangroves from climate change and adaptation options: A review. Aquat. Bot. 2008, 89, 237–250. [Google Scholar] [CrossRef]
- Sidik, F.; Supriyanto, B.; Krisnawati, H.; Muttaqin, M.Z. Mangrove conservation for climate change mitigation in Indonesia. Wiley Interdisciplinary Reviews. Clim. Change 2018, 9, e529. [Google Scholar] [CrossRef]
- Moore, G.M. Community-Based Mangrove Restoration & Management, Woburn Bay Marine Protected Area, Grenada, West Indies, Mangrove Seed Preparation Guidelines. 2014. Available online: https://www.conservationgateway.org/ConservationByGeography/NorthAmerica/Caribbean/science/management/Documents/Mangrove%20Seed%20Preparation%20Guidelines%202009.pdf (accessed on 13 September 2024).
- Figueiredo, A.G.; Abuchacra, R.C.; Falheiro, P.F.; da Silva, F.T.; Vianna, P.J.; Pacheco, C.E. News Techniques for acquiring mangrove topography and tidal flooding information. In Proceedings of the SPE International Conference and Exhibition on Health, Safety, Environment, and Sustainability, Rio de Janeiro, Brazil, 12–14 April 2010; p. SPE-127165-MS. [Google Scholar] [CrossRef]
- Swales, A.; Denys, P.; Pickett, V.I.; Lovelock, C.E. Evaluating deep subsidence in a rapidly-accreting mangrove forest using GPS monitoring of surface-elevation benchmarks and sedimentary records. Mar. Geol. 2016, 380, 205–218. [Google Scholar] [CrossRef]
- Myint, S.W.; Giri, C.P.; Wang, L.; Zhu, Z.; Gillette, S.C. Identifying Mangrove Species and Their Surrounding Land Use and Land Cover Classes Using an Object-Oriented Approach with a Lacunarity Spatial Measure. GISci. Remote Sens. 2008, 45, 188–208. [Google Scholar] [CrossRef]
- Cárdenas, Y.N.; Joyce, K.E.; Maier, S.W. Monitoring mangrove forests: Are we taking full advantage of technology? Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 1–14. [Google Scholar] [CrossRef]
- Shuman, C.S.; Ambrose, R.F. A comparison of remote sensing and ground-based methods for monitoring wetland restoration success. Restor. Ecol. 2003, 11, 325–333. [Google Scholar] [CrossRef]
- Mumby, P.J.; Green, E.P.; Edwards, A.J.; Clark, C.D. Cost-effectiveness of remote sensing for tropical coastal resources assessment and management. J. Environ. Manag. 1999, 55, 157–166. [Google Scholar] [CrossRef]
- Botkin, D.B.; Estes, J.E.; MacDonald, R.M.; Wilson, M.V. Studying the earth’s vegetation from space. Bioscience 1984, 34, 508–514. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Z.; Sheng, Y.; Zhou, Y. Remote Sensing Applications in Monitoring of Protected Areas. Remote Sens. 2020, 12, 1370. [Google Scholar] [CrossRef]
- Skole, D.; Tucker, C. Tropical deforestation and habitat fragmentation in the Amazon: Satellite data from 1978 to 1988. Science 1993, 260, 1905–1910. [Google Scholar] [CrossRef] [PubMed]
- Kanaskie, C.R.; Routhier, M.R.; Fraser, B.T.; Congalton, R.G.; Ayres, M.P.; Garnas, J.R. Early Detection of Southern Pine Beetle Attack by UAV-Collected Multispectral Imagery. Remote Sens. 2024, 16, 2608. [Google Scholar] [CrossRef]
- Moore, G.E.; Burdick, D.M.; Routhier, M.R.; Novak, A.B.; Payne, A.R. Effects of a large-scale, natural sediment deposition event on plant cover in a Massachusetts salt marsh. PLoS ONE 2021, 16, e0245564. [Google Scholar] [CrossRef] [PubMed]
- Routhier, M.; Moore, G.; Rock, B. Assessing Spectral Band, Elevation, and Collection Date Combinations for Classifying Salt Marsh Vegetation with Unoccupied Aerial Vehicle (UAV)-Acquired Imagery. Remote Sens. 2023, 15, 5076. [Google Scholar] [CrossRef]
- Routhier, M.; Grizzle, R.; Goddard, T.; Ward, K. Eelgrass Distribution in the Great Bay Estuary and Piscataqua River for 2022: Final Project Report Submitted to the Piscataqua Region Estuaries Partnership (2024). 2023. Available online: https://scholars.unh.edu/cgi/viewcontent.cgi?article=1466&context=prep (accessed on 13 September 2024).
