Impacts of Phenolic Compounds and Their Benefits on Human Health: Germination
Abstract
:1. Introduction
2. Germination Process
3. Macronutrient Metabolism
3.1. Carbohydrate Metabolism
3.2. Protein Metabolism
3.3. Fat Metabolism
3.4. Metabolism of Phenolic Compounds
4. Modification of the Nutrient Profile During Germination
5. Effect of Bioactive Compounds on Health
5.1. Regulation of Inflammatory Processes
5.2. Regulation of the Intestinal Microbiota and Antibiotic Effects
Seed | Bioactive Compound | Bioactivity | Study In Vivo/In Vitro | Preventive Effect | Reference |
---|---|---|---|---|---|
Cereals | |||||
Barley | β-glucan | Anti-obesity, anti-glycemic, hypolipidemic and microbiota regulation | in vivo | Decreased fasting blood glucose Sasietogenic effect Increased gut microbiota | [49] |
Phenols | Hepatoprotection | in vivo | Regulation of oxidative stress and inflammation Reduction of proinflammatory factors | [48] | |
Corn | Polyphenols | Antibiotic and antifungal | in vitro | Protein denaturation | [56] |
Anti-inflammatory | in vitro | Inhibition of inflammatory markers Inhibition of reactive oxygen species (ROS) production | [50] | ||
Rice | Polyphenols | Antihyperlipidemic | in vivo | Inhibition of superoxide dismutase (SOD), catalase (CAT), and glutathione (GPx) Reduction of blood lipids | [44] |
Antidiabetic | in vivo | Beta-cell viability and proliferation Reduction of oxidative stress Insulin regulation | [49] | ||
Oat | β-glucan | Antihypercholesterolemic | in vivo | Depletion of liver cholesterol | [47] |
Fiber | Anti-inflammatory and anti-atherosclerotic | in vivo | NLRP3 inflammasome inhibition Decrease in lipopolysaccharides | [46] | |
Wheat | Peptide | Antioxidante | in vitro | Reduction of MDA, a byproduct of lipid peroxidation | [45] |
Lunacin | anti carcinogenic | in vitro | Inhibition of histone H3 and H4 acetylation Inactivation of tumor suppressors | [58] | |
Legumes | |||||
Bean | Polyphenols | Anti-inflammatory | in vitro | COX-2 inhibition | [51] |
Antidiabetic | In vitro | Increased glucose uptake | [59] | ||
Faba | Peptide | Antioxidant | in vitro | Protection against oxidative damage | [60] |
Polyphenols | Antioxidant | in vitro | Protection of DNA against oxidative damage | [61] | |
Lentil | Polyphenols | Anti-inflammatory | in vitro | Inhibition of COX-2 and nitric oxide (NO) | [62] |
6. Extraction of Phenolic Compounds
6.1. Use of Solvents
6.2. Extraction Techniques
6.2.1. Conventional Techniques
6.2.2. Emerging Techniques
6.3. Strategies to Optimize the Extraction Process
Seed | Extraction Method | Parameters | Phenols (mg GAE/100 g) | Reference | ||
---|---|---|---|---|---|---|
Solvent | Time (min) | Temperature (°C) | ||||
Cereals | ||||||
Barley | MT | Water | 34 | - | 57 | [48] |
90 | 70 | 22 | [34] | |||
US | Water | 10 | - | 145 | [63] | |
Corn | MT | Methanol 80% | 120 | - | 96 | [27] |
US | 4 | 25 | 349 | [74] | ||
Oat | US | Methanol 80% | 30 | - | 30 | [75] |
Rice | HP | Ethanol | 8 | 97 | 210 | [67] |
US | Water | 25 | - | 77 | [76] | |
Sorghum | US | Methanol 80% | 30 | 25 | 2667 | [77] |
Wheat | MT | Methanol 80% | 120 | - | 47 | [27] |
Ethanol 70% | 120 | 60 | 84 | [39] | ||
US | Hexane | 10 | - | 40 | [78] | |
Legumes | ||||||
Bean | MT | Methanol 80% | 120 | - | 145 | [27] |
US | Ethanol 80% | 120 | 45 | 763 | [13] | |
Ethanol 20% | 60 | 40 | 1648 | [71] | ||
Ethanol 80% | 49 | - | 610 | [79] | ||
Faba | MT | Methanol 70% | 120 | - | 269 | [23] |
US | Ethanol 80% | 45 | 25 | 474 | [80] | |
