Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = portable polarizing system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 6390 KB  
Article
Reproducing Cold-Chain Conditions in Real Time Using a Controlled Peltier-Based Climate System
by Javier M. Garrido-López, Alfonso P. Ramallo-González, Manuel Jiménez-Buendía, Ana Toledo-Moreo and Roque Torres-Sánchez
Sensors 2025, 25(21), 6689; https://doi.org/10.3390/s25216689 - 1 Nov 2025
Viewed by 64
Abstract
Temperature excursions during refrigerated transport strongly affect the quality and shelf life of perishable food, yet reproducing realistic, time-varying cold-chain temperature histories in the laboratory remains challenging. In this study, we present a compact, portable climate chamber driven by Peltier modules and an [...] Read more.
Temperature excursions during refrigerated transport strongly affect the quality and shelf life of perishable food, yet reproducing realistic, time-varying cold-chain temperature histories in the laboratory remains challenging. In this study, we present a compact, portable climate chamber driven by Peltier modules and an identification-guided control architecture designed to reproduce real refrigerated-truck temperature histories with high fidelity. Control is implemented as a cascaded regulator: an outer two-degree-of-freedom PID for air-temperature tracking and faster inner PID loops for module-face regulation, enhanced with derivative filtering, anti-windup back-calculation, a Smith predictor, and hysteresis-based bumpless switching to manage dead time and polarity reversals. The system integrates distributed temperature and humidity sensors to provide real-time feedback for precise thermal control, enabling accurate reproduction of cold-chain conditions. Validation comprised two independent 36-day reproductions of field traces and a focused 24-h comparison against traditional control baselines. Over the long trials, the chamber achieved very low long-run errors (MAE0.19 °C, MedAE0.10 °C, RMSE0.33 °C, R2=0.9985). The 24-h test demonstrated that our optimized controller tracked the reference, improving both transient and steady-state behaviour. The system tolerated realistic humidity transients without loss of closed-loop performance. This portable platform functions as a reproducible physical twin for cold-chain experiments and a reliable data source for training predictive shelf-life and digital-twin models to reduce food waste. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

20 pages, 8723 KB  
Article
Real-Time Speed Measurement of Moving Objects with Continuous Wave Doppler Radar Using Software-Defined Radio: Implementation and Performance Analysis
by Antonio Flores, Robin Alvarez, Pablo Lupera, Christian Tipantuña, Ricardo Llugsi and Fernando Lara
Electronics 2025, 14(21), 4225; https://doi.org/10.3390/electronics14214225 - 29 Oct 2025
Viewed by 307
Abstract
This paper presents a novel continuous-wave Doppler RADAR system for real-time speed measurement of moving objects, implemented using software-defined radio (SDR). Unlike traditional high-cost solutions typically found in research centers or specialized laboratories, this prototype offers a low-cost, compact, and easily deployable platform [...] Read more.
This paper presents a novel continuous-wave Doppler RADAR system for real-time speed measurement of moving objects, implemented using software-defined radio (SDR). Unlike traditional high-cost solutions typically found in research centers or specialized laboratories, this prototype offers a low-cost, compact, and easily deployable platform that lowers the entry barrier for experimentation and research. Operating within the 70 MHz–6 GHz range, SDR enables highly flexible signal processing; in this implementation, a 5.5 GHz carrier is selected to improve the detection precision by exploiting its reduced bandwidth for more accurate observation of frequency shifts. The carrier is modulated with a 2 kHz signal, and Doppler frequency deviations induced by object motion are processed to calculate velocity. Using a Welch spectral estimator, the system effectively reduces noise and extracts the Doppler frequency with high reliability. The prototype achieves speed measurements up to 196.36 km/h with approximately 2% error in the 0–100 km/h range, confirming its suitability for road traffic monitoring. A key innovation of this work is its single-antenna cross-polarized configuration, which simplifies hardware requirements while maintaining measurement accuracy. Furthermore, the system’s portability and open-access design make it ideal for in-vehicle applications, enabling direct deployment for automotive testing, driver-assistance research, and educational demonstrations. All design files and implementation details are openly shared, eliminating patent restrictions and encouraging adoption in low-resource academic and research environments. Full article
Show Figures

