Evaluation of the Compatibility Between Formation and Injection Water in Ultra-Low Permeability Reservoirs
Abstract
:1. Introduction
2. Experimental
2.1. Experimental Materials
2.1.1. Core and Microfluidic Physical Properties
2.1.2. Experimental Water
2.2. Experimental Setup and Procedures
2.2.1. Static Stability Experiments
2.2.2. Microfluidic Displacement Experiments
2.2.3. Core Displacement Experiments
3. Experimental Results and Analysis
3.1. Water Quality Stability Analysis
3.1.1. Water Compatibility and Scaling Trends
3.1.2. Scale Type and Microscopic Morphology
3.2. Scaling Characteristics and Patterns in Porous Media
3.3. Core Permeability Variation Characteristics
3.4. Pore Structure Variation Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Dang, H.; Gao, T. Method of moderate water injection and its application in ultra-low permeability oil reservoirs of Yanchang Oilfield, NW China. Pet. Explor. Dev. 2018, 45, 1094–1102. [Google Scholar] [CrossRef]
- Hu, W.; Wei, Y.; Bao, J. Development of the theory and technology for low permeability reservoirs in China. Pet. Explor. Dev. 2018, 45, 685–697. [Google Scholar] [CrossRef]
- Zhu, J.; Tang, X.; Li, X.; Wen, Y.; Deng, Z.; Rao, D.; Yang, Z.; Liu, C. The Reservoir Injury Rules of Water Injection to an Ultralow Permeability Reservoir: Experimental Research Based on Core-NMR and Microfluidic Technology. Energy Fuels 2024, 38, 15131–15146. [Google Scholar] [CrossRef]
- Razavirad, F.; Heidari, S.; Shahrabadi, A. Evaluation of compatibility between formation and Injection water into the Reservoir Rock. Colloids Surf. A Physicochem. Eng. Asp. 2024, 690, 133787. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, B.; Ge, T.; Sui, F.; Wang, Y.; Zhang, P.; Chang, X.; Liu, Y.; Wang, Y.; Wang, Z. Tight sandstone reservoir sensitivity and damage mechanism analysis: A case study from Ordos Basin, China and implications for reservoir damage prevention. Energy Geosci. 2022, 3, 394–416. [Google Scholar] [CrossRef]
- Zhang, L.; Tice, M.; Hascakir, B. A laboratory study of the impact of reinjecting flowback fluids on formation damage in the Marcellus Shale. SPE J. 2020, 25, 788–799. [Google Scholar] [CrossRef]
- Kuang, H.; Jin, G.; Gao, Z. Sedimentary facies and evolution of the lower Urho Formation in the 8th area of Karamay oilfield of Xinjiang, NW China. Cogent Geosci. 2017, 3, 1333667. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Peng, X.; Wang, P.; Zhao, N.; Chu, S.; Wang, X.; Kong, L. Water-sensitive damage mechanism and the injection water source optimization of low permeability sandy conglomerate reservoirs. Pet. Explor. Dev. 2019, 46, 1218–1230. [Google Scholar] [CrossRef]
- Zohoorian, A.; Moghadasi, J.; Abbasi, S.; Jamialahmadi, M. Mixed salt scaling in porous media due to water incompatibility: An experimental investigation. In Proceedings of the SPE International Oilfield Scale Conference and Exhibition, Aberdeen, Scotland, 11–12 May 2016. SPE-179915-MS. [Google Scholar]
- Prisyazhniuk, V.A. Prognosticating scale-forming properties of water. Appl. Therm. Eng. 2007, 27, 1637–1641. [Google Scholar] [CrossRef]
- Nikoo, A.H.; Malayeri, M.R. Interfacial interactions between scale-brine and various reservoir rocks. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125840. [Google Scholar] [CrossRef]
- Zhao, R.; Liu, X.; Hu, A.; Fan, C.; Shabani, A. A novel approach for modeling permeability decline due to mineral scaling: Coupling geochemistry and deep bed filtration theory. J. Pet. Sci. Eng. 2021, 205, 108995. [Google Scholar] [CrossRef]
- Moghadasi, J.; Müller-Steinhagen, H.; Jamialahmadi, M.; Sharif, A. Model study on the kinetics of oil field formation damage due to salt precipitation from injection. J. Pet. Sci. Eng. 2004, 43, 201–217. [Google Scholar] [CrossRef]
- Mackay, E.J.; Graham, G.M. The use of flow models in assessing the risk of scale damage. In Proceedings of the SPE International Conference on Oilfield Chemistry, Houston, TX, USA, 5–7 February 2003. SPE-80252-MS. [Google Scholar]
- Haghtalab, A.; Kamali, M.; Shahrabadi, A.; Golghanddashti, H. Investigation of the precipitation of calcium sulfate in porous media: Experimental and mathematical modeling. Chem. Eng. Commun. 2015, 202, 1221–1230. [Google Scholar] [CrossRef]
- Le Beulze, A.; Santos De Pera, N.; Levaché, B.; Questel, M.; Panizza, P.; Lequeux, F.; Levant, M.; Passade-Boupat, N. Jams and cakes: A closer look on well clogging mechanisms in microscale produced water ReInjection experiments. Transp. Porous Media 2023, 147, 143–156. [Google Scholar] [CrossRef]