Lentil | MT | Methanol 80% | 120 | - | 76 | [27] |
MW | Ethanol 25% | 5 | - | 68 | [81] | |
Soy | MT | Methanol | 60 | - | 24 | [82] |
Pea | MT | Water | 1440 | 30 | 1100 | [83] |
US | 30 | 30 | 1110 |
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABA | abscisic acid |
ATP | adenosine triphosphate |
CAT | catalase |
COX | cyclooxygenase |
DNA | desoxyribonucleic acid |
Gas | gibberellings |
GPx | glutathione peroxidase |
GSH | reduced glutathione |
KHz | kilohertz |
LDL | low-density lipoprotein |
NCDs | non-communicable diseases |
NFκβ | nuclear factor kappa beta |
pH | Hydrogen potential |
RNA | ribonucleic acid |
ROS | reactive oxygen species |
SOD | superoxide dismutase |
TLR 4 | toll-like receptor 4 |
References
- Gunathunga, C.; Senanayake, S.; Jayasinghe, M.A.; Brennan, C.S.; Truong, T.; Marapana, U.; Chandrapala, J. Germination effects on nutritional quality: A comprehensive review of selected cereals and pulses changes. J. Food Compos. Anal. 2024, 128, 106024. [Google Scholar] [CrossRef]
- Lan, Y.; Zhang, W.; Liu, F.; Wang, L.; Yang, X.; Ma, S.; Wang, Y.; Liu, X. Recent advances in physiochemical changes, nutritional value, bioactivities, and food applications of germinated quinoa: A comprehensive review. Food Chem. 2023, 426, 136390. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Ortiz, F.A.; Castro-Rosas, J.; Gómez-Aldapa, C.A.; Mora-Escobedo, R.; Rojas-León, A.; Rodríguez-Marín, M.L.; Falfán-Cortés, R.N.; Román-Gutiérrez, A.D. Enzyme activity during germination of different cereals: A review. Food Rev. Int. 2018, 35, 177–200. [Google Scholar] [CrossRef]
- Ahmed, W.E.; Ragab, I.; Gadallah, M.G.E.; Alhomaid, R.M.; Almujaydil, M.S. Effect of sprouting whole wheat grain on the sensory quality, physicochemical properties, and antioxidant activity of cupcakes. Appl. Food Res. 2024, 4, 100412. [Google Scholar] [CrossRef]
- Le, L.; Gong, X.; An, Q.; Xiang, D.; Zou, L.; Peng, L.; Wu, X. Quinoa sprouts as potential vegetable source: Nutrient composition and functional contents of different quinoa sprout varieties. Food Chem. 2012, 357, 129752. [Google Scholar] [CrossRef]
- Liu, H.; Li, Z.; Zhang, X.; Liu, Y.; Hu, J.; Yang, C.; Zhao, X. The effects of ultrasound on the growth, nutritional quality and microbiological quality of sprouts. Trends Food Sci. Technol. 2021, 111, 292–300. [Google Scholar] [CrossRef]
- Xiao, Z.; Pan, Y.; Wang, C.; Li, X.; Lu, Y.; Tian, Z.; Kuang, L.; Wang, X.; Dun, X.; Wang, H. Multi-Functional Development and Utilization of Rapeseed: Comprehensive Analysis of the Nutritional Value of Rapeseed Sprouts. Foods 2022, 11, 778. [Google Scholar] [CrossRef]
- Awulachew, M.T. A Review to Nutritional and Health Aspect of Sprouted Food. Int. J. Food Sci. Nutr. Diet. 2022, 10, 564–568. [Google Scholar] [CrossRef]
- Akter, S.; Satter, M.A.; Shahin Ahmed, K.; Biswas, S.; Abdul Bari, M.; Das, A.; Ahsanul Karim, M.; Saha, N.; Hossain, H.; Islam, S.; et al. Nutritional composition, bioactive compounds, and pharmacological activities of tossa jute sprout (Corchorus olitorius L.): A potential functional food. Food Biosci. 2024, 60, 104324. [Google Scholar] [CrossRef]
- Jimenez, M.D.; Salinas Alcon, C.E.; Lobo, M.O.; Samman, N. Andean Crops Germination: Changes in the Nutritional Profile, Physical and Sensory Characteristics. A Review. Plant Foods Hum. Nutr. 2024, 79, 551–562. [Google Scholar] [CrossRef]
- OMS. Enfermedades Cardiovasculares. 2025. Available online: https://www.who.int/es/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 20 May 2025).
