Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (910)

Search Parameters:
Keywords = popular medicine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 17214 KiB  
Article
Histological Features Detected for Separation of the Edible Leaves of Allium ursinum L. from the Poisonous Leaves of Convallaria majalis L. and Colchicum autumnale L.
by Márta M-Hamvas, Angéla Tótik, Csongor Freytag, Attila Gáspár, Amina Nouar, Tamás Garda and Csaba Máthé
Plants 2025, 14(15), 2377; https://doi.org/10.3390/plants14152377 - 1 Aug 2025
Viewed by 129
Abstract
Allium ursinum (wild garlic) has long been collected and consumed as food and medicine in the north temperate zone, where its popularity is growing. Colchicum autumnale and Convallaria majalis contain toxic alkaloids. Their habitats overlap, and without flowers, their vegetative organs are similar. [...] Read more.
Allium ursinum (wild garlic) has long been collected and consumed as food and medicine in the north temperate zone, where its popularity is growing. Colchicum autumnale and Convallaria majalis contain toxic alkaloids. Their habitats overlap, and without flowers, their vegetative organs are similar. Confusing the leaves of Colchicum or Convallaria with the leaves of wild garlic has repeatedly led to serious human and animal poisonings. Our goal was to find a histological characteristic that makes the separation of these leaves clear. We compared the anatomy of foliage leaves of these three species grown in the same garden (Debrecen, Hungary, Central Europe). We used a bright-field microscope to characterize the transversal sections of leaves. Cell types of epidermises were compared based on peels and different impressions. We established some significant differences in the histology of leaves. The adaxial peels of Allium consist of only “long” cells without stomata, but the abaxial ones show “long”, “short” and “T” cells with wavy cell walls as a peculiarity, and stomata. Convallaria and Colchicum leaves are amphystomatic, but in the case of Allium, they are hypostomatic. These traits were confirmed with herbarium specimens. Our results help to clearly identify these species even in mixed, dried plant material and may be used for diagnostic purposes. Full article
Show Figures

Graphical abstract

18 pages, 923 KiB  
Article
Optimizing Bioactive Compound Recovery from Chestnut Shells Using Pressurized Liquid Extraction and the Box–Behnken Design
by Magdalini Pazara, Georgia Provelengiadi, Martha Mantiniotou, Vassilis Athanasiadis, Iordanis Samanidis, Ioannis Makrygiannis, Ilias F. Tzavellas, Ioannis C. Martakos, Nikolaos S. Thomaidis and Stavros I. Lalas
Processes 2025, 13(7), 2283; https://doi.org/10.3390/pr13072283 - 17 Jul 2025
Viewed by 469
Abstract
Chestnut (Castanea sativa Mill.) is an edible nut recognized for its nutritional attributes, particularly its elevated levels of carbohydrates (starch) and proteins. Chestnuts are popular for their health-promoting properties and hold significant environmental and economic importance in Europe. During this study, after [...] Read more.
Chestnut (Castanea sativa Mill.) is an edible nut recognized for its nutritional attributes, particularly its elevated levels of carbohydrates (starch) and proteins. Chestnuts are popular for their health-promoting properties and hold significant environmental and economic importance in Europe. During this study, after the characterization of the fruit, attention was directed toward the valorization of chestnut shells, a predominant by-product of industrial chestnut processing that is typically discarded. Valuable bioactive compounds were extracted from the shells using Pressurized Liquid Extraction (PLE), a green, efficient, scalable method. Response surface methodology (RSM) was utilized to determine optimal extraction conditions, identified as 40% v/v ethanol as the solvent at a temperature of 160 °C for 25 min under a constant pressure of 1700 psi. High total polyphenol content (113.68 ± 7.84 mg GAE/g dry weight) and notable antioxidant activity—determined by FRAP (1320.28 ± 34.33 μmol AAE/g dw) and DPPH (708.65 ± 24.8 μmol AAE/g dw) assays—were recorded in the optimized extracts. Ultrahigh-performance liquid chromatography coupled with a hybrid trap ion mobility-quadrupole time-of-flight mass spectrometer (UHPLC-TIMS-QTOF-MS) was applied to further characterize the compound profile, enabling the identification of phenolic and antioxidant compounds. These findings highlight the possibility of using chestnut shell residues as a long-term resource to make valuable products for the food, medicine, cosmetics, and animal feed industries. This study contributes to the advancement of waste valorization strategies and circular bioeconomy approaches. Full article
(This article belongs to the Special Issue Research of Bioactive Synthetic and Natural Products Chemistry)
Show Figures

