Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (908)

Search Parameters:
Keywords = poor water solubility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2562 KiB  
Article
Comparative Stability and Anesthetic Evaluation of Holy Basil Essential Oil Formulated in SNEDDS and Microemulsion Systems in Cyprinus carpio var. Koi
by Kantaporn Kheawfu, Chuda Chittasupho, Surachai Pikulkaew, Wasana Chaisri and Taepin Junmahasathien
Pharmaceutics 2025, 17(8), 997; https://doi.org/10.3390/pharmaceutics17080997 (registering DOI) - 31 Jul 2025
Viewed by 163
Abstract
Background/Objectives: Holy basil (Ocimum tenuiflorum L.) essential oil exhibits antioxidant, antimicrobial, and anesthetic activities, mainly due to eugenol, methyl eugenol, and β-caryophyllene. However, its clinical application is limited by poor water solubility, instability, and low bioavailability. This study developed and compared two [...] Read more.
Background/Objectives: Holy basil (Ocimum tenuiflorum L.) essential oil exhibits antioxidant, antimicrobial, and anesthetic activities, mainly due to eugenol, methyl eugenol, and β-caryophyllene. However, its clinical application is limited by poor water solubility, instability, and low bioavailability. This study developed and compared two delivery systems, self-nanoemulsifying drug delivery systems (SNEDDS) and microemulsions (ME), to enhance their stability and fish anesthetic efficacy. Methods: The optimized SNEDDS (25% basil oil, 8.33% coconut oil, 54.76% Tween 80, 11.91% PEG 400) and ME (12% basil oil, 32% Tween 80, 4% sorbitol, 12% ethanol, 40% water) were characterized for droplet size, PDI, zeta potential, pH, and viscosity. Stability was evaluated by monitoring droplet size and PDI over time and by determining the retention of eugenol, methyl eugenol, and β-caryophyllene after storage at 45 °C. Fish anesthetic efficacy was tested in koi carp (Cyprinus carpio var. koi). Results: SNEDDS maintained a small droplet size (~22.78 ± 1.99 nm) and low PDI (0.188 ± 0.088 at day 60), while ME showed significant size enlargement (up to 177.10 ± 47.50 nm) and high PDI (>0.5). After 90 days at 45 °C, SNEDDS retained 94.45% eugenol, 94.08% methyl eugenol, and 88.55% β-caryophyllene, while ME preserved 104.76%, 103.53%, and 94.47%, respectively. In vivo testing showed that SNEDDS achieved faster anesthesia (114.70 ± 24.80 s at 120 ppm) and shorter recovery (379.60 ± 15.61 s) than ME (134.90 ± 4.70 s; 473.80 ± 16.94 s). Ethanol failed to induce anesthesia at 40 ppm and performed poorly compared to SNEDDS and ME at other concentrations (p < 0.0001). Conclusions: SNEDDS demonstrated superior physical stability and fish anesthetic performance compared to ME. These findings support SNEDDS as a promising formulation for delivering holy basil essential oil in biomedical and aquaculture applications. Full article
(This article belongs to the Special Issue Applications of Nanotechnology in Veterinary Drug Delivery)
Show Figures

Graphical abstract

11 pages, 2406 KiB  
Article
Surfactant-Free Electrosprayed Alginate Beads for Oral Delivery of Hydrophobic Compounds
by Hye-Seon Jeong, Hyo-Jin Kim, Sung-Min Kang and Chang-Hyung Choi
Polymers 2025, 17(15), 2098; https://doi.org/10.3390/polym17152098 - 30 Jul 2025
Viewed by 198
Abstract
Oral delivery of hydrophobic compounds remains challenging due to their poor aqueous solubility and the potential toxicity associated with conventional surfactant-based emulsions. To address these issues, we present a surfactant-free encapsulation strategy using electrosprayed alginate hydrogel beads for the stable and controlled delivery [...] Read more.
Oral delivery of hydrophobic compounds remains challenging due to their poor aqueous solubility and the potential toxicity associated with conventional surfactant-based emulsions. To address these issues, we present a surfactant-free encapsulation strategy using electrosprayed alginate hydrogel beads for the stable and controlled delivery of hydrophobic oils. Hydrophobic compounds were dispersed in high-viscosity alginate solutions without surfactants via ultrasonication, forming kinetically stable oil-in-water dispersions. These mixtures were electrosprayed into calcium chloride baths, yielding monodisperse hydrogel beads. Higher alginate concentrations improved droplet sphericity and suppressed phase separation by enhancing matrix viscosity. The resulting beads exhibited stimuli-responsive degradation and controlled release behavior in response to physiological ionic strength. Dense alginate networks delayed ion exchange and prolonged structural integrity, while elevated external ionic conditions triggered rapid disintegration and immediate payload release. This simple and scalable system offers a biocompatible platform for the oral delivery of lipophilic active compounds without the need for surfactants or complex fabrication steps. Full article
Show Figures

