Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = porous calcium carbonate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3793 KiB  
Review
Research Progress on Vaterite Mineral and Its Synthetic Analogs
by Guoxi Sun, Xiuming Liu, Bin Lian and Shijie Wang
Minerals 2025, 15(8), 796; https://doi.org/10.3390/min15080796 - 29 Jul 2025
Viewed by 271
Abstract
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the [...] Read more.
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the following breakthroughs in the last two decades: (1) From primitive calculations and spectroscopic analyses to modern multidimensional research methods combining calculations and experiments, the crystal structure of vaterite has turned from early identifications in orthorhombic and hexagonal crystal systems to a complex polymorphic structure within the monoclinic crystal system. (2) The formation process of vaterite not only conforms to the classical crystal growth theory but also encompasses the nanoparticle aggregation theory, which incorporates the concepts of oriented nanoparticle assembly and mesoscale transformation. (3) Regardless of the conditions, the formation of vaterite depends on an excess of CO32− relative to Ca2+, and its stability duration relates to preservation conditions. (4) Vaterite demonstrates significant value in biomedical applications—including bone repair scaffolds, targeted drug carriers, and antibacterial coating materials—leveraging its porous structure, high specific surface area, and exceptional biocompatibility. While it also shows utility in environmental pollutant adsorption and general coating technologies, the current research remains predominantly concentrated on its medical applications. Currently, the rapid transformation of vaterite presents the primary limitation for its industrial application. Future research should prioritize investigating its formation kinetics and stability. Full article
Show Figures

Figure 1

18 pages, 1437 KiB  
Article
Exploration of Microbially Induced Carbonate Precipitation Technology for the Protection of Soil on Agricultural Drainage Ditch Slopes
by Xinran Huang, Jiang Li, Mingxiao Su, Xiyun Jiao, Qiuming Wu and Zhe Gu
Water 2025, 17(13), 2010; https://doi.org/10.3390/w17132010 - 4 Jul 2025
Viewed by 382
Abstract
Microbially induced carbonate precipitation (MICP) offers an eco-friendly approach to stabilize porous materials. This study evaluates its feasibility for protecting agricultural drainage ditch slopes through laboratory tests. Liquid experiments assessed calcium carbonate (CaCO3) precipitation rates under varying bacteria–cementation solution ratios (BCR), [...] Read more.
Microbially induced carbonate precipitation (MICP) offers an eco-friendly approach to stabilize porous materials. This study evaluates its feasibility for protecting agricultural drainage ditch slopes through laboratory tests. Liquid experiments assessed calcium carbonate (CaCO3) precipitation rates under varying bacteria–cementation solution ratios (BCR), cementation solution concentrations (1–2 mol/L), and urease inhibitor (NBPT) contents (0–0.3%). Soil experiments further analyzed the effects of solidified layer thickness (4 cm vs. 8 cm) and curing cycles on soil stabilization. The results showed that CaCO3 precipitation peaked at a BCR of 4:5 and declined when NBPT exceeded 0.1%. Optimal parameters (0.1% NBPT, 1 mol/L cementation solution, BCR 4:5) were applied to soil tests, revealing that multi-cycle treatments enhanced soil water retention and CaCO3 content (up to 7.6%) and reduced disintegration rates (by 70%) and permeability (by 83%). A 4 cm solidified layer achieved higher Ca2+ utilization, while an 8 cm layer matched or exceeded 4 cm performance with shorter curing. Calcite crystals dominated CaCO3 formation. Crucially, reagent dosage should approximate four times the target layer’s requirement to ensure efficacy. These findings demonstrate that MICP, when optimized, effectively stabilizes ditch slopes using minimal reagents, providing a sustainable strategy for agricultural soil conservation. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