Figure 1

31 pages, 4404 KiB  
Review
Recent Advances in the Use of Ganoderma lucidum and Coriolus versicolor Mushrooms to Enhance the Anticancer Efficacy of EGFR-Targeted Drugs in Lung Cancer
by Hang Zhang, Longling Wang, Yuet Wa Chan, William C. Cho, Zhong Zuo and Kenneth K. W. To
Pharmaceutics 2025, 17(7), 917; https://doi.org/10.3390/pharmaceutics17070917 - 15 Jul 2025
Viewed by 717
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) is the major subtype, accounting for more than 85% of all lung cancer cases. Recent advances in precision oncology have allowed NSCLC patients bearing specific oncogenic epidermal growth [...] Read more.
Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) is the major subtype, accounting for more than 85% of all lung cancer cases. Recent advances in precision oncology have allowed NSCLC patients bearing specific oncogenic epidermal growth factor receptor (EGFR) mutations to respond well to EGFR tyrosine kinase inhibitors (TKIs). Due to the high EGFR mutation frequency (up to more than 50%) observed particularly in Asian NSCLC patients, EGFR-TKIs have produced unprecedented clinical responses. Depending on their binding interactions with EGFRs, EGFR-TKIs are classified as reversible (first-generation: gefitinib and erlotinib) or irreversible inhibitors (second-generation: afatinib and dacomitinib; third-generation: osimertinib). While the discovery of osimertinib represents a breakthrough in the treatment of NSCLC, most patients eventually relapse and develop drug resistance. Novel strategies to overcome osimertinib resistance are urgently needed. In Asian countries, the concomitant use of Western medicine and traditional Chinese medicine (TCM) is very common. Ganoderma lucidum (Lingzhi) and Coriolus versicolor (Yunzhi) are popular TCMs that are widely consumed by cancer patients to enhance anticancer efficacy and alleviate the side effects associated with cancer therapy. The bioactive polysaccharides and triterpenes in these medicinal mushrooms are believed to contribute to their anticancer and immunomodulating effects. This review presents the latest update on the beneficial combination of Lingzhi/Yunzhi and EGFR-TKIs to overcome drug resistance. The effects of Lingzhi/Yunzhi on various oncogenic signaling pathways and anticancer immunity, as well as their potential to overcome EGFR-TKI resistance, are highlighted. The potential risk of herb–drug interactions could become critical when cancer patients take Lingzhi/Yunzhi as adjuvants during cancer therapy. The involvement of drug transporters and cytochrome P450 enzymes in these herb–drug interactions is summarized. Finally, we also discuss the opportunities and future prospects regarding the combined use of Lingzhi/Yunzhi and EGFR-TKIs in cancer patients. Full article
(This article belongs to the Special Issue Combination Therapy Approaches for Cancer Treatment)
Show Figures