Figure 1

24 pages, 2279 KiB  
Article
Insights into the Structural Patterns in Human Glioblastoma Cell Line SF268 Activity and ADMET Prediction of Curcumin Derivatives
by Lorena Coronado, Johant Lakey-Beitia, Marisin Pecchio, Michelle G. Ng, Ricardo Correa, Gerardo Samudio-Ríos, Jessica Cruz-Mora, Arelys L. Fuentes, K. S. Jagannatha Rao and Carmenza Spadafora
Pharmaceutics 2025, 17(8), 968; https://doi.org/10.3390/pharmaceutics17080968 - 25 Jul 2025
Viewed by 394
Abstract
Background/Objectives: Curcumin is a promising therapy for glioblastoma but is limited by poor water solubility, rapid metabolism, and low blood–brain barrier penetration. This study aimed to evaluate curcumin and six curcumin derivatives with improved activity against a glioblastoma cell line and favorable [...] Read more.
Background/Objectives: Curcumin is a promising therapy for glioblastoma but is limited by poor water solubility, rapid metabolism, and low blood–brain barrier penetration. This study aimed to evaluate curcumin and six curcumin derivatives with improved activity against a glioblastoma cell line and favorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Methods: Twenty-one curcumin derivatives were assessed and subjected to in vitro MTT cytotoxicity assays in SF268 glioblastoma and Vero cells. On the basis of the cytotoxicity results, six derivatives with the most favorable characteristics were selected for additional mechanistic studies, which included microtubule depolymerization, mitochondrial membrane potential (ΔΨm), and BAX activation assays. ADMET properties were determined in silico. Results: Compounds 24, 6, and 11 demonstrated better activity (IC50: 0.59–3.97 µg/mL and SI: 3–20) than curcumin (IC50: 6.3 µg/mL; SI: 2.5). Lead derivatives destabilized microtubules, induced ΔΨm collapse, and activated BAX. In silico ADMET prediction analysis revealed that compounds 4 and 6 were the most promising for oral administration from a biopharmaceutical and pharmacokinetic point of view. Conclusions: Strategic modifications were made to one or both hydroxyl groups of the aromatic rings of curcumin to increase its physicochemical stability and activity against glioblastoma cell line SF268. Compound 4, bearing fully protected aromatic domains, was identified as a prime candidate for in vivo validation and formulation development. Full article
Show Figures

Graphical abstract

18 pages, 2562 KiB  
Article
Enhancing the Solubility and Oral Bioavailability of Trimethoprim Through PEG-PLGA Nanoparticles: A Comprehensive Evaluation of In Vitro and In Vivo Performance
by Yaxin Zhou, Guonian Dai, Jing Xu, Weibing Xu, Bing Li, Shulin Chen and Jiyu Zhang
Pharmaceutics 2025, 17(8), 957; https://doi.org/10.3390/pharmaceutics17080957 - 24 Jul 2025
Viewed by 281
Abstract
Background/Objectives: Trimethoprim (TMP), a sulfonamide antibacterial synergist, is widely used in antimicrobial therapy owing to its broad-spectrum activity and clinical efficacy in treating respiratory, urinary tract, and gastrointestinal infections. However, its application is limited due to poor aqueous solubility, a short elimination half-life [...] Read more.
Background/Objectives: Trimethoprim (TMP), a sulfonamide antibacterial synergist, is widely used in antimicrobial therapy owing to its broad-spectrum activity and clinical efficacy in treating respiratory, urinary tract, and gastrointestinal infections. However, its application is limited due to poor aqueous solubility, a short elimination half-life (t1/2), and low bioavailability. In this study, we proposed TMP loaded by PEG-PLGA polymer nanoparticles (NPs) to increase its efficacy. Methods: We synthesized and thoroughly characterized PEG-PLGA NPs loaded with TMP using an oil-in-water (O/W) emulsion solvent evaporation method, denoted as PEG-PLGA/TMP NPs. Drug loading capacity (LC) and encapsulation efficiency (EE) were quantified by ultra-performance liquid chromatography (UPLC). Comprehensive investigations were conducted on the stability of PEG-PLGA/TMP NPs, in vitro drug release profiles, and in vivo pharmacokinetics. Results: The optimized PEG-PLGA/TMP NPs displayed a high LC of 34.0 ± 1.6%, a particle size of 245 ± 40 nm, a polydispersity index (PDI) of 0.103 ± 0.019, a zeta potential of −23.8 ± 1.2 mV, and an EE of 88.2 ± 4.3%. The NPs remained stable at 4 °C for 30 days and under acidic conditions. In vitro release showed sustained biphasic kinetics and enhanced cumulative release, 86% at pH 6.8, aligning with first-order models. Pharmacokinetics in rats revealed a 2.82-fold bioavailability increase, prolonged half-life 2.47 ± 0.19 h versus 0.72 ± 0.08 h for free TMP, and extended MRT 3.10 ± 0.11 h versus 1.27 ± 0.11 h. Conclusions: PEG-PLGA NPs enhanced the solubility and oral bioavailability of TMP via high drug loading, stability, and sustained-release kinetics, validated by robust in vitro-in vivo correlation, offering a promising alternative for clinical antimicrobial therapy. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