Figure 1

18 pages, 5552 KB  
Article
Development of a Low-Cost Measurement System for Soil Electrical Conductivity and Water Content
by Emmanouil Teletos, Kyriakos Tsiakmakis, Argyrios T. Hatzopoulos and Stefanos Stefanou
AgriEngineering 2025, 7(10), 329; https://doi.org/10.3390/agriengineering7100329 - 1 Oct 2025
Viewed by 766
Abstract
Soil electrical conductivity (EC) and water content are key indicators of soil health, influencing nutrient availability, salinity stress, and crop productivity. Monitoring these parameters is critical for precision agriculture. However, most existing measurement systems are costly, which restricts their use in practical field [...] Read more.
Soil electrical conductivity (EC) and water content are key indicators of soil health, influencing nutrient availability, salinity stress, and crop productivity. Monitoring these parameters is critical for precision agriculture. However, most existing measurement systems are costly, which restricts their use in practical field conditions. The aim of this study was to develop and validate a low-cost, portable system for simultaneous measurement of soil EC, water content, and temperature, while maintaining accuracy comparable to laboratory-grade instruments. The system was designed with four electrodes arranged in two pairs and employed an AC bipolar pulse method with a constant-current circuit, precision rectifier, and peak detector to minimize electrode polarization. Experiments were carried out in sandy loam soil at water contents of 13%, 18%, and 22% and KNO3 concentrations of 0, 0.1, 0.2, and 0.4 M. Measurements from the developed system were benchmarked against a professional impedance analyzer (E4990A). The findings demonstrated that EC increased with both frequency and water content. At 100 Hz, the mean error compared with the analyzer was 8.95%, rising slightly to 9.98% at 10 kHz. A strong linear relationship was observed between EC and KNO3 concentration at 100 Hz (R2 = 0.9898), and for the same salt concentration (0.1 M KNO3) at 100 Hz, EC increased from ~0.26 mS/cm at 13% water content to ~0.43 mS/cm at 22%. In conclusion, the developed system consistently achieved <10% error while maintaining a cost of ~€55, significantly lower than commercial devices. These results confirm its potential as an affordable and reliable tool for soil salinity and water content monitoring in precision agriculture. Full article
Show Figures

Figure 1

14 pages, 1486 KB  
Article
Optically Controlled Bias-Free Frequency Reconfigurable Antenna
by Karam Mudhafar Younus, Khalil Sayidmarie, Kamel Sultan and Amin Abbosh
Sensors 2025, 25(19), 5951; https://doi.org/10.3390/s25195951 - 24 Sep 2025
Viewed by 1063
Abstract
A bias-free antenna tuning technique that eliminates conventional DC biasing networks is presented. The tuning mechanism is based on a Light-Dependent Resistor (LDR) embedded within the antenna structure. Optical illumination is used to modulate the LDR’s resistance, thereby altering the antenna’s effective electrical [...] Read more.
A bias-free antenna tuning technique that eliminates conventional DC biasing networks is presented. The tuning mechanism is based on a Light-Dependent Resistor (LDR) embedded within the antenna structure. Optical illumination is used to modulate the LDR’s resistance, thereby altering the antenna’s effective electrical length and enabling tuning of its resonant frequency and operating bands. By removing the need for bias lines, RF chokes, blocking capacitors, and control circuitry, the proposed approach minimizes parasitic effects, losses, biasing energy, and routing complexity. This makes it particularly suitable for compact and energy-constrained platforms, such as Internet of Things (IoT) devices. As proof of concept, an LDR is integrated into a ring monopole antenna, achieving tri-band operation in both high and low resistance states. In the high-resistance (OFF) state, the fabricated prototype operates across 2.1–3.1 GHz, 3.5–4 GHz, and 5–7 GHz. In the low-resistance (ON) state, the LDR bridges the two arcs of the monopole, extending the current path and shifting the lowest band to 1.36–2.35 GHz, with only minor changes to the mid and upper bands. The antenna maintains linear polarization across all bands and switching states, with measured gains reaching up to 5.3 dBi. Owing to its compact, bias-free, and low-cost architecture, the proposed design is well-suited for integration into portable wireless devices, low-power IoT nodes, and rapidly deployable communications systems where electrical biasing is impractical. Full article
(This article belongs to the Special Issue Microwave Components in Sensing Design and Signal Processing)
Show Figures