Figure 1

44 pages, 2807 KiB  
Review
Artificial Intelligence in Dermatology: A Review of Methods, Clinical Applications, and Perspectives
by Agnieszka M. Zbrzezny and Tomasz Krzywicki
Appl. Sci. 2025, 15(14), 7856; https://doi.org/10.3390/app15147856 - 14 Jul 2025
Viewed by 1292
Abstract
The use of artificial intelligence (AI) in dermatology is skyrocketing, but a comprehensive overview integrating regulatory, ethical, validation, and clinical issues is lacking. This work aims to review current research, map applicable legal regulations, identify ethical challenges and methods of verifying AI models [...] Read more.
The use of artificial intelligence (AI) in dermatology is skyrocketing, but a comprehensive overview integrating regulatory, ethical, validation, and clinical issues is lacking. This work aims to review current research, map applicable legal regulations, identify ethical challenges and methods of verifying AI models in dermatology, assess publication trends, compare the most popular neural network architectures and datasets, and identify good practices in creating AI-based applications for dermatological use. A systematic literature review is conducted in accordance with the PRISMA guidelines, utilising Google Scholar, PubMed, Scopus, and Web of Science and employing bibliometric analysis. Since 2016, there has been exponential growth in deep learning research in dermatology, revealing gaps in EU and US regulations and significant differences in model performance across different datasets. The decision-making process in clinical dermatology is analysed, focusing on how AI is augmenting skin imaging techniques such as dermatoscopy and histology. Further demonstration is provided regarding how AI is a valuable tool that supports dermatologists by automatically analysing skin images, enabling faster diagnosis and the more accurate identification of skin lesions. These advances enhance the precision and efficiency of dermatological care, showcasing the potential of AI to revolutionise the speed of diagnosis in modern dermatology, sparking excitement and curiosity. Then, we discuss the regulatory framework for AI in medicine, as well as the ethical issues that may arise. Additionally, this article addresses the critical challenge of ensuring the safety and trustworthiness of AI in dermatology, presenting classic examples of safety issues that can arise during its implementation. The review provides recommendations for regulatory harmonisation, the standardisation of validation metrics, and further research on data explainability and representativeness, which can accelerate the safe implementation of AI in dermatological practice. Full article
(This article belongs to the Special Issue Machine Learning in Biomedical Sciences)
Show Figures

Figure 1

21 pages, 935 KiB  
Review
From Adipose to Action: Reprogramming Stem Cells for Functional Neural Progenitors for Neural Regenerative Therapy
by Junjie Peng, Zhu Zhang, Min Li, Ken Kin Lam Yung and King-ho Cheung
Int. J. Mol. Sci. 2025, 26(14), 6599; https://doi.org/10.3390/ijms26146599 - 9 Jul 2025
Viewed by 566
Abstract
Neural stem cells have shown great potential in the therapy of neurodegenerative diseases such as Parkinson’s disease (PD), because of their ability to differentiate into various types of neural cells and substitute for damaged neurons. Their clinical application is, however, impeded by limitations [...] Read more.
Neural stem cells have shown great potential in the therapy of neurodegenerative diseases such as Parkinson’s disease (PD), because of their ability to differentiate into various types of neural cells and substitute for damaged neurons. Their clinical application is, however, impeded by limitations such as low survival rates following transplantation, low efficiency of differentiation, the potential for tumorigenesis, and the risk of immune rejection by the host. Adipose-derived stem cells (ADSCs) have become increasingly popular as an alternative tool in regenerative medicine due to their accessibility, multipotency, and low immunogenicity. The recent advance in inducing ADSCs into neural stem cell-like cells (iNSCs) opens up a new avenue for the treatment of PD by restoring dopaminergic neuron populations. Here, the biological characteristics, induction protocols, molecular mechanisms, and prospective applications of ADSCs in neural repair are summarized systematically. We also covered current technical challenges, such as differentiation protocol optimization and functional integration, and future perspectives, including biomaterial and gene editing applications to enhance ADSC-based therapies. With these challenges met, ADSCs hold excellent potential for advancing personalized and combination therapies for neurodegenerative diseases. Full article
(This article belongs to the Special Issue Challenges and Innovation in Neurodegenerative Diseases, 2nd Edition)
Show Figures