- Edo, G.I.; Nwachukwu, S.C.; Ali, A.B.M.; Yousif, E.; Jikah, A.N.; Zainulabdeen, K.; Ekokotu, H.A.; Isoje, E.F.; Igbuku, U.A.; Opiti, R.A.; et al. A review on the composition, extraction and applications of phenolic compounds. Ecol. Front. 2024, 45, 7–23. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, S.; Lu, L.; Liu, L.; Liang, J.; Lang, S.; Wang, C.; Wang, L.; Li, Z. Effects of combined ultrasound and calcium ion pretreatments on polyphenols during mung bean germination: Exploring underlying mechanisms. Food Res. Int. 2024, 195, 114947. [Google Scholar] [CrossRef] [PubMed]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Bontzolis, C.D.; Dimitrellou, D.; Plioni, I.; Kandylis, P.; Soupioni, M.; Koutinas, A.A.; Kanellaki, M. Effect of solvents on aniseed aerial plant extraction using soxhlet and ultrasound methods, regarding antimicrobial activity and total phenolic content. Food Chem. Adv. 2024, 4, 100609. [Google Scholar] [CrossRef]
- Ma, Z.; Bykova, N.V.; Igamberdiev, A.U. Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds. Crop J. 2017, 5, 459–477. [Google Scholar] [CrossRef]
- Guzman-Ortiz, F.A.; Penas, E.; Frias, J.; Castro-Rosas, J.; Martinez-Villaluenga, C. How germination time affects protein hydrolysis of lupins during gastroduodenal digestion and generation of resistant bioactive peptides. Food Chem. 2024, 433, 137343. [Google Scholar] [CrossRef]
- Perveen, S.; Akhtar, S.; Ismail, T.; Qamar, M.; Sattar, D.-e.-s.; Saeed, W.; Younis, M.; Esatbeyoglu, T. Comparison of nutritional, antioxidant, physicochemical, and rheological characteristics of whole and sprouted wheat flour. LWT 2024, 209, 116679. [Google Scholar] [CrossRef]
- Ali, A.; Ullah, Z.; Ullah, R.; Kazi, M. Barley a nutritional powerhouse for gut health and chronic disease defense. Heliyon 2024, 10, e38669. [Google Scholar] [CrossRef] [PubMed]
- Amri, B.; Khamassi, K.; Ali, M.B.; Teixeira da Silva, J.A.; Bettaieb Ben Kaab, L. Effects of gibberellic acid on the process of organic reserve mobilization in barley grains germinated in the presence of cadmium and molybdenum. South Afr. J. Bot. 2016, 106, 35–40. [Google Scholar] [CrossRef]
- Orth, S.H.; Marini, F.; Fox, G.P.; Manley, M.; Hayward, S. Non-invasive exploration of malting barley (Hordeum vulgare) in vitro germination and varietal effects using short wave infrared spectral imaging and ANOVA simultaneous component analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 323, 124869. [Google Scholar] [CrossRef]
- Vidal, J.D.; Beres, C.; Brito, F.O.; Zago, L.; Miyahira, R.F. Unlocking the functional potential of sprouts: A scientific exploration on simulated gastrointestinal digestion and colonic fermentation. J. Funct. Foods 2024, 117, 106235. [Google Scholar] [CrossRef]
- Wintersohle, C.; Arnold, S.J.; Geis, H.M.; Keutgen, F.; Etzbach, L.; Schweiggert-Weisz, U. Impact of short-term germination on dehulling efficiency, enzymatic activities, and chemical composition of mung bean seeds (Vigna radiata L.). Future Foods 2024, 10, 100416. [Google Scholar] [CrossRef]
- Andressa, I.; Amaral e Paiva, M.J.d.; Pacheco, F.C.; Santos, F.R.; Cunha, J.S.; Pacheco, A.F.C.; Neves, N.d.A.; Vendruscolo, R.G.; Schmiele, M.; Tribst, A.A.L.; et al. Germination as a strategy to improve the characteristics of flour and water-soluble extracts obtained from sunflower seed. Food Biosci. 2024, 61, 104763. [Google Scholar] [CrossRef]
- Yamuangmorn, S.; Saenjum, C.; Promuthai, C. Germination alters the bioactive compounds of pigmented and non-pigmented rice varieties in fresh and year-old stored seeds. Food Chem. X 2024, 24, 102005. [Google Scholar] [CrossRef] [PubMed]
- Ozay, C.; Aksoyalp, Z.S.; Erdogan, B.R. Plant phenolic acids modulating the renin-angiotensin system in the management of cardiovascular diseases. Stud. Nat. Prod. Chem. 2024, 82, 285–314. [Google Scholar] [CrossRef]