- Everitt, J.H.; Yang, C.; Judd, F.W.; Summy, K.R. Use of Archive Aerial Photography for Monitoring Black Mangrove Populations. J. Coast. Res. 2010, 26, 649–653. [Google Scholar] [CrossRef]
- Ballaria, D.; Orellana, D.; Acostaa, E.; Espinoza, A.; Morocho, V. UAV Monitoring for Environmental Management in Galapagos Islands. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 12–19 July 2016; Volume XLI-B1, pp. 1105–1111. [Google Scholar] [CrossRef]
- Baloloy, A.B.; Blanco, A.C.; Ana, R.R.C.S.; Nadaoka, K. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS J. Photogramm. Remote Sens. 2020, 166, 95–117. [Google Scholar] [CrossRef]
- Kotikot, S.M.; Spencer, O.; Cissell, J.R.; Connette, G.; Smithwick, E.A.; Durdall, A.; Grimes, K.W.; Stewart, H.A.; Tzadik, O.; Canty, S.W. Building a Mangrove Ecosystem Monitoring Tool for Managers Using Sentinel-2 Imagery in Google Earth Engine. Ocean. Coast. Manag. 2024, 256, 107307. [Google Scholar] [CrossRef]
- Hu, L.; Xu, N.; Liang, J.; Li, Z.; Chen, L.; Zhao, F. Advancing the Mapping of Mangrove Forests at National-Scale Using Sentinel-1 and Sentinel-2 Time-Series Data with Google Earth Engine: A Case Study in China. Remote Sens. 2020, 12, 3120. [Google Scholar] [CrossRef]
- Vu, T.T.P.; Pham, T.D.; Saintilan, N.; Skidmore, A.; Luu, H.V.; Vu, Q.H.; Le, N.N.; Nguyen, H.Q.; Matsushita, B. Mapping Multi-Decadal Mangrove Extent in the Northern Coast of Vietnam Using Landsat Time-Series Data on Google Earth Engine Platform. Remote Sens. 2022, 14, 4664. [Google Scholar] [CrossRef]
- Liu, X.; Liao, J.; Shen, G.; Zhang, L.; Chen, B. Extraction of 10 m Resolution Global Mangrove in 2022. Remote Sens. 2024, 16, 2723. [Google Scholar] [CrossRef]
- Fan, C.; Hou, X.; Zhang, Y.; Li, D. Satellite Data Reveal Concerns Regarding Mangrove Restoration Efforts in Southern China. Remote Sens. 2023, 15, 4151. [Google Scholar] [CrossRef]
- Taillie, P.J.; Roman-Cuesta, R.; Lagomasino, D.; Cifuentes-Jara, M.; Fatoyinbo, T.; Ott, L.E.; Poulter, B. Widespread mangrove damage resulting from the 2017 Atlantic mega hurricane season. Environ. Res. Lett. 2020, 15, 64010. [Google Scholar] [CrossRef]
- Dotzler, S.; Hill, J.; Buddenbaum, H.; Stoffels, J. The Potential of EnMAP and Sentinel-2 Data for Detecting Drought Stress Phenomena in Deciduous Forest Communities. Remote Sens. 2015, 7, 14227–14258. [Google Scholar] [CrossRef]
- Soanes, L.M.; Pike, S.; Armstrong, S.; Creque, K.; Norris-Gumbs, R.; Zaluski, S.; Medcalf, K. Reducing the vulnerability of coastal communities in the Caribbean through sustainable mangrove management. Ocean Coast. Manag. 2021, 210, 105702. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Sweet, S.K.; Asmus, A.; Rich, M.E.; Wingfield, J.; Gough, L.; Boelman, N.T. NDVI as a predictor of canopy arthropod biomass in the Alaskan arctic tundra. Ecol. Appl. 2015, 25, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Rock, B.N.; Vogelmann, J.E.; Williams, D.L.; Vogelmann, A.F.; Hoshizaki, T. Remote Detection of Forest Damage. BioScience 1986, 36, 439–445. [Google Scholar] [CrossRef]