Graphical abstract

21 pages, 2002 KiB  
Article
Is There Any Correlation Between Green Synthesis Parameters and the Properties of Obtained Selenium Nanoparticles?
by Aleksandra Sentkowska, Julia Folcik, Jakub Szmytke and Anna Grudniak
Molecules 2025, 30(13), 2865; https://doi.org/10.3390/molecules30132865 - 5 Jul 2025
Viewed by 468
Abstract
Selenium nanoparticles (SeNPs) show enormous potential in biomedical applications. In recent years, green methods of their synthesis have become very popular. In this work, the influence of green synthesis conditions on the properties of the obtained nanoparticles was investigated. For this purpose, extracts [...] Read more.
Selenium nanoparticles (SeNPs) show enormous potential in biomedical applications. In recent years, green methods of their synthesis have become very popular. In this work, the influence of green synthesis conditions on the properties of the obtained nanoparticles was investigated. For this purpose, extracts of eight medicinal herbs were used, and the reaction was carried out with changing ratios of reagents and variable temperature. All obtained SeNPs were characterized by high stability, which is confirmed by the negative values of their zeta potential ranging from −11.8 to −29.4 mV. The highest correlation coefficient was determined between the size of the obtained SeNPs and the ratio of reagents used for the synthesis (the correlation coefficient is 0.681 for the synthesis carried out at room temperature and 0.914 for elevated temperature). In each case, the smallest nanoparticles were obtained from the synthesis carried out in a 1:1 reagent ratio. It was assessed that sometimes it is difficult to determine correlations between the results collected for all syntheses; therefore, the same correlations determined for specific herbs were also analyzed. Full article
Show Figures

Graphical abstract

35 pages, 426 KiB  
Review
Crataegus monogyna Jacq., Sorbus aria (L.) Crantz and Prunus spinosa L.: From Edible Fruits to Functional Ingredients: A Review
by Cristina Tamayo-Vives, María Úbeda, Patricia Morales, Patricia García-Herrera and María Cortes Sánchez-Mata
Foods 2025, 14(13), 2299; https://doi.org/10.3390/foods14132299 - 28 Jun 2025
Viewed by 620
Abstract
Plants have historically served as key sources of nutrition and popular medicine, which persists in current applications. The increasing demand for natural bioactive compounds has intensified the incorporation of plant-derived ingredients in both the food and pharmaceutical industries. This narrative review focuses on [...] Read more.
Plants have historically served as key sources of nutrition and popular medicine, which persists in current applications. The increasing demand for natural bioactive compounds has intensified the incorporation of plant-derived ingredients in both the food and pharmaceutical industries. This narrative review focuses on the fruits of Crataegus monogyna Jacq., Sorbus aria (L.) Crantz, and Prunus spinosa L. (Rosaceae), traditionally utilized in Europe and characterized by a high content of phenolic compounds, flavonoids, and anthocyanins. These metabolites are associated with antioxidant, anti-inflammatory, and cardioprotective properties. The available literature on their phytochemical profiles, biological activities, and integration into the Mediterranean Diet is critically assessed. Evidence supports their potential as functional food components. Despite encouraging in vitro results, the scarcity of in vivo and clinical studies limits the translational potential of these findings. Further research is warranted to validate their efficacy and safety in human health. This review underscores the value of integrating traditional ethnobotanical and ethnopharmacological knowledge with contemporary scientific research to explore novel applications of these underutilized wild fruits. Full article
17 pages, 2766 KiB  
Article
Dietary Astragalus Polysaccharides Can Improve the Immune Capacity and Reproductive Performance of the Lined Seahorse (Hippocampus erectus)
by Siping Li, Xin Liu, Tingting Lin, Yuanhao Ren, Dong Zhang and Keji Jiang
Biology 2025, 14(7), 767; https://doi.org/10.3390/biology14070767 - 25 Jun 2025
Viewed by 442
Abstract
Seahorse (Hippocampus spp.) is popular in the markets of traditional Chinese medicine, aquarium, and curio. In order to protect wild stocks and still meet the market demand, China attempted the large-scale cultivation of seahorses in the early 21st century and achieved it [...] Read more.
Seahorse (Hippocampus spp.) is popular in the markets of traditional Chinese medicine, aquarium, and curio. In order to protect wild stocks and still meet the market demand, China attempted the large-scale cultivation of seahorses in the early 21st century and achieved it in the 2010s. However, in recent years, two new issues have gradually emerged in Chinese seahorse cultivation. One is that the juveniles are prone to disease during diet conversion, and the other is that the reproductive performance of broodstocks is significantly reduced. With the aim to provide some measures that can alleviate these issues, in the present study, we used lined seahorse (Hippocampus erectus, a species widely cultured in China) as the experimental subject and Astragalus polysaccharides (APSs) as the immunostimulant to test whether APSs could improve the immune-health status and reproductive performance of seahorses. The measured indices for reproductive performance included ovarian lipid content, assessment time required before mating for paired male and female seahorses, mating success rate, brood size, and newborn body height. The results showed that for juveniles during diet conversion, their body weight, survival rate, plasma immunocytokine contents (interleukin-2, interferon-α, and immunoglobulin M), and alpha diversity indices (Simpson and Pielou’s-e) of the intestinal microbiota were significantly higher than those of the control group after dietary APSs. For broodstocks, compared with the control group, the expression of lipid substances in the ovary was significantly upregulated, the assessment time was significantly shortened, and the body height of their newborns was significantly increased in the APS group. These results demonstrate that APSs could indeed improve the immune-health status and reproductive performance of seahorses, providing guidance for addressing existing issues in seahorse cultivation. Full article
Show Figures