16 pages, 8378 KiB  
Article
Comparative Assessment of Hygroscopic Properties and Thermal Performance of Activated Carbon-Based Physical Adsorbents and Advanced Composite Adsorbents
by Siyu Wei, Zhengpeng Fan, Songyu Zhang, Yutong Xiao, Chunhao Wang, Shanbi Peng and Xueying Zhang
Materials 2025, 18(10), 2280; https://doi.org/10.3390/ma18102280 - 14 May 2025
Viewed by 471
Abstract
The water adsorption property was shown to be the critical process limiting the thermal output in the adsorption heat storage driven by the air humidity process, which was different for the physical adsorbent and the physical/chemical adsorbent. In this study, coconut shell-based activated [...] Read more.
The water adsorption property was shown to be the critical process limiting the thermal output in the adsorption heat storage driven by the air humidity process, which was different for the physical adsorbent and the physical/chemical adsorbent. In this study, coconut shell-based activated carbon (CAC), a hierarchically porous material that is both low-cost and mass-producible, was utilized as a physical adsorbent and as a matrix for loading calcium chloride (CAC/Ca). The incorporation of calcium chloride in CAC, with a 24% content, resulted in a 4~102% increase in water uptake capacity. The water uptake dynamics of high-thickness adsorbents are inhibited, especially for CAC/Ca. In the context of the adsorption test conducted within a fixed-bed reactor, an increase in air velocity was observed to facilitate water vapor supply, thereby culminating in higher output temperatures for both CAC and CAC/Ca, indicating a higher hydration conversion. The maximum discharge powers of CAC/Ca increased from 2 kW/m3 to 20 kW/m3, with the air velocity increasing from 0.5 m/s to 2.5 m/s. The heat-release densities of CAC and CAC/Ca at the air velocity of 2.5 m/s were 156 kJ/kg and 547 kJ/kg, respectively. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

15 pages, 3580 KiB  
Article
Calcium Precipitates as Novel Agents for Controlling Steam Channeling in Steam Injection Processes for Heavy Oil Recovery
by Guolin Shao, Zhuang Shi, Yunfei Jia, Qian Cheng, Ning Kang and Xiaoqiang Wang
Processes 2025, 13(5), 1319; https://doi.org/10.3390/pr13051319 - 25 Apr 2025
Viewed by 366
Abstract
Unconventional heavy oil reservoirs are particularly susceptible to steam breakthrough, which significantly reduces crude oil production. Profile control is a crucial strategy used for stabilizing oil production and minimizing production costs in these reservoirs. Conventional plugging agent systems used in the thermal recovery [...] Read more.
Unconventional heavy oil reservoirs are particularly susceptible to steam breakthrough, which significantly reduces crude oil production. Profile control is a crucial strategy used for stabilizing oil production and minimizing production costs in these reservoirs. Conventional plugging agent systems used in the thermal recovery of heavy oil currently fail to meet the high-temperature, high-strength, and deep profile control requirements of this process. Precipitation-type calcium salt blocking agents demonstrate long-term stability at 300 °C and concentrations up to 250,000 mg/L, making them highly effective for profile control and channeling blockage during the steam injection stages of heavy oil recovery. This study proposes two types of precipitation-type calcium salt blocking agents: CaSO4 and CaCO3 crystals. The precipitation behavior of these agents was investigated, and their dynamic growth patterns were examined. The calcium sulfate blocking agent exhibits a slower crystal precipitation rate, allowing for a single-solution injection, while the calcium carbonate blocking agent precipitates rapidly, requiring a dual-solution injection. Both systems incorporate scale inhibitors to delay the growth of calcium salt crystals, which aids in deep profile control. Through microscopic visualization experiments, the micro-blocking characteristics of the calcium salt blocking agent systems within pores were compared, elucidating the blocking positions of the precipitated calcium salts under porous conditions. Calcium sulfate crystals preferentially precipitate in and block larger pore channels, whereas calcium carbonate crystals are more evenly distributed throughout the pore channels, reducing the reservoir’s heterogeneity. The final single-core displacement experiment demonstrated the sealing properties of the precipitation-type calcium salt blocking agent systems. The developed precipitation-type calcium salt blocking agent systems exhibit excellent profile control performance. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Graphical abstract