Figure 1

28 pages, 6366 KB  
Article
Integrated Ultra-Wideband Microwave System to Measure Composition Ratio Between Fat and Muscle in Multi-Species Tissue Types
by Lixiao Zhou, Van Doi Truong and Jonghun Yoon
Sensors 2025, 25(17), 5547; https://doi.org/10.3390/s25175547 - 5 Sep 2025
Viewed by 1142
Abstract
Accurate and non-invasive assessment of fat and muscle composition is crucial for biomedical monitoring to track health conditions in humans and pets, as well as for classifying meats in the meat industry. This study introduces a cost-effective, multifunctional ultra-wideband microwave system operating from [...] Read more.
Accurate and non-invasive assessment of fat and muscle composition is crucial for biomedical monitoring to track health conditions in humans and pets, as well as for classifying meats in the meat industry. This study introduces a cost-effective, multifunctional ultra-wideband microwave system operating from 2.4 to 4.4 GHz, designed for rapid and non-destructive quantification of fat thickness, muscle thickness, and fat-to-muscle ratio in diverse ex vivo samples, including pork, beef, and oil–water mixtures. The compact handheld device integrates essential RF components such as a frequency synthesizer, directional coupler, logarithmic power detector, and a dual-polarized Vivaldi antenna. Bluetooth telemetry enables seamless real-time data transmission to mobile- or PC-based platforms, with each measurement completed in a few seconds. To enhance signal quality, a two-stage denoising pipeline combining low-pass filtering and Savitzky–Golay smoothing was applied, effectively suppressing noise while preserving key spectral features. Using a random forest regression model trained on resonance frequency and signal-loss features, the system demonstrates high predictive performance even under limited sample conditions. Correlation coefficients for fat thickness, muscle thickness, and fat-to-muscle ratio consistently exceeded 0.90 across all sample types, while mean absolute errors remained below 3.5 mm. The highest prediction accuracy was achieved in homogeneous oil–water samples, whereas biologically complex tissues like pork and beef introduced greater variability, particularly in muscle-related measurements. The proposed microwave system is highlighted as a highly portable and time-efficient solution, with measurements completed within seconds. Its low cost, ability to analyze multiple tissue types using a single device, and non-invasive nature without the need for sample pre-treatment or anesthesia make it well suited for applications in agri-food quality control, point-of-care diagnostics, and broader biomedical fields. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

27 pages, 2729 KB  
Review
Polymer Composite-Based Triboelectric Nanogenerators: Recent Progress, Design Principles, and Future Perspectives
by Geon-Ju Choi, Sang-Hyun Sohn, Se-Jin Kim and Il-Kyu Park
Polymers 2025, 17(14), 1962; https://doi.org/10.3390/polym17141962 - 17 Jul 2025
Cited by 1 | Viewed by 1490
Abstract
The escalating consumption of fossil fuels and the rapid development of portable electronics have increased interest in alternative energy solutions that can sustainably self-power wearable devices. Triboelectric nanogenerators (TENGs), which convert mechanical energy into electricity through contact electrification and electrostatic induction, have emerged [...] Read more.
The escalating consumption of fossil fuels and the rapid development of portable electronics have increased interest in alternative energy solutions that can sustainably self-power wearable devices. Triboelectric nanogenerators (TENGs), which convert mechanical energy into electricity through contact electrification and electrostatic induction, have emerged as a promising technology due to their high voltage output, lightweight design, and simple fabrication. However, the performance of TENGs is often limited by a low surface charge density, inadequate dielectric properties, and poor charge retention of triboelectric materials. To address these challenges, recent research has focused on the use of polymer composites that incorporate various functional fillers. The filler materials play roles in improving dielectric performance and enhancing mechanical durability, thereby boosting triboelectric output even in harsh environments, while also diminishing charge loss. This review comprehensively examines the role of polymer composite design in TENG performance, with particular emphasis on materials categorized by their triboelectric polarity. Tribo-negative polymers, such as PDMS and PVDF, benefit from filler incorporation and phase engineering to enhance surface charge density and charge retention. By contrast, tribo-positive materials like nylon and cellulose have demonstrated notable improvements in mechanical robustness and environmental stability through composite strategies. The interplay between material selection, surface engineering, and filler design is highlighted as a critical path toward developing high-performance, self-powered TENG systems. Finally, this review discusses the current challenges and future opportunities for advancing TENG technology toward practical and scalable applications. Full article
(This article belongs to the Special Issue Advances in Polymer Composites for Nanogenerator Applications)
Show Figures