Figure 1

14 pages, 1031 KiB  
Article
Nutrient Profiles and Bioavailability in Industrial Hemp (Cannabis sativa L.) Seeds from Diverse Provenances
by Mohammad Moinul Islam, Kadambot H. M. Siddique and Zakaria M. Solaiman
Sustainability 2025, 17(13), 5844; https://doi.org/10.3390/su17135844 - 25 Jun 2025
Viewed by 559
Abstract
Hemp (Cannabis sativa L.) seeds have been essential for human nutrition for millennia. The products and by-products of hemp seeds are gaining popularity nowadays as food, feed and medicine for their high nutritional and nutraceutical properties. In parallel, concerns about phytate, an [...] Read more.
Hemp (Cannabis sativa L.) seeds have been essential for human nutrition for millennia. The products and by-products of hemp seeds are gaining popularity nowadays as food, feed and medicine for their high nutritional and nutraceutical properties. In parallel, concerns about phytate, an antinutritional compound limiting nutrient bioavailability in hemp seeds and seed meal are rising. Hemp seeds contain an array of nutrients, but their bioavailability is mostly unknown. Here, we report nutrient and phytate concentrations and phytate contents in source seeds and multiplied seeds of seven industrial hemp varieties. We estimated the bioavailability of specific nutrients based on calculated molar ratios of phytate to minerals. Seed multiplication was carried out in a phytotron using a compost-based growth medium. Five macronutrients (P, K, Mg, S, Ca), four micronutrients (Fe, Mn, Zn, Cu) and Cr were measured in seeds using ICP-OES. Seed phytate was determined using a UV-visible spectrophotometer rapid colourimetric assay. The results revealed significant differences between seven industrial hemp varieties for most macro- and micronutrient concentrations (not Fe), phytate concentration and content and phytate-to-mineral molar ratios in both source and multiplied seeds. Multiplied hemp seeds had higher K, Mn and Zn and, lower Cr and phytate concentrations and lower phytate content than source seeds. Considering nutrient bioavailability, Ca and Fe are non-bioavailable, and Zn is bioavailable in hemp seeds. Ferimon has increased Zn bioavailability in source and multiplied seeds, indicating the variety’s potential for seed production in Western Australia. Full article
Show Figures