- Şenlik, A.S.; Alkan, D. Improving the nutritional quality of cereals and legumes by germination. Czech J. Food Sci. 2023, 41, 348–357. [Google Scholar] [CrossRef]
- Shiade, S.R.G.; Zand-Silakhoor, A.; Fathi, A.; Rahimi, R.; Minkina, T.; Rajput, V.D.; Zulfiqar, U.; Chaudhary, T. Plant metabolites and signaling pathways in response to biotic and abiotic stresses: Exploring bio stimulant applications. Plant Stress 2024, 12, 100454. [Google Scholar] [CrossRef]
- Shahid, N.; Ul-Haq, I.; Nayik, G.A.; Ramniwas, S.; Damto, T.; Ali Alharbi, S.; Ansari, M.J. Physicochemical and bioactive traits of black chickpea (Cicer arietinum) as affected by germination-induced modifications. Int. J. Food Prop. 2024, 27, 165–179. [Google Scholar] [CrossRef]
- Islam, M.Z.; An, H.G.; Kang, S.J.; Lee, Y.T. Physicochemical and bioactive properties of a high beta-glucan barley variety ‘Betaone’ affected by germination processing. Int. J. Biol. Macromol. 2021, 177, 129–134. [Google Scholar] [CrossRef]
- Domingues, Y.O.; Lemes, G.A.; de Oliveira, F.L.; de Souza, T.R.; Silva, B.; Bento, J.A.C.; Caldeira Morzelle, M. In vitro simulated gastrointestinal digestion and bioaccessibility of phenolic compounds and antioxidants of soursop (Annona muricata L.) peel and pulp. LWT 2024, 208, 116694. [Google Scholar] [CrossRef]
- Rizvi, Q.; Guine, R.P.F.; Ahmed, N.; Sheikh, M.A.; Sharma, P.; Sheikh, I.; Yadav, A.N.; Kumar, K. Effects of Soaking and Germination Treatments on the Nutritional, Anti-Nutritional, and Bioactive Characteristics of Adzuki Beans (Vigna angularis L.) and Lima Beans (Phaseolus lunatus L.). Foods 2024, 13, 1422. [Google Scholar] [CrossRef] [PubMed]
- Sahu, R.; Mandal, S.; Das, P.; Ashraf, G.J.; Dua, T.K.; Paul, P.; Nandi, G.; Khanra, R. The bioavailability, health advantages, extraction method, and distribution of free and bound phenolics of rice, wheat, and maize: A review. Food Chem. Adv. 2023, 3, 100484. [Google Scholar] [CrossRef]
- García-Castro, A.; Ortiz, F.A.G.; Hernández, G.H.; Román-Gutiérrez, A.D. Analysis of bioactive compounds in lyophilized aqueous extracts of barley sprouts. J. Food Meas. Charact. 2024, 18, 5327–5338. [Google Scholar] [CrossRef]
- Râpeanu, G.; Stănciuc, N.; Lazăr, N.N.; Cotârleț, M.; Mawouma, S. Effect of combined germination and spontaneous fermentation on the bioactive, mineral, and microbial profile of red sorghum and pearl millet flours. Ann. Univ. Dunarea De Jos Galati. Fascicle VI-Food Technol. 2023, 47, 207–220. [Google Scholar] [CrossRef]
- Kruma, Z.; Kince, T.; Galoburda, R.; Tomsone, L.; Straumite, E.; Sabovics, M.; Sturite, L.; Kronberga, A. Influence of germination temperature and time on phenolic content andantioxidant properties of cereals. Foodbalt 2019, 1, 103–108. [Google Scholar] [CrossRef]
- Yan, P.; Aloo, S.O.; Shan, L.; Tyagi, A.; Oh, D.H. Effects of slightly acidic electrolyzed water on safety, antioxidant activity, and metabolite profile of buckwheat sprouts (Fagopyrum spp.). J. Cereal Sci. 2024, 118, 103969. [Google Scholar] [CrossRef]
- Medhe, S.V.; Kettawan, A.K.; Kamble, M.T.; Monboonpitak, N.; Thompson, K.D.; Kettawan, A.; Pirarat, N. Modification of Physiochemical and Techno-Functional Properties of Stink Bean (Parkia speciosa) by Germination and Hydrothermal Cooking Treatment. Foods 2023, 12, 4480. [Google Scholar] [CrossRef]
- Luo, Y.-W.; Xie, W.-H. Effect of germination conditions on phytic acid and polyphenols of faba bean sprouts (Vicia faba L.). Agric. Res. Commun. Cent. 2013, 36, 489–495. [Google Scholar]
- Kassegn, H.H.; Atsbha, T.W.; Weldeabezgi, L.T.; Yildiz, F. Effect of germination process on nutrients and phytochemicals contents of faba bean (Vicia faba L.) for weaning food preparation. Cogent Food Agric. 2018, 4, 1545738. [Google Scholar] [CrossRef]
- Levent, H.; Aktas, K. The effect of germinated black lentils on cookie quality by applying ultraviolet radiation and ultrasound technology. J. Food Sci. 2024, 89, 2557–2566. [Google Scholar] [CrossRef]