15 pages, 8728 KiB  
Article
Factors Affecting Synthesized C-S-H CO2 Uptake: Initial Alkalinity and Ca/Si
by Jingwei Gong, Kai Zhang, Gangchuan Xie, Kebin Shi and Ying Zhu
Buildings 2025, 15(8), 1264; https://doi.org/10.3390/buildings15081264 - 11 Apr 2025
Cited by 2 | Viewed by 514
Abstract
The dynamic evolution of alkalinity during hydration/carbonation of CO2-conditioned cements results in the formation of polymorphic hydrated calcium silicates (C-S-H), whose differences in carbon sequestration capacity have not been systematically investigated. However, the micro-nano structures and carbon sequestration capacities of C-S-H [...] Read more.
The dynamic evolution of alkalinity during hydration/carbonation of CO2-conditioned cements results in the formation of polymorphic hydrated calcium silicates (C-S-H), whose differences in carbon sequestration capacity have not been systematically investigated. However, the micro-nano structures and carbon sequestration capacities of C-S-H are controlled by the dynamic effects of pore solution alkalinity and Ca/Si. Accordingly, different alkalinity and Ca/Si were set to simulate the cement hydration environment for the synthesis of C-S-H, and tests such as thermogravimetric and 29Si nuclear magnetic resonance (NMR) were used to investigate the effects and mechanisms of initial alkalinity and Ca/Si on the morphology of the synthesized C-S-H, the CO2 uptake. The results showed that the C-S-H synthesized at pH 7.2–12.0 and Ca/Si ratio of 1.0–2.3 was in flocculated and acicular forms, which were well crystallized and dominated by Q2, while its CO2 uptake was positively correlated with Ca/Si. On the contrary, the synthesized C-S-H was poorly crystallized under the conditions of pH increasing to 13.5 and Ca/Si ratios of 1.0–2.3. With the increase in Ca/Si, the synthesized C-S-H evolved from Q2-dominated foil to Q1-dominated porous structure, and its CO2 uptake was non-positively correlated with Ca/Si. This was mainly related to the average pore diameter of C-S-H and its silica-oxygen tetrahedral structure. This was mainly related to the average pore diameter of C-S-H and its silica-oxygen tetrahedral structure. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 2011 KiB  
Proceeding Paper
Sustainable Pharmaceutical Development Utilizing Vigna mungo Polymer Microbeads
by Krishnaveni Manubolu and Raveesha Peeriga
Eng. Proc. 2024, 81(1), 14; https://doi.org/10.3390/engproc2024081014 - 2 Apr 2025
Viewed by 380
Abstract
This study explores the potential of Vigna mungo gum as a sustainable and innovative natural polymer for developing microbeads for the controlled delivery of vildagliptin, a widely used antidiabetic agent. Unlike conventional natural polymers, Vigna mungo gum offers unique biocompatibility, biodegradability, and an [...] Read more.
This study explores the potential of Vigna mungo gum as a sustainable and innovative natural polymer for developing microbeads for the controlled delivery of vildagliptin, a widely used antidiabetic agent. Unlike conventional natural polymers, Vigna mungo gum offers unique biocompatibility, biodegradability, and an eco-friendly production process, distinguishing it as a superior candidate for drug delivery systems. Microbeads were prepared by combining Vigna mungo gum with sodium alginate and inducing gelation using calcium carbonate. Scanning electron microscopy (SEM) revealed a rough, porous microbead surface, advantageous for drug encapsulation and controlled release. Drug release studies demonstrated sustained release kinetics, highlighting the effectiveness of this formulation. These findings underscore the novelty of Vigna mungo gum as a promising platform for antidiabetic drug delivery, providing a sustainable alternative to existing polymer systems. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Bioengineering)
Show Figures