Figure 1

18 pages, 1416 KiB  
Review
Impacts of Phenolic Compounds and Their Benefits on Human Health: Germination
by Jonathan Hernández-Miranda, Karen Argelia Reyes-Portillo, Abigail García-Castro, Esther Ramírez-Moreno and Alma Delia Román-Gutiérrez
Metabolites 2025, 15(7), 425; https://doi.org/10.3390/metabo15070425 - 22 Jun 2025
Viewed by 1110
Abstract
Due to their outstanding nutritional profile, the consumption of seeds has been an essential source of nutrients. These foods have a unique composition, containing carbohydrates, proteins, lipids, fiber, vitamins, minerals, and bioactive compounds in the same food matrix. Furthermore, the nutritional profile can [...] Read more.
Due to their outstanding nutritional profile, the consumption of seeds has been an essential source of nutrients. These foods have a unique composition, containing carbohydrates, proteins, lipids, fiber, vitamins, minerals, and bioactive compounds in the same food matrix. Furthermore, the nutritional profile can naturally be maximized and optimized through the germination process through two key methods: degradation of macromolecules and biosynthesis of metabolites, which favors an increase in the concentration of bioactive compounds, such as phenolic compounds. The extraction of these compounds has been studied in various plant fractions, including roots, stems, leaves, fruits, and seeds, using different extraction techniques. Among these, ultrasound-assisted extraction has gained popularity due to its efficiency and yield, considering specific parameters to maximize the bioactive yield. These advances have allowed us to evaluate the potential of the extracted compounds as preventive agents in cardiovascular and degenerative diseases, showing promising results in preventive medicine. Recent studies have shown that cereals possess anti-lipid, anti-hypercholesterolemic, anti-diabetic, anti-inflammatory, and antibiotic properties, mainly due to their antioxidant capacity. This work describes the effects of germination on the nutritional profile, presents benefits to human health through seed consumption, and refers to a collection of strategies to improve the extraction process. Full article
(This article belongs to the Special Issue Plants and Plant-Based Foods for Metabolic Disease Prevention)
Show Figures

Graphical abstract

22 pages, 586 KiB  
Article
Error Mitigation Methods for FSM Using Triple Modular Redundancy
by Marcin Kubica and Robert Czerwinski
Appl. Sci. 2025, 15(12), 6726; https://doi.org/10.3390/app15126726 - 16 Jun 2025
Viewed by 325
Abstract
In many areas of operation, application-specific logic implemented in FPGAs (Field Programmable Gate Arrays) is critical. In these situations, various mitigation methods are used to reduce or completely eliminate malfunctions in the circuit resulting from undesired physical phenomena (e.g., ionizing radiation). Such phenomena [...] Read more.
In many areas of operation, application-specific logic implemented in FPGAs (Field Programmable Gate Arrays) is critical. In these situations, various mitigation methods are used to reduce or completely eliminate malfunctions in the circuit resulting from undesired physical phenomena (e.g., ionizing radiation). Such phenomena may occur, among others, in medicine, the military, nuclear power, and space systems. One of the most popular methods is the use of triple modular redundancy (TMR). Here, the FPGA provides a good basis for building TMR-based safety-critical systems due to its concurrent processing. This paper presents an overview of the implementation of logic structures using TMR. In this paper, the authors focus on different concepts for the implementation of FSMs. The different concepts differ in the way TMR voters are attached and the extent of redundancy of the individual FSM components. The article compares the efficiency of the different solutions. In order to evaluate this efficiency, it is crucial to determine the logic utilization or the power consumption of a given implementation. In the experimental part of the article, the authors show the results of the synthesis of FSM benchmarks, for different mitigation models. The synthesis was carried out for both commercial and academic tools. Full article
(This article belongs to the Special Issue Recent Advances in Field-Programmable Gate Arrays (FPGAs))
Show Figures