- Ahmed, M.F.; Popovich, D.G.; Whitby, C.P.; Rashidinejad, A. Phenolic compounds from macadamia husk: An updated focused review of extraction methodologies and antioxidant activities. Food Bioprod. Process. 2024, 148, 165–175. [Google Scholar] [CrossRef]
- Liu, W.; Cui, X.; Zhong, Y.; Ma, R.; Liu, B.; Xia, Y. Phenolic metabolites as therapeutic in inflammation and neoplasms: Molecular pathways explaining their efficacy. Pharmacol. Res. 2023, 193, 106812. [Google Scholar] [CrossRef]
- Chakraborty, R.; Kalita, P.; Sen, S. Phenolic Profile, Antioxidant, Antihyperlipidemic and Cardiac Risk Preventive Effect of Pigmented Black Rice Variety Chakhao poireiton in High-Fat High-Sugar Induced Rats. Rice Sci. 2023, 30, 641–651. [Google Scholar] [CrossRef]
- Liu, W.; Ren, J.; Wu, H.; Zhang, X.; Han, L.; Gu, R. Inhibitory effects and action mechanism of five antioxidant peptides derived from wheat gluten on cells oxidative stress injury. Food Biosci. 2023, 56, 103236. [Google Scholar] [CrossRef]
- Gao, H.; Song, R.J.; Jiang, H.; Zhang, W.; Han, S.F. Oat fiber supplementation alleviates intestinal inflammation and ameliorates intestinal mucosal barrier via acting on gut microbiota-derived metabolites in LDLR(−/−) mice. Nutrition 2022, 95, 111558. [Google Scholar] [CrossRef]
- Yang, C.; Li, J.; Luo, T.; Tu, J.; Zhong, T.; Zhang, Y.; Liang, X.; Zhang, L.; Zhang, Z.; Wang, J. Ultrasonic-microwave assisted extraction for oat bran polysaccharides: Characterization and in vivo anti-hyperlipidemia study. Ind. Crops Prod. 2024, 220, 119229. [Google Scholar] [CrossRef]
- Aly, A.A.; Abusharha, A.; Shafique, H.; El-Deeb, F.E.; Abdelazeem, A.A. Effects of adding whole barley flour to bread and its impact on anti-obesity action of female rats fed a high-fat diet. Arab. J. Chem. 2024, 17, 105438. [Google Scholar] [CrossRef]
- Bouaziz, K.; Belkaaloul, K.; Kheroua, O. Functional properties of β-glucan extracted from Algerian barley, and its effect on different parameters of overfed rats. Bioact. Carbohydr. Diet. Fibre 2023, 30, 100377. [Google Scholar] [CrossRef]
- Eid, O.; Salem, M.A.; Mohamed, O.G.; Ezzat, S.; Tripathi, A.; Ewida, M.A.; El Sayed, A.; Abdel-Sattar, E.; Elkady, W.M. Metabolomic profiling of barley extracts obtained via different solvents and evaluation of their anti-inflammatory efficacy. Food Biosci. 2024, 61, 104682. [Google Scholar] [CrossRef]
- Kataoka, K.; Nemoto, H.; Sakurai, A.; Yasutomo, K.; Shikanai, M. Preventive effect of fermented brown rice and rice bran on spontaneous type 1 diabetes in NOD female mice. J. Funct. Foods 2021, 78, 104356. [Google Scholar] [CrossRef]
- Piazza, S.; Bani, C.; Colombo, F.; Mercogliano, F.; Pozzoli, C.; Martinelli, G.; Petroni, K.; Roberto Pilu, S.; Sonzogni, E.; Fumagalli, M.; et al. Pigmented corn as a gluten-free source of polyphenols with anti-inflammatory and antioxidant properties in CaCo2 cells. Food Res. Int. 2024, 191, 114640. [Google Scholar] [CrossRef]
- Fonseca Hernandez, D.; Mojica, L.; Berhow, M.A.; Brownstein, K.; Lugo Cervantes, E.; Gonzalez de Mejia, E. Black and pinto beans (Phaseolus vulgaris L.) unique mexican varieties exhibit antioxidant and anti-inflammatory potential. Food Res. Int. 2023, 169, 112816. [Google Scholar] [CrossRef] [PubMed]
- Boyina, R.; Kosanam, S.; Bhimana, S.; Gudimitla, R.B.; Duraiswamy, D. In-vitro and In Silico Assessment of Anti-inflammation Properties of Saponarin Extracted from Hordeum vulgare. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2024, 23, 14–20. [Google Scholar] [CrossRef]
- Ed Nignpense, B.; Francis, N.; Blanchard, C.; Santhakumar, A.B. Bioaccessibility and Bioactivity of Cereal Polyphenols: A Review. Foods 2021, 10, 1595. [Google Scholar] [CrossRef]
