Polymer Composite-Based Triboelectric Nanogenerators: Recent Progress, Design Principles, and Future Perspectives
Abstract
1. Introduction
2. Factors Affecting the Performance of TENGs
3. Tribo-Negative Materials
3.1. Polydimethylsiloxane (PDMS): Flexible and Structurally Tunable Polymer
3.2. Polyvinylidene Fluoride (PVDF): Phase Engineering
3.2.1. PVDF-Carbon Composites
3.2.2. Non-Carbon Additive-Based PVDF Composite
4. Tribo-Positive Materials
4.1. Nylon: Wear-Resistant Polymer
4.2. Cellulose: Sustainable and Bio-Derived Polymer
5. Perspectives or Challenges
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, C.; Li, X.; Lian, S.W.M.; Ying, Y.; Ho, J.S.; Ping, J. Wireless Technologies for Energy Harvesting and Transmission for Ambient Self-Powered Systems. ACS Nano 2021, 15, 9328–9354. [Google Scholar] [CrossRef]
- Ali, A.; Shaukat, H.; Bibi, S.; Altabey, W.A.; Noori, M.; Kouritem, S.A. Recent Progress in Energy Harvesting Systems for Wearable Technology. Energy Strateg. Rev. 2023, 49, 101124. [Google Scholar] [CrossRef]
- Chu, S.; Cui, Y.; Liu, N. The Path Towards Sustainable Energy. Nat. Mater. 2017, 16, 16–22. [Google Scholar] [CrossRef]
- Wang, Z.L. Self-Powered Nanotech. Sci. Am. 2008, 298, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors. ACS Nano 2013, 7, 9533–9557. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.-J.; Ryu, H.; Kim, S.-W. Sustainable Powering Triboelectric Nanogenerators: Approaches and the Path Towards Efficient Use. Nano Energy 2018, 51, 270–285. [Google Scholar] [CrossRef]
- Fan, F.-R.; Tian, Z.-Q.; Lin Wang, Z. Flexible Triboelectric Generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Chen, J.; Wen, X.; Liu, X.; Cao, J.; Ding, Z.; Du, Z. Flexible Hierarchical Helical Yarn with Broad Strain Range for Self-Powered Motion Signal Monitoring and Human-Machine Interactive. Nano Energy 2021, 80, 105446. [Google Scholar] [CrossRef]
- Deng, W.; Yang, T.; Jin, L.; Yan, C.; Huang, H.; Chu, X.; Wang, Z.; Xiong, D.; Tian, G.; Gao, Y.; et al. Cowpea-Structured PVDF/ZnO Nanofibers Based Flexible Self-Powered Piezoelectric Bending Motion Sensor Towards Remote Control of Gestures. Nano Energy 2019, 55, 516–525. [Google Scholar] [CrossRef]
- Wang, J.; He, T.; Lee, C. Development of Neural Interfaces and Energy Harvesters Towards Self-Powered Implantable Systems for Healthcare Monitoring and Rehabilitation Purposes. Nano Energy 2019, 65, 104039. [Google Scholar] [CrossRef]
- Zhu, M.; Yi, Z.; Yang, B.; Lee, C. Making Use of Nanoenergy from Human–Nanogenerator and Self-Powered Sensor Enabled Sustainable Wireless IoT Sensory Systems. Nano Today 2021, 36, 101016. [Google Scholar] [CrossRef]
- Hasan, M.A.M.; Zhang, T.; Wu, H.; Yang, Y. Water Droplet-Based Nanogenerators. Adv. Energy Mater. 2022, 12, 2201383. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.; Nan, Y.; Xu, H.; Zhou, H.; Sun, Y.; Yi, P.; Yu, T. Droplet Energy Harvesting System Based on Mxene/SiO2 Modified Triboelectric Nanogenerators. Chem. Eng. J. 2023, 477, 146832. [Google Scholar] [CrossRef]