Figure 1

27 pages, 3152 KB  
Article
Validation of a Low-Cost Open-Ended Coaxial Probe Setup for Broadband Permittivity Measurements up to 6 GHz
by Julia Arias-Rodríguez, Raúl Moreno-Merín, Andrea Martínez-Lozano, Germán Torregrosa-Penalva and Ernesto Ávila-Navarro
Sensors 2025, 25(13), 3935; https://doi.org/10.3390/s25133935 - 24 Jun 2025
Viewed by 1065
Abstract
This work presents the validation of a low-cost measurement system based on an open-ended coaxial SMA (SubMiniature version A) probe for the characterization of complex permittivity in the microwave frequency range. The system combines a custom-fabricated probe, a vector network analyzer, and a [...] Read more.
This work presents the validation of a low-cost measurement system based on an open-ended coaxial SMA (SubMiniature version A) probe for the characterization of complex permittivity in the microwave frequency range. The system combines a custom-fabricated probe, a vector network analyzer, and a dedicated software application that implements three analytical models: capacitive, radiation, and virtual transmission line models. A comprehensive experimental campaign was carried out involving pure polar liquids, saline solutions, and biological tissues, with the measurements compared against those obtained using a high-precision commercial probe. The results confirm that the proposed system is capable of delivering accurate and reproducible permittivity values up to at least 6 GHz. Among the implemented models, the radiation model demonstrated the best overall performance, particularly in biological samples. Additionally, reproducibility tests with three independently assembled SMA probes showed normalized deviations below 3%, confirming the robustness of the design. These results demonstrate that the proposed system constitutes a viable alternative for cost-sensitive applications requiring portable or scalable microwave dielectric characterization. Full article
(This article belongs to the Special Issue Advanced Microwave Sensors and Their Applications in Measurement)
Show Figures

Figure 1

10 pages, 5162 KB  
Article
Portable Filter-Free Lens-Free Incoherent Digital Holography System
by Tatsuki Tahara
Photonics 2025, 12(2), 167; https://doi.org/10.3390/photonics12020167 - 19 Feb 2025
Cited by 2 | Viewed by 1125
Abstract
A portable incoherent digital holography system without a polarization filter or a refractive lens was developed. Phase-shifted self-interference incoherent holograms of light diffracted from an object were generated without attenuation due to a polarization filter using two polarization-sensitive phase-only spatial light modulators (TPP-SLMs). [...] Read more.
A portable incoherent digital holography system without a polarization filter or a refractive lens was developed. Phase-shifted self-interference incoherent holograms of light diffracted from an object were generated without attenuation due to a polarization filter using two polarization-sensitive phase-only spatial light modulators (TPP-SLMs). The number of optical elements in filter-free lens-free incoherent digital holography was reduced to make the system compact and portable. Experiments were conducted using the developed digital holography system set on a tripod stand and objects illuminated by a light-emitting diode. Full article
(This article belongs to the Special Issue Optical Imaging Innovations and Applications)
Show Figures