- Abirami, S.; Priyalakshmi, M.; Soundariya, A.; Samrot, A.V.; Saigeetha, S.; Emilin, R.R.; Dhiva, S.; Inbathamizh, L. Antimicrobial activity, antiproliferative activity, amylase inhibitory activity and phytochemical analysis of ethanol extract of corn (Zea mays L.) silk. Curr. Res. Green Sustain. Chem. 2021, 4, 100089. [Google Scholar] [CrossRef]
- Teixeira, F.; Silva, A.M.; Sut, S.; Dall’Acqua, S.; Ramos, O.L.; Ribeiro, A.B.; Ferraz, R.; Delerue-Matos, C.; Rodrigues, F. Ultrasound-assisted extraction of bioactive compounds from goji berries: Optimization, bioactivity, and intestinal permeability assessment. Food Res. Int. 2024, 188, 114502. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.J.; Jeong, J.B.; Kim, D.S.; Park, J.H.; Lee, J.B.; Kweon, D.H.; Chung, G.Y.; Seo, E.W.; de Lumen, B.O. The cancer preventive peptide lunasin from wheat inhibits core histone acetylation. Cancer Lett. 2007, 255, 42–48. [Google Scholar] [CrossRef]
- Pavasutti, V.; Sinthuvanich, C.; Tayana, N.; Kongkiatpaiboon, S.; Sae-tan, S. Mung bean seed coat water extract restores insulin sensitivity via upregulation of antioxidant defense system and downregulation of inflammation in insulin-resistant HepG2 cells. NFS J. 2023, 32, 100145. [Google Scholar] [CrossRef]
- Lin, H.; Zhao, J.; Xie, Y.; Tang, J.; Wang, Q.; Zhao, J.; Xu, M.; Liu, P. Identification and molecular mechanisms of novel antioxidant peptides from fermented broad bean paste: A combined in silico and in vitro study. Food Chem. 2024, 450, 139297. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Rolnik, A.; Adach, W.; Kluska, M.; Juszczak, M.; Grabarczyk, L.; Wozniak, K.; Olas, B.; Stochmal, A. Multifunctional compounds in the extract from mature seeds of Vicia faba var. minor: Phytochemical profiling, antioxidant activity and cellular safety in human selected blood cells in in vitro trials. Biomed. Pharmacother. 2021, 139, 111718. [Google Scholar] [CrossRef]
- Peng, L.; Guo, F.; Pei, M.; Tsao, R.; Wang, X.; Jiang, L.; Sun, Y.; Xiong, H. Anti-inflammatory effect of lentil hull (Lens culinaris) extract via MAPK/NF-κB signaling pathways and effects of digestive products on intestinal barrier and inflammation in Caco-2 and Raw264.7 co-culture. J. Funct. Foods 2022, 92, 105044. [Google Scholar] [CrossRef]
- Alvarez-Romero, M.; Ruiz-Rodriguez, A.; Barbero, G.F.; Vazquez-Espinosa, M.; El-Mansouri, F.; Brigui, J.; Palma, M. Comparison between Ultrasound- and Microwave-Assisted Extraction Methods to Determine Phenolic Compounds in Barley (Hordeum vulgare L.). Foods 2023, 12, 2638. [Google Scholar] [CrossRef] [PubMed]
- Soto-García, M.; Rosales-Castro, M. Efecto del solvente y de la relación masa/solvente, sobre la extracción de compuestos fenólicos y la capacidad antioxidante de extractos de corteza de Pinus durangensis y Quercus sideroxyla. Maderas. Cienc. Tecnol. 2016, 18, 701–714. [Google Scholar] [CrossRef]
- Gyurkač, M.; Žitek Makoter, T.; Grilc, M.; Likozar, B.; Knez, Ž.; Knez Marevci, M. Green extraction methods of fucoxanthin from brown macroalgae. J. Agric. Food Res. 2025, 21, 101887. [Google Scholar] [CrossRef]
- Ganjeh, A.M.; Pinto, C.A.; Casal, S.; Habanova, M.; Holovicova, M.; Saraiva, J.A. Novel methods for extraction of monomeric phenols from plants and fruits with potential anti-obesity activity. J. Food Compos. Anal. 2025, 141, 107383. [Google Scholar] [CrossRef]
- Echenique, J.V.F.; Alvarez-Rivera, G.; Luna, V.M.A.; Antonio, A.F.V.d.C.; Mazalli, M.R.; Ibañez, E.; Cifuentes, A.; Oliveira, A.L.d. Pressurized liquid extraction with ethanol in an intermittent process for rice bran oil: Evaluation of process variables on the content of β-sitosterol and phenolic compounds, antioxidant capacity, acetylcholinesterase inhibitory activity, and oil quality. LWT 2024, 207, 116650. [Google Scholar] [CrossRef]
- Leal, A.R.d.S.; Teles, A.S.C.; Almeida, E.L.; Tonon, R.V. Spray drying encapsulation of phenolic compounds and antioxidants. In Spray Drying for the Food Industry; Woodhead Publishing: Shaston, UK, 2024; pp. 339–375. [Google Scholar] [CrossRef]