- Choi, G.-J.; Sohn, S.-H.; Park, I.-K. Electrostatic Induction Nanogenerator Boosted by One-Dimensional Metastructure: Application to Energy and Information Transmitting Smart Tag System. Adv. Sci. 2023, 10, 2205141. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Liu, L.; Xu, X.; Liu, A.; Wu, H.; Li, J.; Ou-Yang, W. A Self-Powered Acoustic Sensor Excited by Ultrasonic Wave for Detecting and Locating Underwater Ultrasonic Sources. Nano Energy 2022, 104, 107879. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Zhang, J.; Shang, J.; Lin, L.; Liu, Q.; An, Q. Acoustoelectric Materials & Devices in Biomedicine. Chem. Eng. J. 2024, 483, 149314. [Google Scholar] [CrossRef]
- Zou, H.; Zhang, Y.; Guo, L.; Wang, P.; He, X.; Dai, G.; Zheng, H.; Chen, C.; Wang, A.C.; Xu, C.; et al. Quantifying the Triboelectric Series. Nat. Commun. 2019, 10, 1427. [Google Scholar] [CrossRef]
- Zou, H.; Guo, L.; Xue, H.; Zhang, Y.; Shen, X.; Liu, X.; Wang, P.; He, X.; Dai, G.; Jiang, P.; et al. Quantifying and Understanding the Triboelectric Series of Inorganic Non-Metallic Materials. Nat. Commun. 2020, 11, 2093. [Google Scholar] [CrossRef]
- Niu, S.; Wang, S.; Lin, L.; Liu, Y.; Zhou, Y.S.; Hu, Y.; Wang, Z.L. Theoretical Study of Contact-Mode Triboelectric Nanogenerators as an Effective Power Source. Energy Environ. Sci. 2013, 6, 3576–3583. [Google Scholar] [CrossRef]
- Fang, J.; Niu, H.; Wang, H.; Wang, X.; Lin, T. Enhanced Mechanical Energy Harvesting Using Needleless Electrospun Poly(Vinylidene Fluoride) Nanofibre Webs. Energy Environ. Sci. 2013, 6, 2196–2202. [Google Scholar] [CrossRef]
- Kong, T.-H.; Lee, S.-S.; Choi, G.-J.; Park, I.-K. Churros-Like Polyvinylidene Fluoride Nanofibers for Enhancing Output Performance of Triboelectric Nanogenerators. ACS Appl. Mater. Interfaces 2020, 12, 17824–17832. [Google Scholar] [CrossRef]
- Chen, J.; Guo, H.; He, X.; Liu, G.; Xi, Y.; Shi, H.; Hu, C. Enhancing Performance of Triboelectric Nanogenerator by Filling High Dielectric Nanoparticles into Sponge PDMS Film. ACS Appl. Mater. Interfaces 2016, 8, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.; Pang, C.; Cho, S.B. A Micropillar-Assisted Versatile Strategy for Highly Sensitive and Efficient Triboelectric Energy Generation under in-Plane Stimuli. Adv. Mater. 2020, 32, 1905539. [Google Scholar] [CrossRef] [PubMed]
- Dhakar, L.; Gudla, S.; Shan, X.; Wang, Z.; Tay, F.E.H.; Heng, C.-H.; Lee, C. Large Scale Triboelectric Nanogenerator and Self-Powered Pressure Sensor Array Using Low Cost Roll-to-Roll UV Embossing. Sci. Rep. 2016, 6, 22253. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Chan, K.H.; Lu, X.; Tan, C.F.; Ho, G.W. Surface Texturing and Dielectric Property Tuning toward Boosting of Triboelectric Nanogenerator Performance. J. Mater. Chem. A 2018, 6, 52–57. [Google Scholar] [CrossRef]
- Lin, L.; Xie, Y.; Wang, S.; Wu, W.; Niu, S.; Wen, X.; Wang, Z.L. Triboelectric Active Sensor Array for Self-Powered Static and Dynamic Pressure Detection and Tactile Imaging. ACS Nano 2013, 7, 8266–8274. [Google Scholar] [CrossRef]