Figure 1

24 pages, 3885 KiB  
Article
Citrus-Fruit-Based Hydroxyapatite Anodization Coatings on Titanium Implants
by Amisha Parekh, Alp Tahincioglu, Chance Walters, Charles Chisolm, Scott Williamson, Amol V. Janorkar and Michael D. Roach
Materials 2025, 18(5), 1163; https://doi.org/10.3390/ma18051163 - 5 Mar 2025
Cited by 1 | Viewed by 987
Abstract
The increasing demand for titanium implants necessitates improved longevity. Plasma-sprayed hydroxyapatite coatings enhance implant osseointegration but are susceptible to delamination. Alternatively, anodized hydroxyapatite coatings have shown greater adhesion strengths. The present study aimed to develop anodized hydroxyapatite coatings on titanium using commercial calcium-fortified [...] Read more.
The increasing demand for titanium implants necessitates improved longevity. Plasma-sprayed hydroxyapatite coatings enhance implant osseointegration but are susceptible to delamination. Alternatively, anodized hydroxyapatite coatings have shown greater adhesion strengths. The present study aimed to develop anodized hydroxyapatite coatings on titanium using commercial calcium-fortified fruit juice as a calcium source. Varying the electrolyte compositions enabled the formation of four oxide groups with different predominate calcium compounds. Each oxide’s morphology, crystallinity, chemistry, molecular structure, and adhesion quality were compared and contrasted. Nanoscale SEM images revealed a progression from porous surface oxide to white surface deposits to petal-like hydroxyapatite structures with the changing anodization electrolytes. Oxide thickness evaluations showed progression from a single-layered oxide with low Ca-, P-, and Mg-dopant incorporations to bi-layered oxide structures with increased Ca-, P-, and Mg-dopant incorporation with changing electrolytes. The bi-layered oxide structures exhibited a titanium-dioxide-rich inner layer and calcium-compound-rich outer layers. Furthermore, indentation analyses confirmed good adhesion quality for three oxides. For the predominate hydroxyapatite oxides, FTIR analyses showed carbonate substitutions indicating the presence of bone-like apatite formation, and ICP-OES analyses revealed prolonged Ca and Mg release over 30 days. These Mg-enhanced carbonated apatite coatings show much promise to improve osseointegration and future implant lifetimes. Full article
(This article belongs to the Special Issue Biomaterials for Bone Tissue Engineering (Second Edition))
Show Figures

Graphical abstract

23 pages, 4432 KiB  
Article
Utilization of Ground Eggshell as a Biofiller of Plasticized PVC-Based Materials Fabricated Using Melt Blending
by Katarzyna Skórczewska, Krzysztof Lewandowski, Sławomir Wilczewski, Joanna Szulc and Paulina Rakowska
Polymers 2025, 17(4), 434; https://doi.org/10.3390/polym17040434 - 7 Feb 2025
Cited by 1 | Viewed by 1608
Abstract
The paper examines the use of waste eggshells as a valuable biofiller for modifying plasticized poly(vinyl chloride) (PVC). The raw ES was characterized using TGA, FTIR, particle size analysis, and XRD. The effects of ES on the processing, mechanical and thermal properties, density, [...] Read more.
The paper examines the use of waste eggshells as a valuable biofiller for modifying plasticized poly(vinyl chloride) (PVC). The raw ES was characterized using TGA, FTIR, particle size analysis, and XRD. The effects of ES on the processing, mechanical and thermal properties, density, porosity, and colour of PVC matrix composites were evaluated compared to pPVC/CC produced using the same methodology. It was found that pPVC/ES exhibits different processing properties to pPVC/CC. The mechanical properties of PVC/ES are slightly lower than those of pPVC/CC at concentrations up to 20 phr. However, at 30 phr and 40 phr, the differences in the mechanical properties of composites with both CC and ES are very similar, and the values are within the designated standard deviation of the measurement. The mechanical properties of PVC/ES do not limit their potential applications. When using eggshell (ES) as a filler, improvements in tensile strength (tts) were observed, ranging from 38% to 61% compared to the unfilled matrix and from 35% to 54% compared to pPVC/CC with an equivalent amount of filler. Although ground eggshells have similar insulating properties to calcium carbonate (CC), they are more effective at scavenging chlorine (Cl•) released during the initial stages of decomposition. This effectiveness helps to slow down the breakdown of PVC, as the eggshells maintain their porous, sponge-like structure when used as a filler. Full article
(This article belongs to the Special Issue Additive Manufacturing of Polymer Based Materials)
Show Figures