- Hunt, E.R.; Rock, B.N. Detection of changes in leaf water content using Near- and Middle-Infrared reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar] [CrossRef]
- Avetisyan, D.; Borisova, D.; Velizarova, E. Integrated Evaluation of Vegetation Drought Stress through Satellite Remote Sensing. Forests 2021, 12, 974. [Google Scholar] [CrossRef]
- Roth, L.C.; Clark, U. Hurricanes and mangrove regeneration: Effects of hurricane Joan, October 1988, on the vegetation of Isla del Venado, Bluefields, Nicaragua. Biotropica 1992, 24, 375–384. [Google Scholar] [CrossRef]
- Asbridge, E.; Lucas, R.; Rogers, K.; Accad, A. The extent of mangrove change and potential for recovery following severe Tropical Cyclone Yasi, Hinchinbrook Island, Queensland, Australia. Ecol. Evol. 2018, 8, 10416–10434. [Google Scholar] [CrossRef] [PubMed]
- Eppinga, M.B.; Pucko, C.A. The impact of hurricanes Irma and Maria on the forest ecosystems of Saba and St. Eustatius, northern Caribbean. Biotropica 2018, 50, 723–728. [Google Scholar] [CrossRef]
- Lambert, D. Hurricane disturbance and forest dynamics in east Caribbean mangroves. Ecosphere 2018, 9, e02231. [Google Scholar] [CrossRef]
- Simard, M.; Fatoyinbo, L.; Smetanka, C.; Rivera-Monroy, V.H.; Castaneda-Moya, E.; Thomas, N.; Van der Stocken, T. Mangrove Canopy Height Globally Related to Precipitation, Temperature and Cyclone Frequency. Nat. Geosci. 2019, 12, 40–45. [Google Scholar] [CrossRef]
- Radabaugh, K.R.; Moyer, R.P.; Chappel, A.R.; Dontis, E.E.; Russo, C.E.; Joyse, K.M.; Bownik, M.W.; Goeckner, A.H.; Khan, N.S. Mangrove Damage, Delayed Mortality, and Early Recovery Following Hurricane Irma at Two Landfall Sites in Southwest Florida, USA. Estuaries Coasts 2020, 43, 1104–1118. [Google Scholar] [CrossRef]
- Amaral, C.; Poulter, B.; Lagomasino, D.; Fatoyinbo, T.; Taillie, P.; Lizcano, G.; Canty, S.; Silveira, J.A.H.; Teutli-Hernández, C.; Cifuentes-Jara, M.; et al. Drivers of mangrove vulnerability and resilience to tropical cyclones in the North Atlantic Basin. Sci. Total Environ. 2023, 898, 165413. [Google Scholar] [CrossRef] [PubMed]
- Sherman, R.E.; Fahey, T.J.; Martinez, P. Hurricane impacts on a mangrove forest in the Dominican Republic: Damage patterns and early recovery. Biotropica 2001, 33, 393–408. [Google Scholar] [CrossRef]
- Gillis, L.G.; Hortua, D.A.S.; Zimmer, M.; Jennerjahn, T.C.; Herbeck, L.S. Interactive effects of temperature and nutrients on mangrove seedling growth and implications for establishment. Mar. Environ. Res. 2019, 151, 104750. [Google Scholar] [CrossRef] [PubMed]
- Descroix, L.; Sané, Y.; Thior, M.; Manga, S.-P.; Ba, B.D.; Mingou, J.; Mendy, V.; Coly, S.; Dièye, A.; Badiane, A.; et al. Inverse Estuaries in West Africa: Evidence of the Rainfall Recovery? Water 2020, 12, 647. [Google Scholar] [CrossRef]