- Ahn, J.; Zhao, Z.-J.; Choi, J.; Jeong, Y.; Hwang, S.; Ko, J.; Gu, J.; Jeon, S.; Park, J.; Kang, M.; et al. Morphology-Controllable Wrinkled Hierarchical Structure and Its Application to Superhydrophobic Triboelectric Nanogenerator. Nano Energy 2021, 85, 105978. [Google Scholar] [CrossRef]
- Nie, S.; Guo, H.; Lu, Y.; Zhuo, J.; Mo, J.; Wang, Z.L. Superhydrophobic Cellulose Paper-Based Triboelectric Nanogenerator for Water Drop Energy Harvesting. Adv. Mater. Technol. 2020, 5, 2000454. [Google Scholar] [CrossRef]
- Wang, N.; Feng, Y.; Zheng, Y.; Zhang, L.; Feng, M.; Li, X.; Zhou, F.; Wang, D. New Hydrogen Bonding Enhanced Polyvinyl Alcohol Based Self-Charged Medical Mask with Superior Charge Retention and Moisture Resistance Performances. Adv. Funct. Mater. 2021, 31, 2009172. [Google Scholar] [CrossRef]
- Wang, N.; Zheng, Y.; Feng, Y.; Zhou, F.; Wang, D. Biofilm Material Based Triboelectric Nanogenerator with High Output Performance in 95% Humidity Environment. Nano Energy 2020, 77, 105088. [Google Scholar] [CrossRef]
- Lu, C.X.; Han, C.B.; Gu, G.Q.; Chen, J.; Yang, Z.W.; Jiang, T.; He, C.; Wang, Z.L. Temperature Effect on Performance of Triboelectric Nanogenerator. Adv. Eng. Mater. 2017, 19, 1700275. [Google Scholar] [CrossRef]
- Xu, C.; Wang, A.C.; Zou, H.; Zhang, B.; Zhang, C.; Zi, Y.; Pan, L.; Wang, P.; Feng, P.; Lin, Z.; et al. Raising the Working Temperature of a Triboelectric Nanogenerator by Quenching Down Electron Thermionic Emission in Contact-Electrification. Adv. Mater. 2018, 30, 1803968. [Google Scholar] [CrossRef]
- Shao, J.; Jiang, T.; Tang, W.; Xu, L.; Kim, T.W.; Wu, C.; Chen, X.; Chen, B.; Xiao, T.; Bai, Y.; et al. Studying About Applied Force and the Output Performance of Sliding-Mode Triboelectric Nanogenerators. Nano Energy 2018, 48, 292–300. [Google Scholar] [CrossRef]
- Bai, Y.; Zhu, W.; Zhang, M.; Hasan, M.A.M.; Bowen, C.R.; Yang, Y. Triboelectric Nanogenerator for Harvesting Ultra-High-Speed Wind Energy with High-Frequency Output. J. Mater. Chem. A 2025, 13, 9101–9110. [Google Scholar] [CrossRef]
- Miranda, I.; Souza, A.; Sousa, P.; Ribeiro, J.; Castanheira, E.M.S.; Lima, R.; Minas, G. Properties and Applications of PDMS for Biomedical Engineering: A Review. J. Func. Biomater. 2022, 13, 2. [Google Scholar] [CrossRef]
- Zhou, J.; Ellis, A.V.; Voelcker, N.H. Recent Developments in PDMS Surface Modification for Microfluidic Devices. Electrophoresis 2010, 31, 2–16. [Google Scholar] [CrossRef]
- Shivashankar, H.; Kevin, A.M.; Manohar, S.B.S.; Kulkarni, S.M. Investigation on Dielectric Properties of PDMS Based Nanocomposites. Phys. B 2021, 602, 412357. [Google Scholar] [CrossRef]
- Meng, X.; Hui, D.; Ge, S.; Zhou, S.; Hu, X.; Lin, D.; Liu, W. Nanopillar- and Nanocone-Structured SrTiO3/PDMS Films for Triboelectric Nanogenerators. ACS Appl. Nano Mater. 2024, 7, 14193–14202. [Google Scholar] [CrossRef]
- Kavarthapu, V.S.; Paranjape, M.V.; Manchi, P.; Kurakula, A.; Lee, J.K.; Graham, S.A.; Yu, J.S. Wireless Alerts and Data Monitoring from BNNO-MWCNTs/PDMS Composite Film-Based TENG Integrated Inhaler for Smart Healthcare Application. Small 2024, 20, 2403218. [Google Scholar] [CrossRef]