Figure 1

23 pages, 1127 KiB  
Review
The Genus Cordyceps Sensu Lato: Their Chemical Constituents, Biological Activities, and Therapeutic Effects on Air Pollutants Related to Lung and Vascular Diseases
by Hye-Jin Park
Life 2025, 15(6), 935; https://doi.org/10.3390/life15060935 - 10 Jun 2025
Viewed by 1609
Abstract
Air pollutants are significant environmental factors that contribute to the exacerbation of respiratory, cardiopulmonary, and skin diseases in East Asia, and their impact is based on particle size. Natural products represent a promising and sustainable strategy for reducing the adverse effects of air [...] Read more.
Air pollutants are significant environmental factors that contribute to the exacerbation of respiratory, cardiopulmonary, and skin diseases in East Asia, and their impact is based on particle size. Natural products represent a promising and sustainable strategy for reducing the adverse effects of air pollutants on health. Cordyceps spp. have been integral to traditional Chinese medicine. Recently, their fruiting bodies and related supplements have gained popularity. The physiological effects of Cordyceps species are well documented and attributed to their chemical constituents, such as cordycepin, polysaccharides, cordymin, glycoprotein, ergosterol, and other bioactive extracts. Cordyceps supplementation may support lung health and enhance respiratory function. Although further clinical data are necessary, many preclinical studies have found a connection between Cordyceps and improved lung health. In addition, preclinical and clinical studies have indicated that Cordyceps and its derivatives (e.g., Ningxinbao, Corbrin, and Jinshuibao capsules) protect against vascular diseases by modulating key molecular pathways. This review provides insights into the potential of Cordyceps for clinical application in the management of air pollutant-related respiratory and vascular diseases. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

12 pages, 4745 KiB  
Article
Calcium Hydroxylapatite-Based Fillers in Facial Rejuvenation: A Prospective, Single-Center, Unblinded Comparative Outcome Study of Radiesse® vs. Rennova® Diamond Intense
by Bruna S. F. Bravo, Leonardo G. Bravo, Bárbara F. Gouvea, Marina R. B. Neves, Camila S. Nobre, Camila d. S. Silva and Carolina Machado Ozório Lopes do Nascimento
J. Clin. Med. 2025, 14(12), 4072; https://doi.org/10.3390/jcm14124072 - 9 Jun 2025
Viewed by 3342
Abstract
Background/Objectives: Calcium hydroxylapatite (CaHA)-based dermal fillers are widely used in esthetic medicine due to their dual volumizing and biostimulatory properties. Despite their rising popularity, comparative clinical outcome data evaluating different CaHA fillers remain limited. This prospective, single-center, unblinded study aimed to establish [...] Read more.
Background/Objectives: Calcium hydroxylapatite (CaHA)-based dermal fillers are widely used in esthetic medicine due to their dual volumizing and biostimulatory properties. Despite their rising popularity, comparative clinical outcome data evaluating different CaHA fillers remain limited. This prospective, single-center, unblinded study aimed to establish the effectiveness of the CaHA filler Rennova® Diamond Intense via comparison to the well-established CaHA filler Radiesse® in terms of clinical performance, safety, and patient satisfaction. Methods: Thirty patients (28 female, 2 male) underwent a single-session bilateral injection of Rennova® Diamond Intense (right side) and Radiesse® (left side) in the lower and medial posterior facial regions. Outcomes evaluated at multiple time points included dermal thickness, skin elasticity, transepidermal water loss, patient-reported outcomes (S-GAIS), physician-assessed outcomes (P-GAIS), and adverse events. Results: Both fillers showed improvements across all parameters. Patient-reported S-GAIS indicated predominantly “improved” outcomes at days 60 and 120, whereas physician assessments (P-GAIS) predominantly indicated “very improved” results at day 120. Ultrasound revealed increases in dermal thickness for both fillers. Similarly, improvements in skin elasticity and decreases in transepidermal water loss were observed bilaterally. Mild, transient adverse events (pain, swelling, redness, bruising) resolved spontaneously within 30 days post injection. Conclusions: Rennova® Diamond Intense effectively increases dermal thickness, improves skin elasticity, and reduces transepidermal water loss, achieving high patient and physician satisfaction. These findings underscore its safety, versatility, and efficacy for esthetic facial rejuvenation, warranting further long-term evaluation. Full article
(This article belongs to the Section Dermatology)
Show Figures