- Marques Mandaji, C.; da Silva Pena, R.; Campos Chiste, R. Encapsulation of bioactive compounds extracted from plants of genus Hibiscus: A review of selected techniques and applications. Food Res. Int. 2022, 151, 110820. [Google Scholar] [CrossRef]
- Alonso-Vázquez, P.; Lujan-Facundo, M.-J.; Sánchez-Arévalo, C.M.; Cuartas-Uribe, B.; Vincent-Vela, M.C.; Álvarez-Blanco, S. Recovery of phenolic compounds from orange juice solid waste by solid-liquid extraction. LWT 2024, 203, 116355. [Google Scholar] [CrossRef]
- Contreras, Á.; Carrasco, C.; Concha-Meyer, A.; Plaza, A.; Alarcón, M.; González, I. Role of processing and encapsulation in the protection and bioaccessibility of phenolic compounds from Chilean Tórtola common bean (Phaseolus vulgaris L.). LWT 2024, 200, 116188. [Google Scholar] [CrossRef]
- Yahaya, I.; Gyasi, S.F.; Hamadu, A. Phytochemical screening of bioactive compounds and antimicrobial activity of different extracts of Syzygium samarangense leaves. Pharmacol. Res.-Nat. Prod. 2024, 4, 100059. [Google Scholar] [CrossRef]
- Xia, C.; Yang, K.; Zhu, Y.; Liu, T.; Chen, J.; Deng, J.; Zhu, B.; Shi, Z.; Xiang, Z. Distribution of free and bound phenolic compounds, β-glucan, and araboxylan in fractions of milled hulless barley. LWT 2022, 169, 113935. [Google Scholar] [CrossRef]
- Hernández-Estrada, S.; Anaya-Esparza, L.M.; González-Torres, S.; Hernández-Villaseñor, L.A.; Gómez-Rodríguez, V.M.; Ramírez-Vega, H.; Villagrán, Z.; Ruvalcaba-Gómez, J.M.; Rodríguez-Barajas, N.; Montalvo-González, E. Extraction of Soluble Phenols and Flavonoids from Native Mexican Pigmented Corn Kernel Powder by Ultrasound: Optimization Process Using Response Surface Methodology. Appl. Sci. 2024, 14, 7869. [Google Scholar] [CrossRef]
- Zhou, Y.; Tian, Y.; Beltrame, G.; Laaksonen, O.; Yang, B. Ultrasonication-assisted enzymatic bioprocessing as a green method for valorizing oat hulls. Food Chem. 2023, 426, 136658. [Google Scholar] [CrossRef]
- Li, R.; Song, T.; Kang, R.; Ma, W.; Zhang, M.; Ren, F. Investigating the impact of ultrasound-assisted cellulase pretreatment on the nutrients, phytic acid, and phenolics bioaccessibility in sprouted brown rice. Ultrason. Sonochem. 2024, 106, 106878. [Google Scholar] [CrossRef] [PubMed]
- Nagy, R.; Pál, A.; Murányi, E.; Remenyik, J.; Sipos, P. Extraction of Free and Bound Polyphenols from Brans of Sorghum Bicolor Using Different Solvents. J. Microbiol. Biotechnol. Food Sci. 2025, 14, e10906. [Google Scholar] [CrossRef]
- Nemes, S.A.; Mitrea, L.; Teleky, B.E.; Dulf, E.H.; Calinoiu, L.F.; Ranga, F.; Elekes, D.G.; Diaconeasa, Z.; Dulf, F.V.; Vodnar, D.C. Integration of ultrasound and microwave pretreatments with solid-state fermentation enhances the release of sugars, organic acids, and phenolic compounds in wheat bran. Food Chem. 2025, 463 Pt 3, 141237. [Google Scholar] [CrossRef]
- Zhu, L.; Zhan, C.; Yu, X.; Hu, X.; Gao, S.; Zang, Y.; Yao, D.; Wang, C.; Xu, J. Extractions, Contents, Antioxidant Activities and Compositions of Free and Bound Phenols from Kidney Bean Seeds Represented by ‘Yikeshu’ Cultivar in Cold Region. Foods 2024, 13, 1704. [Google Scholar] [CrossRef]
- Choi, Y.M.; Shin, M.J.; Lee, S.; Yoon, H.; Yi, J.; Wang, X.; Kim, H.W.; Desta, K.T. Anti-nutrient factors, nutritional components, and antioxidant activities of faba beans (Vicia faba L.) as affected by genotype, seed traits, and their interactions. Food Chem. X 2024, 23, 101780. [Google Scholar] [CrossRef]
- İşçimen, E.M.; Hayta, M. Microwave-assisted aqueous two-phase system based extraction of phenolics from pulses: Antioxidant properties, characterization and encapsulation. Ind. Crops Prod. 2021, 173, 114144. [Google Scholar] [CrossRef]
- AlJuhaimi, F.; Ahmed, I.A.M.; Özcan, M.M.; Uslu, N.; Albakry, Z.; Özcan, M.M.; Mohammed, B.M. The role of germination and boiling processes on bioactive properties, fatty acids, phenolic profile and element contents of hemp seeds and oils. Food Chem. Adv. 2024, 4, 100719. [Google Scholar] [CrossRef]