- Mao, J.; Wen, Y.; Feng, X.; Xu, W.; Seo, S. Multi-Sized Porous Silica/PDMS Composite Layer for Enhanced Performance in Triboelectric Nanogenerators. Appl. Surf. Sci. 2025, 687, 162291. [Google Scholar] [CrossRef]
- Zhu, H.; Liang, J.; Long, W.; Zeng, F.; Zhang, X.; Chen, Z. Enhancing PDMS-Based Triboelectric Nanogenerator Output by Optimizing the Microstructure and Dielectric Constant. J. Mater. Chem. C 2024, 12, 1782–1791. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, W.; Chen, P.; Zhang, Y.; Wang, X.; Hu, Y. Effects of PDMS Base/Agent Ratios and Texture Sizes on the Electrical Performance of Triboelectric Nanogenerators. Adv. Mater. Interfaces 2022, 9, 2102139. [Google Scholar] [CrossRef]
- Liu, Y.; Li, E.; Yan, Y.; Lin, Z.; Chen, Q.; Wang, X.; Shan, L.; Chen, H.; Guo, T. A One-Structure-Layer PDMS/MXenes Based Stretchable Triboelectric Nanogenerator for Simultaneously Harvesting Mechanical and Light Energy. Nano Energy 2021, 86, 106118. [Google Scholar] [CrossRef]
- Li, L.; Zhang, M.; Rong, M.; Ruan, W. Studies on the Transformation Process of PVDF from α to β Phase by Stretching. RSC Adv. 2014, 4, 3938–3943. [Google Scholar] [CrossRef]
- Salimi, A.; Yousefi, A.A. Analysis Method: Ftir Studies of β-Phase Crystal Formation in Stretched PVDF Films. Polym. Test 2003, 22, 699–704. [Google Scholar] [CrossRef]
- Lee, C.; Tarbutton, J.A. Electric Poling-Assisted Additive Manufacturing Process for PVDF Polymer-Based Piezoelectric Device Applications. Smart Mater. Struct. 2014, 23, 095044. [Google Scholar] [CrossRef]
- Soin, N.; Boyer, D.; Prashanthi, K.; Sharma, S.; Narasimulu, A.A.; Luo, J.; Shah, T.H.; Siores, E.; Thundat, T. Exclusive Self-Aligned β-Phase PVDF Films with Abnormal Piezoelectric Coefficient Prepared Via Phase Inversion. Chem. Commun. 2015, 51, 8257–8260. [Google Scholar] [CrossRef]
- De Neef, A.; Samuel, C.; Amorín, H.; Stoclet, G.; Jiménez, R.; Dubois, P.; Soulestin, J.; Raquez, J.-M. Beta Phase Crystallization and Ferro- and Piezoelectric Performances of Melt-Processed Poly(Vinylidene Difluoride) Blends with Poly(Methyl Methacrylate) Copolymers Containing Ionizable Moieties. ACS Appl. Polym. Mater. 2020, 2, 3766–3780. [Google Scholar] [CrossRef]
- Lam, T.-N.; Ma, C.-Y.; Hsiao, P.-H.; Ko, W.-C.; Huang, Y.-J.; Lee, S.-Y.; Jain, J.; Huang, E.-W. Tunable Mechanical and Electrical Properties of Coaxial Electrospun Composite Nanofibers of P(VDF-TrFE) and P(VDF-TrFE-CTFE). Int. J. Mol. Sci. 2021, 22, 4639. [Google Scholar] [CrossRef]
- Titirici, M.-M.; White, R.J.; Brun, N.; Budarin, V.L.; Su, D.S.; del Monte, F.; Clark, J.H.; MacLachlan, M.J. Sustainable Carbon Materials. Chem. Soc. Rev. 2015, 44, 250–290. [Google Scholar] [CrossRef]
- Choi, G.-J.; Baek, S.-H.; Lee, S.-S.; Khan, F.; Kim, J.H.; Park, I.-K. Performance Enhancement of Triboelectric Nanogenerators Based on Polyvinylidene Fluoride/Graphene Quantum Dot Composite Nanofibers. J. Alloys Compd. 2019, 797, 945–951. [Google Scholar] [CrossRef]