Figure 1

21 pages, 536 KiB  
Review
Natural Guardians of the Balkans: Entheogens in Indigenous Practices and Their Implications for Well-Being and Therapy
by Lucija Vejmelka and Damir Gašpar
Psychoactives 2025, 4(2), 15; https://doi.org/10.3390/psychoactives4020015 - 4 Jun 2025
Viewed by 1482
Abstract
Psychedelic plants and fungi have been traditionally used in many cultures as part of ritual ceremonies and ancient medicinal treatments. In some regions, these psychoactive plants have already entered mainstream discourse through popular literature and art. Today, numerous academic and medical institutions are [...] Read more.
Psychedelic plants and fungi have been traditionally used in many cultures as part of ritual ceremonies and ancient medicinal treatments. In some regions, these psychoactive plants have already entered mainstream discourse through popular literature and art. Today, numerous academic and medical institutions are establishing dedicated departments to examine the benefits and risks of psychedelic-assisted treatments. Entheogens in healing practices and herbal medicine are part of Slavic cultural heritage. However, due to the predominantly oral transmission of this knowledge, there is a significant lack of written sources and a profound gap in documentation regarding entheogen use on the Balkan Peninsula, where many psychoactive plants and mushrooms grow in their natural habitat. Our work aims to bridge indigenous knowledge systems with contemporary therapeutic discourse, while advocating for sustainable, inclusive, and culturally respectful research practices. This review manuscript presents information on Slavic ancient entheogens, and calls for further multidisciplinary, integrative approaches in researching psychoactive plants and mushrooms of the Balkans. Our paper includes the ethnobotanical uses of native Balkan entheogens, outlines the pharmacological mechanisms of their main active compounds, and discusses their impacts on social behavior, mental health, and overall well-being. We also examine their therapeutic potential and risks, contributing to the contemporary understanding of psychoactive and psychedelic use in mental health treatment and beyond, as tools for life enhancement to improve quality of life and well-being. Full article
Show Figures

Figure 1

19 pages, 888 KiB  
Article
Fruits of Polish Medicinal Plants as Potential Sources of Natural Antioxidants: Ellagic Acid and Quercetin
by Agnieszka Szmagara, Agnieszka Krzyszczak-Turczyn and Ilona Sadok
Appl. Sci. 2025, 15(11), 6094; https://doi.org/10.3390/app15116094 - 28 May 2025
Viewed by 464
Abstract
Due to their antioxidant and other beneficial properties, polyphenol-rich plants are important functional foods. The purpose of the study was to evaluate the content of two polyphenols—ellagic acid and quercetin—in fruits of wild medicinal plants of Polish origin, as potential sources of these [...] Read more.
Due to their antioxidant and other beneficial properties, polyphenol-rich plants are important functional foods. The purpose of the study was to evaluate the content of two polyphenols—ellagic acid and quercetin—in fruits of wild medicinal plants of Polish origin, as potential sources of these compounds. The research material was chosen considering both the popularity of the fruits and their recognized medicinal and pharmaceutical properties. All selected fruits—barberry (Berberis vulgaris), blackthorn (Prunus spinosa), chokeberry (Aronia melanocarpa), elderberry (Sambucus nigra), hawthorn (Crataegus monogyna), lingonberry (Vaccinium vitis-idaea), rowanberry (Sorbus aucuparia), and sea-buckthorn (Hippophae rhamnoides syn. Elaeagnus rhamnoides)—are known for therapeutic use in Polish folk medicine. Extracts were analyzed for ellagic acid and quercetin content using UHPLC-ESI-MS/MS. Quantitative results revealed that barberries, blackthorn, and sea-buckthorn contained the highest amounts of ellagic acid, up to 3.29 ± 0.24, 3.50 ± 0.16, and 4.80 ± 0.18 μg/g dw, respectively, while lingonberry provided up to 196.20 ± 3.10 μg/g dw of quercetin, making it a valuable dietary source of this flavonoid. The study confirms that Polish wild medicinal plants are valuable reservoirs of key polyphenols relevant to human health and support their potential inclusion in dietary strategies for disease prevention. Full article
Show Figures

Figure 1

Back to TopTop