Figure 1

22 pages, 8673 KB  
Article
A Dual-Polarized and Broadband Multiple-Antenna System for 5G Cellular Communications
by Haleh Jahanbakhsh Basherlou, Naser Ojaroudi Parchin and Chan Hwang See
Sensors 2025, 25(4), 1032; https://doi.org/10.3390/s25041032 - 9 Feb 2025
Cited by 1 | Viewed by 2278
Abstract
This study presents a new multiple-input multiple-output (MIMO) antenna array system designed for sub-6 GHz fifth generation (5G) cellular applications. The design features eight compact trapezoid slot elements with L-shaped CPW (Coplanar Waveguide) feedlines, providing broad bandwidth and radiation/polarization diversity. The antenna elements [...] Read more.
This study presents a new multiple-input multiple-output (MIMO) antenna array system designed for sub-6 GHz fifth generation (5G) cellular applications. The design features eight compact trapezoid slot elements with L-shaped CPW (Coplanar Waveguide) feedlines, providing broad bandwidth and radiation/polarization diversity. The antenna elements are compact in size and function within the frequency spectrum spanning from 3.2 to 6 GHz. They have been strategically positioned at the peripheral corners of the smartphone mainboard, resulting in a compact overall footprint of 75 mm × 150 mm FR4. Within this design framework, there are four pairs of antennas, each aligned to offer both horizontal and vertical polarization options. In addition, despite the absence of decoupling structures, the adjacent elements in the array exhibit high isolation. The array demonstrates a good bandwidth of 2800 MHz, essential for 5G applications requiring high data rates and reliable connectivity, high radiation efficiency, and dual-polarized/full-coverage radiation. Furthermore, it achieves low ECC (Envelope Correlation Coefficient) and TARC (Total Active Reflection Coefficient) values, measuring better than 0.005 and −20 dB, respectively. With its compact and planar configuration, quite broad bandwidth, acceptable SAR (Specific Absorption Rate) and excellent radiation characteristics, this suggested MIMO antenna array design shows good promise for integration into 5G hand-portable devices. Furthermore, a compact phased-array millimeter-wave (mmWave) antenna with broad bandwidth is introduced as a proof of concept for higher frequency antenna integration. This design underscores the potential to support future 5G and 6G applications, enabling advanced connectivity in smartphones. Full article
(This article belongs to the Special Issue Antenna Design and Optimization for 5G, 6G, and IoT)
Show Figures

Figure 1

39 pages, 12985 KB  
Article
Electrolytic Ni-P and Ni-P-Cu Coatings on PCM-Loaded Expanded Graphite for Enhanced Battery Thermal Management with Mechanical Properties
by Onur Güler and Mustafa Yusuf Yazıcı
Materials 2025, 18(1), 213; https://doi.org/10.3390/ma18010213 - 6 Jan 2025
Cited by 6 | Viewed by 1568
Abstract
This study addresses the thermal management challenge in battery systems by enhancing phase change material composites with Ni-P and Ni-P-Cu coatings on phase change material/expanded graphite structures. Traditional phase change materials are limited by low thermal conductivity and mechanical stability, which restricts their [...] Read more.
This study addresses the thermal management challenge in battery systems by enhancing phase change material composites with Ni-P and Ni-P-Cu coatings on phase change material/expanded graphite structures. Traditional phase change materials are limited by low thermal conductivity and mechanical stability, which restricts their effectiveness in high-demand applications. Unlike previous studies, this work integrates Ni-P and Ni-P-Cu coatings to significantly improve both the thermal conductivity and mechanical strength of phase change material/expanded graphite composites, filling a crucial gap in battery thermal management solutions. The results reveal that Ni-P-Cu-coated phase change material/expanded graphite composites exhibit a superior thermal conductivity of 27.1 W/m·K, significantly outperforming both uncoated and Ni-P-coated counterparts. Mechanical testing showed that the Ni-P-Cu coating provided the highest compressive strength at 39.4 MPa and enhanced tensile strength due to the coating’s highly crystalline structure and smaller grain size. Additionally, the phase-change characteristics of the phase change material/expanded graphite composites, with phase transition temperatures between 38 °C and 43 °C, allowed effective heat absorption, stabilizing battery temperatures under 1.25C and 2.5C discharge rates. Voltage decay analysis indicated that Ni-P and Ni-P-Cu coatings reduced polarization effects, extending operational stability. These findings suggest that Ni-P-Cu-coated phase change material/expanded graphite composites are highly effective in thermal management applications, especially in battery systems where efficient heat dissipation and mechanical durability are critical for performance and safety. This study offers a promising approach to improving energy storage systems for applications such as electric vehicles, grid storage, and portable electronics. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