- Shi, L.; Jin, H.; Dong, S.; Huang, S.; Kuang, H.; Xu, H.; Chen, J.; Xuan, W.; Zhang, S.; Li, S.; et al. High-Performance Triboelectric Nanogenerator Based on Electrospun PVDF-Graphene Nanosheet Composite Nanofibers for Energy Harvesting. Nano Energy 2021, 80, 105599. [Google Scholar] [CrossRef]
- Jiao, Y.; Lin, Z.; Ma, X.; Zhou, L.; Guo, X.; Hu, Z.; Hu, X.-G.; Zhao, X.; Ding, L.; Hao, Y.; et al. High-Performance Triboelectric Nanogenerators Based on Blade-Coating Lead Halide Perovskite Film and Electrospinning PVDF/Graphene Nanofiber. Chem. Eng. J. 2024, 483, 149442. [Google Scholar] [CrossRef]
- Li, S.; Hu, Y.; He, P.; Qu, J.; Zhao, J.; Mo, J.; Fan, Z. Enhanced Performance of TENG through Graphene Oxide and Transition Layer Coupling: Achieving Green Energy Harvesting and Powering Wearable Devices. Nano Energy 2025, 133, 110436. [Google Scholar] [CrossRef]
- Sadeque, M.S.B.; Rahman, M.; Hasan, M.M.; Ordu, M. Graphene Nanoplatelet Integrated Thermally Drawn PVDF Triboelectric Nanocomposite Fibers for Extreme Environmental Conditions. Adv. Electron. Mater. 2024, 10, 2300643. [Google Scholar] [CrossRef]
- Lee, C.-H.; Huang, W.-K.; Lin, M.-F.; Kuo, Y.-H.; Liu, S.-J.; Ito, H. Augmented Triboelectric Properties of Graphene-Filled Poly(Vinylidene Difluoride-Co-Hexafluoropropylene) (PVDF-HFP) Nanofibers. RSC Adv. 2024, 14, 38416–38425. [Google Scholar] [CrossRef]
- Pandey, P.; Jung, D.-H.; Choi, G.-J.; Seo, M.-K.; Lee, S.; Kim, J.M.; Park, I.-K.; Sohn, J.I. Nafion-Mediated Barium Titanate-Polymer Composite Nanofibers-Based Triboelectric Nanogenerator for Self-Powered Smart Street and Home Control System. Nano Energy 2023, 107, 108134. [Google Scholar] [CrossRef]
- Im, J.-S.; Park, I.-K. Mechanically Robust Magnetic Fe3O4 Nanoparticle/Polyvinylidene Fluoride Composite Nanofiber and Its Application in a Triboelectric Nanogenerator. ACS Appl. Mater. Interfaces 2018, 10, 25660–25665. [Google Scholar] [CrossRef]
- Ippili, S.; Jella, V.; Thomas, A.M.; Yoon, C.; Jung, J.-S.; Yoon, S.-G. ZnAl–LDH-Induced Electroactive β-Phase and Controlled Dielectrics of PVDF for a High-Performance Triboelectric Nanogenerator for Humidity and Pressure Sensing Applications. J. Mater. Chem. A 2021, 9, 15993–16005. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, X.; Zhou, Y.; Shao, J.; Zhao, L.; Wang, T.; Liu, F.; Yan, X.; Yang, M.; Sun, P.; et al. Ultra-Thin and Sensitive Pressure Sensor Based on MXene/PVDF-HFP Composite Fiber TENG for Self-Diagnosis of Ligament Injuries. Nano Energy 2024, 132, 110372. [Google Scholar] [CrossRef]
- Zhao, H.; Lin, J.-H.; Ren, H.-T.; Peng, H.-k.; Lou, C.-W.; Li, T.-T. Triboelectric Nanogenerator Based on Superstructure MoS2 for Energy Harvesting and Human Sensing. Chem. Eng. J. 2025, 505, 159107. [Google Scholar] [CrossRef]
- Sohn, S.-H.; Choi, G.-J.; Park, I.-K. Metal-Organic Frameworks-Induced Self-Poling Effect of Polyvinylidene Fluoride Nanofibers for Performance Enhancement of Triboelectric Nanogenerator. Chem. Eng. J. 2023, 475, 145860. [Google Scholar] [CrossRef]