Figure 1

19 pages, 9288 KiB  
Article
Effect of Volumetric Energy Density on the Evolution of the Microstructure and the Degradation Behavior of 3D-Printed Fe-Mn-C Alloys from Water-Atomized Powders
by Quang Nguyen Cao, Abdelhakim Cherqaoui, Carlos Henrique Michelin Beraldo, Carlo Paternoster, Simon Gélinas, Carl Blais, Paolo Mengucci and Diego Mantovani
Metals 2025, 15(2), 101; https://doi.org/10.3390/met15020101 - 22 Jan 2025
Cited by 2 | Viewed by 1071
Abstract
Additive manufacturing of metals opens new doors for innovation in custom-based productions in a wide range of fields, including medicine, even if it introduces new challenges that need to be addressed to guarantee the properties are equal to or superior to those of [...] Read more.
Additive manufacturing of metals opens new doors for innovation in custom-based productions in a wide range of fields, including medicine, even if it introduces new challenges that need to be addressed to guarantee the properties are equal to or superior to those of conventional fabrication processes. In this research, porous, biodegradable Fe-Mn-C alloys were fabricated using a 3D printing technique with four different printing energy densities ranging from 62.5 to 125.0 J/mm3. The effect of printing energy density on the microstructure and degradation behavior was investigated. Lower energy densities resulted in higher pore density and the presence of unmelted powder particles, while the alloy printed at 104.2 J/mm3 exhibited the lowest pore density and the smallest grain size. Degradation tests revealed that the highest pore density in the sample printed at 62.5 J/mm3, and the lowest grain size in the sample printed at 104.2 J/mm3 contributed to faster degradation rates. The alloy printed at the highest energy density, 125.0 J/mm3, demonstrated the largest grain size and the slowest degradation rate. Energy-dispersive spectroscopy and Fourier transform infrared spectroscopy analyses identified manganese carbonate as the primary degradation product, with calcium phosphate forming as a secondary product. These findings provide a significant understanding of the relationship between printing parameters, microstructure, and degradation behavior, which are essential for optimizing the performance of Fe-Mn-C alloys in biodegradable material applications. Full article
(This article belongs to the Special Issue Advances in 3D Printing Technologies of Metals—2nd Edition)
Show Figures

Figure 1

22 pages, 3519 KiB  
Article
Use of Modified Activated Carbon in Groundwater Remediation for Human Consumption
by Cadme-Arévalo María Lorena, Andrade-Yucailla Verónica Cristina, Geijo López Alda, Villamar-Torres Ronald Oswaldo, Campisi Cadme Raisha Lorena, Arreaga Cadme Thais Sarah, Fernández González Javier, Benavente Herrera José, Sesan Abiodun Aransiola and Naga Raju Maddela
Water 2025, 17(2), 207; https://doi.org/10.3390/w17020207 - 14 Jan 2025
Cited by 1 | Viewed by 1182
Abstract
This study aimed to produce activated carbon from desilicated rice husks using various carbonization and activation methods, including a tube furnace, muffle furnace, and artisanal pyrolysis. The resulting activated carbons were characterized for their adsorptive capacity through the determination of iodine number and [...] Read more.
This study aimed to produce activated carbon from desilicated rice husks using various carbonization and activation methods, including a tube furnace, muffle furnace, and artisanal pyrolysis. The resulting activated carbons were characterized for their adsorptive capacity through the determination of iodine number and methylene blue adsorption; these are key indicators of specific surface area and adsorbent quality. Advanced characterization techniques were employed, such as scanning electron microscopy (SEM), which revealed a highly porous and irregular surface structure, and energy dispersive X-ray spectroscopy (EDS), confirming the effective removal of impurities and optimization of the elemental composition. Atomic force microscopy (AFM) demonstrated favorable surface roughness for adsorption processes. Among the samples, CaDH162-CADH53 exhibited the highest performance, with an iodine number of 1094.8 mg/g and a yield of 93.5%, signifying a high adsorption capacity. The activation treatments with phosphoric acid and calcium carbonate significantly improved the porous structure, further enhancing the material’s adsorptive properties. In conclusion, the activated carbons produced in this study demonstrated optimal physicochemical properties for water purification and contaminant treatment applications. These findings highlight the potential of using agricultural waste, such as rice husk, as a sustainable and scalable alternative for industrial-scale activated carbon production. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