16 pages, 4593 KB  
Article
Computational Multiscale Study of the Interaction Between the PDMS Polymer and Sunscreen-Related Pollutant Molecules
by Stevan Armaković, Đorđe Vujić and Boris Brkić
Molecules 2024, 29(20), 4908; https://doi.org/10.3390/molecules29204908 - 17 Oct 2024
Viewed by 1543
Abstract
Sunscreen molecules play a critical role in protecting skin from ultraviolet radiation, yet their efficient detection and separation pose challenges in environmental and analytical contexts. In this work, we employ a multilevel modeling approach to investigate the molecular interactions between representative sunscreen molecules [...] Read more.
Sunscreen molecules play a critical role in protecting skin from ultraviolet radiation, yet their efficient detection and separation pose challenges in environmental and analytical contexts. In this work, we employ a multilevel modeling approach to investigate the molecular interactions between representative sunscreen molecules and the polydimethylsiloxane (PDMS) polymer, a material widely recognized for its sorbent properties. Our goal is to explore how these interactions can be fine-tuned to facilitate the effective separation of sunscreen molecules in portable membrane inlet mass spectrometry (MIMS) systems, potentially leading to the development of new membrane materials. Using a combination of advanced computational techniques—force field molecular dynamics simulations, semiempirical GFN2-xTB, and density functional theory calculations—we assess the interaction strength and noncovalent interactions of sunscreen molecules, namely oxybenzone, naphthalene, benzo[a]anthracene, avobenzone, and 1,3,5-trichlorobenzene, with PDMS. Additionally, the effect of temperature on the interaction dynamics is evaluated, with the aim of extending the sorbent capacities of PDMS beyond light polar molecules to larger, polar sunscreen compounds. This study provides critical insights into the molecular-level interactions that may guide the design of novel membrane materials for efficient molecular separation. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Figure 1

21 pages, 8025 KB  
Article
Design and Characterization of a Portable Multiprobe High-Resolution System (PMHRS) for Enhanced Inversion of Water Remote Sensing Reflectance with Surface Glint Removal
by Shuangkui Liu, Ye Jiang, Kai Wang, Yachao Zhang, Zhe Wang, Xu Liu, Shiyu Yan and Xin Ye
Photonics 2024, 11(9), 837; https://doi.org/10.3390/photonics11090837 - 4 Sep 2024
Cited by 2 | Viewed by 1245
Abstract
Surface glint significantly reduces the measurement accuracy of remote sensing reflectance of water, Rrs, making it difficult to effectively use field measurements for studying water optical properties, accurately retrieving water quality parameters, and validating satellite remote sensing products. To accurately assess [...] Read more.
Surface glint significantly reduces the measurement accuracy of remote sensing reflectance of water, Rrs, making it difficult to effectively use field measurements for studying water optical properties, accurately retrieving water quality parameters, and validating satellite remote sensing products. To accurately assess the effectiveness of various glint removal methods and enhance the accuracy of water reflectance measurements, a portable multiprobe high-resolution System (PMHRS) is designed. The system is composed of a spectrometer, fiber bundles, an irradiance probe, and three radiance probes. The reliability and measurement accuracy of the PMHRS are ensured through rigorous laboratory radiometric calibration and temperature correction. The comprehensive uncertainty of laboratory calibration ranges from 1.29% to 1.43% for irradiance calibration and from 1.47% to 1.59% for radiance calibration. Field measurement results show a strong correlation with both synchronous ASD data, and Sen2Cor-atmospherically corrected Sentinel-2B data (R2 = 0.949, RMSE = 0.013; R2 = 0.926, RMSE = 0.0105). The water-leaving radiance measurements obtained under different solar elevation angles using three methods (M99 method, polarization method, and SBA) demonstrate that the improved narrow field-of-view polarization probe effectively removes surface glint across various solar elevation angles (with overall better performance than the traditional M99 method). At a solar elevation angle of 69.7°, the MAPD and MAD between the measurements of this method and those of the SBA are 5.8% and 1.4 × 10−4, respectively. The results demonstrate that the PMHRS system outperforms traditional methods in sun glint removal, significantly enhancing the accuracy of water remote sensing reflectance measurements and improving the validation quality of satellite data. This work provides a crucial technical foundation for the development of high-resolution continuous observation platforms in complex aquatic environments. It holds significant implications for improving the accuracy of field-based water remote sensing reflectance measurements and for enhancing the quality of water ecological monitoring data and satellite validation data. Full article
Show Figures