- Cheon, S.; Kang, H.; Kim, H.; Son, Y.; Lee, J.Y.; Shin, H.-J.; Kim, S.-W.; Cho, J.H. High-Performance Triboelectric Nanogenerators Based on Electrospun Polyvinylidene Fluoride–Silver Nanowire Composite Nanofibers. Adv. Funct. Mater. 2018, 28, 1703778. [Google Scholar] [CrossRef]
- Hao, Y.; Yang, J.; Niu, Z.; Wang, M.; Liu, H.; Qin, Y.; Zhang, C.; Li, X. High-Output Triboelectric Nanogenerator Based on L-Cystine/Nylon Composite Nanofiber for Human Bio-Mechanical Energy Harvesting. Nano Energy 2023, 118, 108964. [Google Scholar] [CrossRef]
- Prasad, G.; Graham, S.A.; Yu, J.S.; Kim, H.; Lee, D.-W. Investigated a PLL Surface-Modified Nylon 11 Electrospun as a Highly Tribo-Positive Frictional Layer to Enhance Output Performance of Triboelectric Nanogenerators and Self-Powered Wearable Sensors. Nano Energy 2023, 108, 108178. [Google Scholar] [CrossRef]
- Roy, S.; Dasgupta Ghosh, B.; Mishra, S.; Lim Goh, K.; Kim, J. Customized Extrusion Nozzle Assisted Robust Nylon 6/MWCNT Nanocomposite Based Triboelectric Nanogenerators for Advanced Smart Wearables. Chem. Eng. J. 2024, 493, 152598. [Google Scholar] [CrossRef]
- Manchi, P.; Paranjape, M.V.; Kurakula, A.; Graham, S.A.; Kavarthapu, V.S.; Yu, J.S. Pda-Ag/Tio2 Nanoparticles-Loaded Electrospun Nylon Composite Nanofibrous Film-Based Triboelectric Nanogenerators for Wearable Biomechanical Energy Harvesting and Multifunctional Sensors. Adv. Funct. Mater. 2025, 35, 2416018. [Google Scholar] [CrossRef]
- Moon, C.-J.; Choi, G.-J.; Sohn, S.-H.; Kim, S.-J.; Park, I.-K. Enhanced Performance of Triboelectric Nanogenerator Based on TiO2 Nanoparticle/Nylon 66 Composite Nanofibers. Int. J. Precis. Eng. Manuf.-Green Technol. 2025. [Google Scholar] [CrossRef]
- Choi, G.-J.; Sohn, S.-H.; Park, I.-K. Diminish Charge Loss by Mica Incorporation into Nylon Nanofibers for Performance Enhancement of Triboelectric Nanogenerators Operating in Harsh Ambient. Chem. Eng. J. 2024, 493, 152314. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Deng, T.; Xiang, G. Mechanically Robust and Electrically Stable High-Performance Triboelectric Nanogenerator Based on Fluffy-Free EC/Nylon-11 and PTFE/PVDF Nanofibers. ACS Appl. Mater. Interfaces 2023, 15, 52696–52704. [Google Scholar] [CrossRef]
- Ummartyotin, S.; Manuspiya, H. A Critical Review on Cellulose: From Fundamental to an Approach on Sensor Technology. Renew. Sustain. Energy Rev. 2015, 41, 402–412. [Google Scholar] [CrossRef]
- Luo, C.; Shao, Y.; Yu, H.; Ma, H.; Zhang, Y.; Yin, B.; Yang, M.-b. Improving the Output Performance of Bacterial Cellulose-Based Triboelectric Nanogenerators by Modulating the Surface Potential in a Simple Method. ACS Sustain. Chem. Eng. 2022, 10, 13050–13058. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.; Zhao, J.; Wang, X.; Li, X.; Liu, T.; Luo, B.; Qin, Y.; Zhang, S.; Chi, M.; et al. Cellulose Template-Based Triboelectric Nanogenerators for Self-Powered Sensing at High Humidity. Nano Energy 2023, 108, 108196. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Ren, P.; Yu, S.; Cui, P.; Nielsen, C.B.; Abrahams, I.; Briscoe, J.; Lu, Y. Versatile and Recyclable Double-Network PVA/Cellulose Hydrogels for Strain Sensors and Triboelectric Nanogenerators under Harsh Conditions. Nano Energy 2024, 125, 109599. [Google Scholar] [CrossRef]