14 pages, 2471 KiB  
Article
Calcium Hydroxide–Phosphate-Modified Fly Ash Enhances the Adsorption and Stabilization of Soil Lead and Cadmium
by Hongbiao Cui, Zhi Xu, Tengfei Guo, Shaojun Hu, Ruizhi Xia, Shiwen Zhang, Yin Wang and Jun Zhou
Agronomy 2024, 14(12), 2905; https://doi.org/10.3390/agronomy14122905 - 5 Dec 2024
Viewed by 1260
Abstract
Fly ash (FA) is characterized by its porous structure and richness in silicon and aluminum oxides; thus, it can be used as an adsorbent for heavy metals. In order to enhance the absorption efficiency and stabilization effect, we prepared a new fly ash [...] Read more.
Fly ash (FA) is characterized by its porous structure and richness in silicon and aluminum oxides; thus, it can be used as an adsorbent for heavy metals. In order to enhance the absorption efficiency and stabilization effect, we prepared a new fly ash (FAKCa) using calcium hydroxide (Ca(OH)2) and phosphate (KH2PO4) through a simple one-step low-temperature alkali dissolution method and investigated its adsorption performance for lead and cadmium in water solutions and the stabilization effects of lead and cadmium in soils under flooding condition. Results showed that the Langmuir model best fit the adsorption behavior of lead and cadmium, and the maximal adsorption capabilities of lead (128 mg/g) and cadmium (39.1 mg/g) for FAKCa were increased by 236% and 14.5% compared with the unmodified FA, respectively. The adsorption of lead and cadmium by FAKCa was better fitted to the second-order kinetic model. The enhancement of adsorption capacities for lead and cadmium may be partly due to the specific surface area of FAKCa, which was increased by 94.0% compared to unmodified FA. FTIR, XRD, and XPS analysis showed that the Si-O and Al-O functional groups, carbonate, and hydroxide precipitation were facilitated by the adsorption of lead and cadmium. Thus, ion exchange, surface complexation, and formation of metal hydroxide and carbonate precipitation were the main adsorption mechanisms for lead and cadmium by FAKCa. In addition, the application of 0.1–0.6% FAKCa increased soil pH by 0.19–0.67 units and decreased the CaCl2-extractable lead by 12.3–86.5% compared to FA. Meanwhile, FAKCa was more effective in transforming lead and cadmium from exchangeable to stable fractions. This study shows that calcium hydroxide–phosphate-modified fly ash could effectively increase the adsorption and stabilization of lead and cadmium and, thus, has great potential for large-scale applications in contaminated soil. Full article
Show Figures

Figure 1

16 pages, 10553 KiB  
Article
Evaluation of the Compatibility Between Formation and Injection Water in Ultra-Low Permeability Reservoirs
by Zhaobo Gong, Leilei Zhang, Tingting Zhang, Zhong Yan, Shuping Cong, Zhenyu Zhou and Debin Kong
Processes 2024, 12(11), 2475; https://doi.org/10.3390/pr12112475 - 7 Nov 2024
Cited by 1 | Viewed by 1375
Abstract
This study focuses on the reservoir scaling and the under-injection issues of the water injection well during the water injection development of an ultra-low permeability reservoir in Xinjiang due to the complex composition of injected water. Microfluidic experiments were applied to visualize the [...] Read more.
This study focuses on the reservoir scaling and the under-injection issues of the water injection well during the water injection development of an ultra-low permeability reservoir in Xinjiang due to the complex composition of injected water. Microfluidic experiments were applied to visualize the flow channel changes during water flooding, indoor core flooding experiments were employed to analyze the permeability and ion concentration, and nuclear magnetic resonance (NMR) was used to evaluate the pore structure damage. Together, these experiments were used to clarify the scaling and precipitation characteristics as the injected water met the formation water in porous media and the effects on reservoir damage. The research results showed that the poor compatibility of the injected water with the formation water could easily produce calcium carbonate scaling. The scaling products exhibited a unique network structure of blocks and a radial distribution, mainly composed of calcium carbonate and aluminosilicate. The scaling in the porous media exhibited the characteristics of unstable crystal precipitation, migration, and repeated scaling following water mixing, while the scale crystal growth occurred in the pores and the throats. According to the scaling characteristics, the damage to the reservoir permeability by scaling can be divided into the induction, damage, and stabilization stages. The filling and clogging of the scale crystals enhanced the pore structure heterogeneity, with the median pore radius reduced by 21.61% and the permeability reduced by 50%. Full article
Show Figures