Figure 1

16 pages, 4651 KB  
Article
Design of Novel Membranes for the Efficient Separation of Bee Alarm Pheromones in Portable Membrane Inlet Mass Spectrometric Systems
by Stevan Armaković, Daria Ilić and Boris Brkić
Int. J. Mol. Sci. 2024, 25(16), 8599; https://doi.org/10.3390/ijms25168599 - 7 Aug 2024
Cited by 1 | Viewed by 1159
Abstract
Bee alarm pheromones are essential molecules that are present in beehives when some threats occur in the bee population. In this work, we have applied multilevel modeling techniques to understand molecular interactions between representative bee alarm pheromones and polymers such as polymethyl siloxane [...] Read more.
Bee alarm pheromones are essential molecules that are present in beehives when some threats occur in the bee population. In this work, we have applied multilevel modeling techniques to understand molecular interactions between representative bee alarm pheromones and polymers such as polymethyl siloxane (PDMS), polyethylene glycol (PEG), and their blend. This study aimed to check how these interactions can be manipulated to enable efficient separation of bee alarm pheromones in portable membrane inlet mass spectrometric (MIMS) systems using new membranes. The study involved the application of powerful computational atomistic methods based on a combination of modern semiempirical (GFN2-xTB), first principles (DFT), and force-field calculations. As a fundamental work material for the separation of molecules, we considered the PDMS polymer, a well-known sorbent material known to be applicable for light polar molecules. To improve its applicability as a sorbent material for heavier polar molecules, we considered two main factors—temperature and the addition of PEG polymer. Additional insights into molecular interactions were obtained by studying intrinsic reactive properties and noncovalent interactions between bee alarm pheromones and PDMS and PEG polymer chains. Full article
(This article belongs to the Special Issue Carbon–Multidisciplinary Investigations and Innovative Solutions)
Show Figures

Figure 1

20 pages, 4738 KB  
Article
Trans-Boundary Dust Transport of Dust Storms in Northern China: A Study Utilizing Ground-Based Lidar Network and CALIPSO Satellite
by Zhisheng Zhang, Zhiqiang Kuang, Caixia Yu, Decheng Wu, Qibing Shi, Shuai Zhang, Zhenzhu Wang and Dong Liu
Remote Sens. 2024, 16(7), 1196; https://doi.org/10.3390/rs16071196 - 29 Mar 2024
Cited by 7 | Viewed by 2305
Abstract
During 14–16 March 2021, a large-scale dust storm event occurred in the northern region of China, and it was considered the most intense event in the past decade. This study employs observation data for PM2.5 and PM10 from the air quality monitoring station, [...] Read more.
During 14–16 March 2021, a large-scale dust storm event occurred in the northern region of China, and it was considered the most intense event in the past decade. This study employs observation data for PM2.5 and PM10 from the air quality monitoring station, the HYSPLIT model, ground-based polarized Lidar networks, AGRI payload data from Fengyun satellites and CALIPSO satellite Lidar data to jointly explore and scrutinize the three-dimensional spatial and temporal characteristics of aerosol transport. Firstly, by integrating meteorological data for PM2.5 and PM10, the air quality is assessed across six stations within the Lidar network during the dust storm. Secondly, employing a backward trajectory tracking model, the study elucidates sources of dust at the Lidar network sites. Thirdly, deploying a newly devised portable infrared 1064 nm Lidar and a pulsed 532 nm Lidar, a ground-based Lidar observation network is established for vertical probing of transboundary dust transport within the observed region. Finally, by incorporating cloud imagery from Fengyun satellites and CALIPSO satellite Lidar data, this study revealed the classification of dust and the height distribution of dust layers at pertinent sites within the Lidar observation network. The findings affirm that the eastward movement and southward compression of the intensifying Mongolian cyclone led to severe dust storm weather in western and southern Mongolia, as well as Inner Mongolia, further transporting dust into northern, northwestern, and northeastern parts of China. This dust event wielded a substantial impact on a broad expanse in northern China, manifesting in localized dust storms in Inner Mongolia, Beijing, Gansu, and surrounding areas. In essence, the dust emanated from the deserts in Mongolia and northwest China, encompassing both deserts and the Gobi region. The amalgamation of ground-based and spaceborne Lidar observations conclusively establishes that the distribution height of dust in the source region ranged from 3 to 5 km. Influenced by high-pressure systems, the protracted transport of dust over extensive distances prompted a gradual reduction in its distribution height owing to sedimentation. The comprehensive analysis of pertinent research data and information collectively affirms the precision and efficacy of the three-dimensional aerosol monitoring conducted by the ground-based Lidar network within the region. Full article
Show Figures