- Choi, G.-J.; Sohn, S.-H.; Kim, S.-J.; Park, I.-K. Humidity-Resistive Triboelectric Nanogenerators Based on Cellulose Acetate Nanofibers Via Incorporation of Self-Delaminated CoAl-Layered Double Hydroxides. Chem. Eng. J. 2025, 504, 158883. [Google Scholar] [CrossRef]
- Wang, F.; Wang, S.; Liu, Y.; Ouyang, S.; Sun, D.; Yang, X.; Li, J.; Wu, Z.; Qian, J.; Zhao, Z.; et al. Cellulose Nanofiber-Based Triboelectric Nanogenerators for Efficient Air Filtration in Harsh Environments. Nano Lett. 2024, 24, 2861–2869. [Google Scholar] [CrossRef]
- Jiao, C.; Li, C.; Yue, J.; Li, L.; Yang, H.; Tao, Y.; Lu, J.; Lv, Y.; Wang, H.; Tan, M.; et al. Structurally Robust Cellulosic Triboelectric Materials under High Moisture Conditions for Self-Powered Sensing. Nano Energy 2024, 122, 109311. [Google Scholar] [CrossRef]
- Wang, R.; Ma, J.; Ma, S.; Zhang, Q.; Li, N.; Ji, M.; Jiao, T.; Cao, X. A Biodegradable Cellulose-Based Flame-Retardant Triboelectric Nanogenerator for Fire Warning. Chem. Eng. J. 2022, 450, 137985. [Google Scholar] [CrossRef]
- Shi, Y.; Lin, C.; Deng, P.; Cao, L.N.Y.; Wang, W.; Li, W.; Lin, H.; Yang, Y.; Wang, H.; Ye, M.; et al. Self-Powered Wearable Human-Computer Interaction System Based on Kapok Cellulose Nanofibers. Chem. Eng. J. 2024, 488, 151059. [Google Scholar] [CrossRef]
- BN Bhavya, A.S.; Abdul Hakkeem, H.M.; Pillai, S.; Chandran, A.; Surendran, K.P. A High Output Triboelectric Nanogenerator Based on 2D Boron Nitride Nanosheet–PVP Composite Ink and Electrospun Cellulose Acetate Nanofibers for Kinetic Energy Harvesting and Self-Powered Tactile Sensing Applications. Sustain. Energy Fuels 2025, 9, 3731–3742. [Google Scholar] [CrossRef]
Composite Materials | Process | Performance (Surface Area) | References |
---|---|---|---|
PDMS/SrTiO3 | Spin-coating | 130 VOC, 1.4 μA, 90 μW | [38] |
PDMS/BNNO-MWCNTs | Casting | 300 VOC, 8.5 μA, 7.03 W/m2 () | [39] |
PDMS/Silica | Blade Coating | 254 VOC, 20.4 μA, 4.37 W/m2 | [40] |
PDMS/AgNWs | Casting and Rolling | 33.4 VOC, 4.5 mA, 0.162 W/m2 () | [41] |
PDMS (Agent ratio) | Spin-coating | 54.3 VOC () | [42] |
PDMS/MXene | Spin-coating | 453 VOC, 131 μA | [43] |
Composite Materials | Process | Performance Enhancement Factor | Performance (Surface Area) | References |
---|---|---|---|---|
PVDF/Graphene QDs | Electrospinning | β-phase fraction ↑ | 27 mW/m2 () | [51] |
PVDF/Graphene Nanosheet | Electrospinning | β-phase fraction ↑ | 1511 VOC, 189 mA/m2, 130.2 W/m2 () | [52] |
PVDF/Graphene | Electrospinning | β-phase fraction ↑ | 200 VOC, 16.3 μA, 11.32 W/m2 () | [53] |
PVDF/Graphene Oxide | Blade Coating | β-phase fraction ↑ Permittivity ↑ | 318.5 VOC, 2.1 μA/cm2, 2.6 W/m2 () | [54] |
PVDF/Graphene Nanoplatelet | Casting and Rolling | β-phase fraction ↑ | 28.4 VOC, 30 μA, 53.57 mW/m2 () | [55] |
PVDF-HFP/Graphene | Electrospinning | Permittivity ↑ | 1024 VOC, 1.11 μA/cm2, 1.95 W/m2 | [56] |