Figure 1

26 pages, 4550 KiB  
Article
A Bio-Chemo-Hydro-Mechanical Model for the Simulation of Biocementation in Soils: One-Dimensional Finite Element Simulations
by Victor Scartezini Terra, Fernando M. F. Simões and Rafaela Cardoso
Mathematics 2024, 12(20), 3267; https://doi.org/10.3390/math12203267 - 18 Oct 2024
Viewed by 954
Abstract
Microbially induced calcite precipitation is a soil improvement technique in which bacteria are used to produce calcium carbonate (biocement), precipitated after the hydrolysis of urea by the urease enzyme present in the microorganisms. This technique is becoming popular, and there have been several [...] Read more.
Microbially induced calcite precipitation is a soil improvement technique in which bacteria are used to produce calcium carbonate (biocement), precipitated after the hydrolysis of urea by the urease enzyme present in the microorganisms. This technique is becoming popular, and there have been several real cases of its use; however, the dosages and reaction times used to attain a required percentage of biocement mainly stem from previous experimental tests, and calculations are not performed. Thus, it is fundamental to have more robust tools and the existence of numerical models able to compute the amount precipitated, such as the one proposed in this paper, can be an important contribution. A two-phase porous medium model is created to analyse the precipitation process. The solid phase contains soil particles, bacteria and biocement, while the fluid phase contains water, urea and other dissolved species. A coupled bio-chemo-hydro-mechanical finite element formulation is defined, embodying the biochemical reaction, water seepage, the diffusion of species and soil deformation. The main novelties of this study are as follows: (i) porosity changes are computed considering the generation of solid mass due to biocement precipitation, and, therefore, soil permeability is updated during the calculation, with these highly coupled equations being integrated in time simultaneously and not sequentially; and (ii) the model is calibrated with experimental tests conceived especially for this purpose. The model is then used to compute the biocement precipitated in a sand column simulating a real experimental test. The results of the simulations present a distribution of biocement along the column closer to that observed in the experimental tests, validating the model. Full article
(This article belongs to the Special Issue Recent Advances in Finite Element Methods with Applications)
Show Figures