- Li, J.; Tu, B.; Li, W.; Li, Y. Quantitative Investigation of the Water-Sensitivity Damage on Ultra-LowPermeability Reservoir. In Proceedings of the Asia Pacific Unconventional Resources Technology Conference, Brisbane, Australia, 18–19 November 2019; pp. 816–832. [Google Scholar]
- Gao, H.; Li, H. Determination of movable fluid percentage and movable fluid porosity in ultra-low permeability sandstone using nuclear magnetic resonance (NMR) technique. J. Pet. Sci. Eng. 2015, 133, 258–267. [Google Scholar] [CrossRef]
- Nikoo, A.H.; Malayeri, M.R. Impact of hydrodynamic and interfacial interactions on scale formation in a capillary microchannel. Langmuir 2021, 37, 13746–13756. [Google Scholar] [CrossRef] [PubMed]
- Mehdizad, A.; Pourafshary, P.; Sedaee, B. Visual investigation of simultaneous clay swelling and migration mechanisms and formation damage consequences using micromodels. J. Pet. Sci. Eng. 2022, 214, 110561. [Google Scholar] [CrossRef]
- Gao, J.; Kong, D.; Peng, Y.; Zhou, Y.; Liu, Y.; Zhu, W. Pore-scale mechanisms and hysteresis effect during multi-cycle injection and production process in underground hydrogen storage reservoir. Energy 2023, 283, 129007. [Google Scholar] [CrossRef]
- Kong, D.; Peng, Y.; Zhou, Z.; Peng, H.; Chen, Z. Pore-scale mechanism of coupled pressure-driven flow and spontaneous imbibition in porous media during high-pressure water injection processes. Capillarity 2024, 13, 29–36. [Google Scholar] [CrossRef]
- Merdhah, A.; Yassin, A. Scale formation due to water injection in Berea sandstone cores. J. Appl. Sci. 2009, 9, 3298–3307. [Google Scholar] [CrossRef]
- Moghadasi, J.; Jamialahmadi, M.; Müller-Steinhagen, H.; Sharif, A. Formation damage due to scale formation in porous media resulting from water injection. In Proceedings of the SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, LA, USA, 18–20 February 2004. SPE-86524-MS. [Google Scholar]
- Haghtalab, A.; Kamali, M.J.; Shahrabadi, A. Prediction mineral scale formation in oil reservoirs during water injection. Fluid Phase Equilibria 2014, 373, 43–54. [Google Scholar] [CrossRef]
- Wang, W.; Wei, W.; Ferrier, N.; Arismendi, N. Scale formation and inhibition study for water injection wells. In Proceedings of the SPE International Oilfield Scale Conference and Exhibition, Aberdeen, Scotland, 20–21 June 2018. SPE-190732-MS. [Google Scholar]
- Merdhah, A.B.B.; Yassin, A.A.M. Scale formation in oil reservoir during water injection at high-salinity formation water. J. Appl. Sci. 2007, 7, 3198–3207. [Google Scholar] [CrossRef]
- Kokkinos, N.C.; Nkagbu, D.C.; Marmanis, D.I.; Dermentzis, K.I.; Maliaris, G. Evolution of Unconventional Hydrocarbons: Past, Present, Future and Environmental FootPrint. J. Eng. Sci. Technol. Rev. 2022, 15, 15–24. [Google Scholar] [CrossRef]
Concentration mg/L | Na+ + K+ | Mg2+ | Ca2+ | Cl− | pH | Mineralization Degree | Water Type | |||
---|---|---|---|---|---|---|---|---|---|---|
Well | ||||||||||
I | 7819 | 24.32 | 178.3 | 11,332 | 52.55 | 1836 | 7.72 | 21,242 | ||
P | 6842 | 27.02 | 1043 | 12,046 | 10.9 | 714.8 | 7.5 | 20,683 |
Flow Rate Ratio (Formation Water: Injected Water) | Injection State | Temperature (°C) | Scheme |
---|---|---|---|
1:5 | Steady state | 69 | 1 |
5:1 | Steady state | 69 | 2 |
\ | Unsteady state | 69 | 3 |
Macropore (>10 μm) | Mesopore (>1 μm, ≤10 μm) | Minipore (>0.01 μm, ≤1 μm) | Micropore (≤0.01 μm) | Porosity % |
---|---|---|---|---|
2.32 | 16.51 | 67.95 | 13.22 | Before displacement |
2.28 | 12.94 | 67.96 | 16.82 | After displacement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Z.; Zhang, L.; Zhang, T.; Yan, Z.; Cong, S.; Zhou, Z.; Kong, D. Evaluation of the Compatibility Between Formation and Injection Water in Ultra-Low Permeability Reservoirs. Processes 2024, 12, 2475. https://doi.org/10.3390/pr12112475
Gong Z, Zhang L, Zhang T, Yan Z, Cong S, Zhou Z, Kong D. Evaluation of the Compatibility Between Formation and Injection Water in Ultra-Low Permeability Reservoirs. Processes. 2024; 12(11):2475. https://doi.org/10.3390/pr12112475
Chicago/Turabian StyleGong, Zhaobo, Leilei Zhang, Tingting Zhang, Zhong Yan, Shuping Cong, Zhenyu Zhou, and Debin Kong. 2024. "Evaluation of the Compatibility Between Formation and Injection Water in Ultra-Low Permeability Reservoirs" Processes 12, no. 11: 2475. https://doi.org/10.3390/pr12112475
APA StyleGong, Z., Zhang, L., Zhang, T., Yan, Z., Cong, S., Zhou, Z., & Kong, D. (2024). Evaluation of the Compatibility Between Formation and Injection Water in Ultra-Low Permeability Reservoirs. Processes, 12(11), 2475. https://doi.org/10.3390/pr12112475