- Angelini, C.; Silliman, B.R. Patch size-dependent community recovery after massive disturbance. Ecology 2012, 93, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Bryan-Brown, D.N.; Connolly, R.M.; Richards, D.R.; Adame, F.; Friess, D.A.; Brown, C.J. Global trends in mangrove forest fragmentation. Sci. Rep. 2020, 10, 7117. [Google Scholar] [CrossRef] [PubMed]
- Blake, E.S. The 2017 Atlantic Hurricane Season: Catastrophic Losses and Costs. Weatherwise 2018, 71, 28–37. [Google Scholar] [CrossRef]
- Brando, P.M.; Balch, J.K.; Nepstad, D.C.; Morton, D.C.; Putz, F.E.; Coe, M.T.; Silvério, D.; Macedo, M.N.; Davidson, E.A.; Nóbrega, C.C.; et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl. Acad. Sci. USA 2014, 111, 6347–6352. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.J.; Verdon-Kidd, D.C.; Sippo, J.Z.; Baker, P.J. Compound climate extremes driving recent sub-continental tree mortality in northern Australia have no precedent in recent centuries. Sci. Rep. 2021, 11, 18337. [Google Scholar] [CrossRef] [PubMed]
- Berenguer, E.; Lennox, G.D.; Ferreira, J.; Malhi, Y.; Aragão, L.E.O.C.; Barreto, J.R.; Del Bon Espírito-Santo, F.; Figueiredo, A.E.S.; França, F.; Gardner, T.A.; et al. Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. Proc. Natl. Acad. Sci. USA 2021, 118, e2019377118. [Google Scholar] [CrossRef] [PubMed]
- Weather and Climate, British Virgin Islands Climate, Nearby Locations. 2024. Available online: https://weatherandclimate.com/british-virgin-islands/british-virgin-islands (accessed on 8 September 2024).
- Climate Data Website. 2021. Available online: https://en.climate-data.org/north-america/british-virgin-islands/road-town/road-town-28879/ (accessed on 19 June 2025).
- CIA. The World Factbook, Central Intelligence Agency. 2025. Available online: https://www.cia.gov/the-world-factbook/countries/british-virgin-islands/ (accessed on 21 June 2025).
- European Space Agency (ESA). Sentinel-2. 2023. Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2 (accessed on 10 October 2023).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Yin, F.; Lewis, P.E.; Gómez-Dans, J.L. Bayesian atmospheric correction over land: Sentinel-2/MSI and Landsat 8/OLI. Geosci. Model Dev. 2022, 15, 7933–7976. [Google Scholar] [CrossRef]
- Yin, F.; Gomez-Dans, J.; Lewis, P. A Sensor Invariant Atmospheric Correction Method for Satellite Images. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1804–1807. [Google Scholar] [CrossRef]
- Yin, F.; Lewis, P.E.; Gómez-Dans, J.L. Available on Github. 2018. Available online: https://github.com/MarcYin/SIAC_GEE (accessed on 21 December 2023).
- ESRI. ArcGIS Pro, Version 3.2; ESRI: Redland, CA, USA, 2024. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-pro/ (accessed on 8 September 2024).