Figure 1

17 pages, 16304 KiB  
Article
Silver Nanoparticles and Simvastatin-Loaded PLGA-Coated Hydroxyapatite/Calcium Carbonate Scaffolds
by Morena Nocchetti, Chiara Piccotti, Michela Piccinini, Silvia Caponi, Maurizio Mattarelli, Donatella Pietrella, Alessandro Di Michele and Valeria Ambrogi
Nanomaterials 2024, 14(20), 1637; https://doi.org/10.3390/nano14201637 - 12 Oct 2024
Cited by 2 | Viewed by 1290
Abstract
The need to develop synthetic bone substitutes with structures, properties, and functions similar to bone and capable of preventing microbial infections is still an ongoing challenge. This research is focused on the preparation and characterization of three-dimensional porous scaffolds based on hydroxyapatite (HA)-functionalized [...] Read more.
The need to develop synthetic bone substitutes with structures, properties, and functions similar to bone and capable of preventing microbial infections is still an ongoing challenge. This research is focused on the preparation and characterization of three-dimensional porous scaffolds based on hydroxyapatite (HA)-functionalized calcium carbonate loaded with silver nanoparticles and simvastatin (SIMV). The scaffolds were prepared using the foam replica method, with a polyurethane (PU) sponge as a template, followed by successive polymer removal and sintering. The scaffolds were then coated with poly(lactic-co-glycolic) acid (PLGA) to improve mechanical properties and structural integrity, and loaded with silver nanoparticles and SIMV. The scaffolds were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), ATR FT-IR, and silver and SIMV loading. Moreover, the samples were analyzed by Brillouin and Raman microscopy. Finally, in vitro bioactivity, SIMV and silver release, and antimicrobial activity against Staphylococcus aureus and Staphylococcus epidermidis were evaluated. From the Brillouin spectra, samples showed characteristics analogous to those of bone tissue. They exhibited new hydroxyapatite growth, as evidenced by SEM, and good antimicrobial activity against the tested bacteria. In conclusion, the obtained results demonstrate the potential of the scaffolds for application in bone repair. Full article
Show Figures

Figure 1

13 pages, 4156 KiB  
Article
Transformation of Biomass Power Plant Ash into Composite Fertilizers: A Perspective to Prepare a Rain-Controlled Ammonium Ion–Releasing Composite Fertilizer
by László Kótai, Márk Windisch and Kende Attila Béres
J. Compos. Sci. 2024, 8(9), 336; https://doi.org/10.3390/jcs8090336 - 24 Aug 2024
Cited by 2 | Viewed by 1656
Abstract
We have developed a convenient route to transform biomass power plant ashes (BPPA) into porous sponge-like fertilizer composites. The absence of water prevents the chemical reaction and carbon dioxide formation when concentrated sulfuric acid is mixed with BPPA and CaCO3. Adding [...] Read more.
We have developed a convenient route to transform biomass power plant ashes (BPPA) into porous sponge-like fertilizer composites. The absence of water prevents the chemical reaction and carbon dioxide formation when concentrated sulfuric acid is mixed with BPPA and CaCO3. Adding water, however, initiates the protonation reaction of carbonate ion content and starts CO2 evolution. The key element of the method was that the BPPA and, optionally, CaCO3 and/or CaSO4·0.5H2O were mixed with concentrated sulfuric acid to make a paste-like consistency. No gas evolution occurred at this stage; however, with the subsequent and controlled addition of water, CO2 gas evolved and was released through the channels developed in the pastry-like material due to the internal gas pressure, but without foaming. Using a screw-containing tube reactor, the water can be introduced under pressure. Due to the pressure, the pores in the pastry-like material became smaller, and consequently, the mechanical strength of the granulated and solidified mixture became higher than that of the reaction products prepared under atmospheric pressure. The main reaction products were syngenite (K2Ca(SO4)2·H2O) and polyhalite (K2Ca2Mg(SO4)4·2H2O). These compounds are valuable fertilizer components in themselves, but the material’s porous nature helps absorb solutions of microelement fertilizers. Surprisingly, concentrated ammonium nitrate solutions transform the syngenite content of the porous fertilizer into ammonium calcium sulfate ((NH4)2Ca(SO4)2·2H2O, koktaite). Koktaite is slightly soluble in water, thus the amount of ammonium ion released on the dissolution of koktaite depends on the amount of available water. Accordingly, ammonium ion release for plants can be increased with rain or irrigation, and koktaite is undissolved and does not decompose in drought situations. The pores (holes) of this sponge-like fertilizer product can be filled with different solutions containing other fertilizer components (phosphates, zinc, etc.) to adjust the composition of the requested fertilizer compositions for particular soils and plant production. The method allows the preparation of ammonium nitrate composite fertilizers containing metallic microelements, and various solid sponge-like composite materials with adjusted amounts of slowly releasing fertilizer components like syngenite and koktaite. Full article
(This article belongs to the Special Issue From Waste to Advance Composite Materials)
Show Figures

Graphical abstract

Back to TopTop