Composite Materials | Process | Performance (Surface Area) | References |
---|---|---|---|
PVDF/BaTiO3 | Electrospinning | 307 VOC, 1.8 μA/cm2, 11.2 W/m2 () | [57] |
PVDF/Fe3O4 | Electrospinning | 138 VOC, 5.68 μA () | [58] |
PVDF/ZnAl LDH | Spin-coating | 230.6 VOC, 5.6 μA, 4.3 W/m2 () | [59] |
PVDF/MXene | Electrospinning | 0.228 W/m2 () | [60] |
PVDF/MoS2 | Electrospinning | 208 VOC, 31 μA, 1.42 W/m2 () | [61] |
PVDF/MOFs(MIL-101) | Electrospinning | 536 VOC, 21.7 μA, 5.68 W/m2 () | [62] |
PVDF/Ag NWs | Electrospinning | 240 VOC, 12 μA () | [63] |
Composite Materials | Process | Performance (Surface Area) | References |
---|---|---|---|
Nylon/L-cystine | Electrospinning | 325 VOC, 50 μA, 10.26 W/m2 () | [64] |
Nylon 11/Poly-L-lysine(PLL) | Electrospinning | 270 VOC, 7.2 μA, 2 W/m2 () | [65] |
Nylon 6/MWCNTs | Hot press compression molding | 105.7 VOC, 10.55 μA, 0.465 W/m2 () | [66] |
Nylon 66/PDA-Ag/TiO2 NP | Electrospinning | 370 VOC, 15 μA, 5.4 W/m2 () | [67] |
Nylon 66/TiO2 NPs | Electrospinning | 506 VOC, 21.8 μA, 17.5 W/m2 () | [68] |
Nylon 66/Mica | Electrospinning | 659 VOC, 53.6 W/m2 () | [69] |
Nylon 11/Fluffy-Free EC | Electrospinning | 212 VOC, 18.5 μA, 1.76 W/m2 () | [70] |
Composite Materials | Process | Performance (Surface Area) | References |
---|---|---|---|
Bacterial Cellulose/ Hydroxyethyl Cellulose | Dip-coating/Drying | 76.6 VOC, 8.68 μA, 0.72 W/m2 () | [72] |
Cellulose/MXene | Impregnation | 84 VOC, 0.25 W/m2 () | [73] |
Cellulose/PVA Hydrogel | Casting | 211.3 VOC, 1.81 W/m2 () | [74] |
Cellulose Acetate/CoAl-LDH | Electrospinning | 160 VOC, 6.38 W/m2 () | [75] |
Cellulose/Graphene Oxide/ ZIF-8 | Hydrothermal synthesis Freeze-drying THS surface modification | 180 VOC, 24 μA, 0.413 W/m2 | [76] |
Cellulose/PEI | Pulping | 157.3 VOC, 3.47 μA, 0.146 W/m2 () | [77] |
Cellulose/ Black Phosphorus/Phytic Acid | Vacuum Filtration | 116 VOC, 3.8 μA, 0.114 W/m2 | [78] |
Kapok Cellulose | TEMPO-Oxidation | 75 VOC, 3.8 μA, 0.8 W/m2 () | [79] |
Cellulose/2D Boron Nitride | Electrospinning | 1200 VOC, 1.2 mA, 1.4 W/m2 () | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, G.-J.; Sohn, S.-H.; Kim, S.-J.; Park, I.-K. Polymer Composite-Based Triboelectric Nanogenerators: Recent Progress, Design Principles, and Future Perspectives. Polymers 2025, 17, 1962. https://doi.org/10.3390/polym17141962
Choi G-J, Sohn S-H, Kim S-J, Park I-K. Polymer Composite-Based Triboelectric Nanogenerators: Recent Progress, Design Principles, and Future Perspectives. Polymers. 2025; 17(14):1962. https://doi.org/10.3390/polym17141962
Chicago/Turabian StyleChoi, Geon-Ju, Sang-Hyun Sohn, Se-Jin Kim, and Il-Kyu Park. 2025. "Polymer Composite-Based Triboelectric Nanogenerators: Recent Progress, Design Principles, and Future Perspectives" Polymers 17, no. 14: 1962. https://doi.org/10.3390/polym17141962
APA StyleChoi, G.-J., Sohn, S.-H., Kim, S.-J., & Park, I.-K. (2025). Polymer Composite-Based Triboelectric Nanogenerators: Recent Progress, Design Principles, and Future Perspectives. Polymers, 17(14), 1962. https://doi.org/10.3390/polym17141962