- Satyanarayana, B.; Mohamad, K.A.; Idris, I.F.; Husain, M.L.; Dahdouh-Guebas, F. Assessment of mangrove vegetation based on remote sensing and ground-truth measurements at Tumpat, Kelantan Delta, East Coast of Peninsular Malaysia. Int. J. Remote Sens. 2011, 32, 1635–1650. [Google Scholar] [CrossRef]
- Collin, A.; Lambert, N.; Etienne, S. Satellite-based salt marsh elevation, vegetation height, and species composition mapping using the superspectral WorldView-3 imagery. Int. J. Remote Sens. 2018, 39, 5619–5637. [Google Scholar] [CrossRef]
- Suir, G.M.; Saltus, C.L.; Reif, M.K.; Sasser, C.E.; Harris, J.M.; Diaz, R.; Giffin, G. Evaluating Drone Truthing as an Alternative to Ground Truthing: An Example with Wetland Plant Identification. 2021. Available online: https://erdc-library.erdc.dren.mil/server/api/core/bitstreams/aef5f5f3-f104-4aab-9c9a-128ddee5517e/content (accessed on 14 September 2024).
- Rhew, I.C.; Vander Stoep, A.; Kearney, A.; Smith, N.L.; Dunbar, M.D. Validation of the normalized difference vegetation index as a measure of neighborhood greenness. Ann. Epidemiol. 2011, 21, 946. [Google Scholar] [CrossRef] [PubMed]
- Eskandari, S.; Reza Jaafari, M.; Oliva, P.; Ghorbanzadeh, O.; Blaschke, T. Mapping Land Cover and Tree Canopy Cover in Zagros Forests of Iran: Application of Sentinel-2, Google Earth, and Field Data. Remote Sens. 2020, 12, 1912. [Google Scholar] [CrossRef]
- Moore, G.E. Field Observations and On-Site Photos of Mangrove Forests within the British Virgin Islands—2016 to 2023; Unpublished data; University of New Hampshire: Durham, NH, USA, 2023. [Google Scholar]
- Cohen, W.B. Response of vegetation indices to changes in three measures of leaf water stress. Photogramm. Eng. Remote Sens. 1991, 57, 195–202. Available online: https://www.asprs.org/wp-content/uploads/pers/1991journal/feb/1991_feb_195-202.pdf (accessed on 21 December 2024).
- Wang, S.; Zheng, X.; Du, Y.; Zhang, G.; Wang, Q.; Han, D.; Zhang, J. Estimation of Short-Term Vegetation Recovery in Post-Fire Siberian Dwarf Pine (Pinus pumila) Shrublands Based on Sentinel-2 Data. Fire 2025, 8, 47. [Google Scholar] [CrossRef]
- ESA. ESA DEM GLO-30: Global 30 m Digital Elevation Model. 2015. Available online: https://dataspace.copernicus.eu/explore-data/data-collections/copernicus-contributing-missions/collections-description/COP-DEM (accessed on 8 August 2024).
- Office for the Coordination of Humanitarian Affairs (OCHA). United Nations. 2020. Available online: https://www.unocha.org/ (accessed on 1 August 2024).
- OpenStreetMap. OpentstreetMap. Downloading Data. 2024. Available online: https://wiki.openstreetmap.org/wiki/Downloading_data (accessed on 8 July 2024).
- Silveira, J.; Hernandez, C.; Secaira Fajardo, F.; Braun, R.; Bowman, J.; Geselbracht, L.; Musgrove, M.; Rogers, M.; Schmidt, J.; Toral, P.; et al. Hurricane Damages to Mangrove Forests and Post-Storm Restoration Techniques and Costs; The Nature Conservancy: Arlington, VA, USA, 2022. [Google Scholar] [CrossRef]
- Goodwin, E.; Garciea, V.R.; Palaka, K.; Zaluski, S.; Moore, G.; Zagner, I. Darwin Plus: Overseas Territories Environment and Climate Fund Annual Report. International Union for Conservation of Nature, British Virgin Islands. March 2022. Available online: https://www.darwininitiative.org.uk/documents/DPLUS085/26058/DPLUS085%20AR2%20-%20rev%20-%20edited.pdf (accessed on 22 December 2024).