- Mohamed, A.; Loumerem, M. Effect of Different Extraction Methods on Phenolic Content, Flavonoid Levels, and Antioxidant Activities of Four Local Populations of Pea (Pisum sativum L.) from Southern Tunisia. J. Oasis Agric. Sustain. Dev. 2024, 6, 1–9. [Google Scholar] [CrossRef]
Seed | Germination Conditions | Change in Nutritional Profile | ||||
---|---|---|---|---|---|---|
Time (days) | Temperature (°C) | Relative Humidity (%) | Nutrient | Increase/Decrease (%) | Reference | |
Cereals | ||||||
Barley | 7 | 24 | 70 | Ferulic acid * | 384 | [34] |
Syringic acid * | 21 | |||||
Total sugars * | 140 | |||||
Total flavonoids **** | 316 | |||||
Protein ** | 106 | |||||
4 | 25 | 75 | Ash ** | 6 | [30] | |
Starch ** | −8 | |||||
Fat ** | 4 | |||||
24 | - | Total phenols *** | 27 | [27] | ||
Soluble fiber ** | 1 | |||||
Corn | 4 | 24 | - | Total Sugars * | −3 | [27] |
Ash ** | −3 | |||||
Total Phenols *** | 80 | |||||
Soluble Fiber ** | 6 | |||||
Fat ** | −38 | |||||
Protein ** | 42 | |||||
Millet | 2 | 30 | - | Total phenols *** | 31 | [35] |
Total flavonoids **** | −17 | |||||
Oat | 2 | 35 | 95 | Total phenols *** | 165 | [36] |
Rice | 1 | 35 | 95 | α-Tocopherol * | 43 | [25] |
Ferulic acid * | 442 | |||||
GABA * | 1169 | |||||
Kaempferol * | 4 | |||||
Quercetin * | 30 | |||||
Rye | 2 | 25 | 95 | Total phenols *** | 105 | [36] |
Sorghum | 2 | 30 | - | Total phenols *** | −23 | [35] |
Triticale | 2 | 25 | 95 | Total phenols *** | 155 | [36] |
Wheat | 4 | 24 | - | Total Sugars * | −9 | [29] |
Soluble Fiber ** | 8 | |||||
3 | 25 | - | Insoluble Fiber ** | −17 | [17] | |
Ash ** | 175 | |||||
Gluten ** | 56 | |||||
Fat ** | −23 | |||||
Protein ** | 21 | |||||
5 | 60 | Total Phenols *** | 138 | [37] | ||
Legumes | ||||||
Bean | 5 | - | - | Total Sugars * | −3 | [38] |
Insoluble Fiber ** | −1 | |||||
4 | 24 | Ash ** | 14 | [27] | ||
Protein ** | 18 | |||||
2 | 37 | 90 | Total Phenols *** | 169 | [13] | |
3 | 25 | 80 | Total Flavonoids **** | 36 | [32] | |
Soluble Fiber ** | 21 | |||||
Fat ** | −30 | |||||
Chickpea | 5 | - | - | Total Sugars * | −11 | [29] |
Ash ** | −16 | |||||
Total Phenols *** | 84 | |||||
Total Flavonoids **** | 40 | |||||
Kaempferol * | 87 | |||||
Fat ** | −13 | |||||
Faba | 2 | 30 | 90 | Starch ** | −23 | [23] |
Total Sugars * | 2 | |||||
Ash ** | 9 | |||||
5 | 30 | - | Total Phenols *** | −68 | [39] | |
3 | 23 | - | Soluble Fiber ** | −12 | [40] | |
Fat ** | −19 | |||||
Protein ** | −55 | |||||
Lentil | 4 | 24 | - | Total Sugars * | −19 | [29] |
Total Phenols *** | 72 | |||||
Soluble Fiber ** | 4 | |||||
25 | 90 | Ash ** | 10 | [41] | ||
Fat ** | 221 | |||||
Protein ** | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Miranda, J.; Reyes-Portillo, K.A.; García-Castro, A.; Ramírez-Moreno, E.; Román-Gutiérrez, A.D. Impacts of Phenolic Compounds and Their Benefits on Human Health: Germination. Metabolites 2025, 15, 425. https://doi.org/10.3390/metabo15070425
Hernández-Miranda J, Reyes-Portillo KA, García-Castro A, Ramírez-Moreno E, Román-Gutiérrez AD. Impacts of Phenolic Compounds and Their Benefits on Human Health: Germination. Metabolites. 2025; 15(7):425. https://doi.org/10.3390/metabo15070425
Chicago/Turabian StyleHernández-Miranda, Jonathan, Karen Argelia Reyes-Portillo, Abigail García-Castro, Esther Ramírez-Moreno, and Alma Delia Román-Gutiérrez. 2025. "Impacts of Phenolic Compounds and Their Benefits on Human Health: Germination" Metabolites 15, no. 7: 425. https://doi.org/10.3390/metabo15070425
APA StyleHernández-Miranda, J., Reyes-Portillo, K. A., García-Castro, A., Ramírez-Moreno, E., & Román-Gutiérrez, A. D. (2025). Impacts of Phenolic Compounds and Their Benefits on Human Health: Germination. Metabolites, 15(7), 425. https://doi.org/10.3390/metabo15070425