Figure 1

11 pages, 8104 KB  
Article
Dual-Polarized Reconfigurable Manipulation Based on Flexible-Printed Intelligent Reflection Surface
by Xiaozhe Jia, Hongrui Tan, Xinyu Dong, Fuju Ye, Haoyang Cui and Lei Chen
Photonics 2024, 11(1), 69; https://doi.org/10.3390/photonics11010069 - 8 Jan 2024
Cited by 5 | Viewed by 2443
Abstract
In the background of 6G communication requiring a high data rate and energy efficiency, global coverage and connectivity, as well as high reliability and low latency, most existing reconfigurable metasurfaces face limitations in flexibility, integrability, energy consumption, and cost. This paper proposes a [...] Read more.
In the background of 6G communication requiring a high data rate and energy efficiency, global coverage and connectivity, as well as high reliability and low latency, most existing reconfigurable metasurfaces face limitations in flexibility, integrability, energy consumption, and cost. This paper proposes a dual-polarized intelligent reflection surface (IRS) based on a paper-based flexible substrate as a solution. The proposed design uniquely enables the independent control of two orthogonally polarized electromagnetic waves to achieve customized scattering effects. Compared to conventional reconfigurable intelligent surfaces using PCB technology and active components, this design utilizes paper as the substrate material combined with conductive ink and silver ink, significantly reducing production costs and process complexity. The manufacturing cost is only about one-tenth of the traditional PCB solutions. This approach is not only cost-effective but also excels in both flexibility and portability. These attributes signify its suitability for a broader range of potential applications, encompassing areas where traditional RIS may be impractical due to cost, rigidity, or complexity constraints. By drawing rotationally symmetric small metal block structures on paper using silver ink, four structures are designed that achieve a phase difference of 90 degrees for both x-polarized and y-polarized wave incidences at the resonant frequency of 4.5754 GHz, realizing independent phase modulation. The dual-polarized flexible 2-bit intelligent reflection surface consists of 20×20 unit cells, and six different coding patterns are designed for single-beam and dual-beam design based on different scattering angles. The experimental results show that this polarization-independent flexible 2-bit intelligent reflection surface structure successfully allows independent control of two orthogonally polarized electromagnetic waves, enabling customized scattering effects. The experimental results are highly consistent with the simulation results. The independent control of two orthogonal polarized electromagnetic waves is a key feature of our design, enabling more flexible and effective signal coverage in complex urban environments. This precise control over polarization not only enhances the adaptability of the system but also offers practical solutions for real-world applications, particularly in meeting the growing demands of urban communication. The proposed metasurface based on paper-based flexible substrate is low-cost and highly portable, and the polarization independence provides more degrees of freedom for the metasurface, which is beneficial for more precise and efficient beam control and can be applied in the field of communication, especially 6G communication and IRS wireless communication. In addition, it also has broad application prospects in radar systems and remote sensing applications. Full article
Show Figures

Figure 1

Back to TopTop