- Furukawa, K.; Wolanski, E. Sedimentation in Mangrove Forests. Mangroves Salt Marshes 1996, 1, 3–10. [Google Scholar] [CrossRef]
- Jönsson, B.F.; Watson, J.R. The timescales of global surface-ocean connectivity. Nat. Commun. 2016, 7, 11239. [Google Scholar] [CrossRef] [PubMed]
- Van der Stocken, T.; Wee, A.K.S.; De Ryck, D.J.R.; Vanschoenwinkel, B.; Friess, D.A.; Dahdouh-Guebas, F.; Simard, M.; Koedam, N.; Webb, E.L. A general framework for propagule dispersal in mangroves. Biol. Rev. Camb. Philos. Soc. 2019, 94, 1547–1575. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, X.; Wang, M. Propagule Dispersal Determines Mangrove Zonation at Intertidal and Estuarine Scales. Forests 2019, 10, 245. [Google Scholar] [CrossRef]
- Kossin, J.P.; Knapp, K.R.; Olandor, T.L.; and Velden, C.S. Global increase in major tropical cyclone exceedance probability over the past four decades. Proc. Natl. Acad. Sci. USA 2020, 17, 11975–11980. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.R.; Pineda, J.E.M.; Casas, X.M.; Calderón, J.H.M. Influence of Edaphic Salinity on Leaf Morphoanatomical Functional Traits on Juvenile and Adult Trees of Red Mangrove (Rhizophora mangle): Implications with Relation to Climate Change. Forests 2021, 12, 1586. [Google Scholar] [CrossRef]
- Cannon, D.; Kibler, K.; Donnelly, M.; McClenachan, G.; Walters, L.; Roddenberry, A.; Phagan, J. Hydrodynamic habitat thresholds for mangrove vegetation on the shorelines of a microtidal estuarine lagoon. Ecol. Eng. 2020, 158, 106070. [Google Scholar] [CrossRef]
- Del Cid-Alvarado, R.J.; Lopez, O.R.; Rodríguez-González, P.M.; Feás-Vázquez, J. Social Perception and Engagement in Mangrove Restoration: A Case Study in Central America. Land 2024, 13, 1783. [Google Scholar] [CrossRef]
- Moussa, L.G.; Mohan, M.; Burmeister, N.; King, S.A.L.; Burt, J.A.; Rog, S.M.; Watt, M.S.; Udagedara, S.; Sujud, L.; Montenegro, J.F.; et al. Mangrove Ecotourism along the Coasts of the Gulf Cooperation Council Countries: A Systematic Review. Land 2024, 13, 1351. [Google Scholar] [CrossRef]
- Chmura, G.; Burdick, D.M.; Moore, G.E. Recovering salt marsh ecosystem services through tidal restoration. In Restoring Tidal Flow to Salt Marshes: A Synthesis of Science and Management; Roman, C.T., Burdick, D.M., Eds.; Island Press: Washington, DC, USA, 2012. [Google Scholar]
- Huete, A.R.; Liu, H.; van Leeuwen, W.J. The use of vegetation indices in forested regions: Issues of linearity and saturation. In Proceedings of the IGARSS’97—1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing-a Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997; Volume 4, pp. 1966–1968. Available online: https://ieeexplore.ieee.org/document/609169 (accessed on 21 December 2024).
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
Potential Model Drivers | Type | Reference |
---|---|---|
Patch Area | Geospatial | Calculated |
Patch Perimeter | Geospatial | Calculated |
Patch Area to Perimeter Ratio | Geospatial | Calculated |
Island Size | Geospatial | Calculated |
Mean Annual Monthly High Temperature | Environmental | [73] |
Mean Annual Monthly Rainfall | Environmental | [73] |
Mean Elevation | Environmental | [89] |
Patch Mean Slope | Environmental | [89] |
Patch Aspect (Coastal Facing Direction) | Environmental | Visually Assessed |
Human Population within 0.5 km | Human-Induced | [90] |
Roads and Paths within 0.5 km | Human-Induced | [91] |
Mangrove Assessment Island | Hurricane Mangrove Damage Year | NDVI Recovery as of 2023 | MSI Recovery as of 2023 |
---|---|---|---|
All Islands | 2017 | 66% | 76% |
Anegada | 2017 | 65% | 79% |
Beef Island | 2017 | 74% | 72% |
Frenchman’s Cay | 2017 | 76% | 86% |
Great Camanoe | 2017 | 15% | 36% |
Jost Van Dyke Island | 2017 | 24% | 45% |
Prickly Pear Island | 2017 | −23% | 118% |
Tortola | 2017 | 74% | 80% |
Virgin Gorda | 2017 | 33% | 55% |
Features | Rank | Training AIC | Training R2 | Training RMSE | Validation RMSE |
---|---|---|---|---|---|
NW vs. SE Aspect, Population within 0.5 km, Mean Annual Monthly Temperature, Island Size, Slope | 1 | −27.09 | 0.630 | 0.10511 | 0.11749 |
Population within 0.5 km, NW vs. SE Aspect | 2 | −26.2807 | 0.458 | 0.12718 | 0.15043 |
NW vs. SE Aspect, Population within 0.5 km, Mean Annual Monthly Temperature | 3 | −25.66 | 0.503 | 0.12192 | 0.13827 |
Term | Scaled Estimate | Std Error | t Ratio | Prob > |t| | Effect Magnitude |
---|---|---|---|---|---|
Intercept | 0.2308386 | 0.019605 | 11.77 | <0.0001 | 0.2308386 |
Human Population within 0.5 km of Mangroves | 0.1713338 | 0.041236 | 4.15 | 0.0003 | 0.1713338 |
Mean Annual Monthly Temperature | −0.133595 | 0.044175 | −3.02 | 0.0052 | 0.133595 |
Aspect (North East) | −0.102536 | 0.025657 | −4.00 | 0.0004 | 0.102536 |
Island Size (km2) | −0.074294 | 0.0273 | −2.72 | 0.0109 | 0.074294 |
Average Slope | −0.071633 | 0.0400 | −2.11 | 0.0436 | 0.071633 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Routhier, M.R.; Moore, G.E.; Rock, B.N.; Glidden, S.; Duckett, M.; Zaluski, S. Assessing Mangrove Forest Recovery in the British Virgin Islands After Hurricanes Irma and Maria with Sentinel-2 Imagery and Google Earth Engine. Remote Sens. 2025, 17, 2485. https://doi.org/10.3390/rs17142485
Routhier MR, Moore GE, Rock BN, Glidden S, Duckett M, Zaluski S. Assessing Mangrove Forest Recovery in the British Virgin Islands After Hurricanes Irma and Maria with Sentinel-2 Imagery and Google Earth Engine. Remote Sensing. 2025; 17(14):2485. https://doi.org/10.3390/rs17142485
Chicago/Turabian StyleRouthier, Michael R., Gregg E. Moore, Barrett N. Rock, Stanley Glidden, Matthew Duckett, and Susan Zaluski. 2025. "Assessing Mangrove Forest Recovery in the British Virgin Islands After Hurricanes Irma and Maria with Sentinel-2 Imagery and Google Earth Engine" Remote Sensing 17, no. 14: 2485. https://doi.org/10.3390/rs17142485
APA StyleRouthier, M. R., Moore, G. E., Rock, B. N., Glidden, S., Duckett, M., & Zaluski, S. (2025). Assessing Mangrove Forest Recovery in the British Virgin Islands After Hurricanes Irma and Maria with Sentinel-2 Imagery and Google Earth Engine. Remote Sensing, 17(14), 2485. https://doi.org/10.3390/rs17142485