11 pages, 1292 KiB  
Article
Flotation Behaviours of Ilmenite and Associated Solution Chemistry Properties Using Saturated Fatty Acids as the Collector
by Jihua Zhai, Hao He, Pan Chen, Lin Song, Xiaohai Yao and Hongxian Zhang
Separations 2025, 12(8), 191; https://doi.org/10.3390/separations12080191 - 24 Jul 2025
Viewed by 172
Abstract
A series of homologous saturated fatty acids were introduced and evaluated as collectors for ilmenite flotation using a combination of micro-flotation tests and surface tension measurements. The results showed that ilmenite exhibited good flotation behaviour when decanoic and dodecanoic acids were used as [...] Read more.
A series of homologous saturated fatty acids were introduced and evaluated as collectors for ilmenite flotation using a combination of micro-flotation tests and surface tension measurements. The results showed that ilmenite exhibited good flotation behaviour when decanoic and dodecanoic acids were used as collectors; however, saturated fatty acids with shorter or longer carbon chains were not suitable for ilmenite flotation (caused either by poor collection ability or limited solubility in water). The optimum flotation pH range was also dependent on the carbon chain length of saturated fatty acids, and the solution surface tension did not always match well with the ilmenite flotation behaviour when using a series of saturated fatty acids as the collector. The associated solution chemistry properties under series saturated fatty acid flotation systems were discussed, and the adsorption mechanism of decanoic acid onto the ilmenite surface was also investigated via FTIR, zeta potential, and contact angle measurements. Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Figure 1

24 pages, 1055 KiB  
Review
Potential of Quercetin as a Promising Therapeutic Agent Against Type 2 Diabetes
by Przemysław Niziński, Anna Hawrył, Paweł Polak, Adrianna Kondracka, Tomasz Oniszczuk, Jakub Soja, Mirosław Hawrył and Anna Oniszczuk
Molecules 2025, 30(15), 3096; https://doi.org/10.3390/molecules30153096 - 24 Jul 2025
Viewed by 499
Abstract
Quercetin (QE) is a naturally occurring flavonoid found in many fruits, vegetables, and other plant-based foods. It is recognized for its diverse pharmacological activities. Among its many therapeutic potentials, its antidiabetic properties are of particular interest due to the growing worldwide prevalence of [...] Read more.
Quercetin (QE) is a naturally occurring flavonoid found in many fruits, vegetables, and other plant-based foods. It is recognized for its diverse pharmacological activities. Among its many therapeutic potentials, its antidiabetic properties are of particular interest due to the growing worldwide prevalence of diabetes mellitus. QE improves glycemic control by enhancing insulin sensitivity, stimulating glucose uptake, and preserving pancreatic beta cell function. These effects are mediated by the modulation of key molecular pathways, including AMPK, PI3K/Akt, and Nrf2/ARE, as well as by the suppression of oxidative stress and pro-inflammatory cytokines, such as TNF-α and IL-6. Furthermore, QE mitigates the progression of diabetic complications such as nephropathy, retinopathy, and vascular dysfunction, reducing lipid peroxidation and protecting endothelial function. However, the clinical application of quercetin is limited by its low water solubility, poor bioavailability, and extensive phase II metabolism. Advances in formulation strategies, including the use of nanocarriers, co-crystals, and phospholipid complexes, have shown promise in improving its pharmacokinetics. This review elucidates the mechanistic basis of QE quercetin antidiabetic action and discusses strategies to enhance its therapeutic potential in clinical settings. Full article
Show Figures

Figure 1

25 pages, 1399 KiB  
Review
Critical Review on Molecular Mechanisms for Genistein’s Beneficial Effects on Health Through Oxidative Stress Reduction
by Ke Zhang, Jingwen Wang and Baojun Xu
Antioxidants 2025, 14(8), 904; https://doi.org/10.3390/antiox14080904 - 24 Jul 2025
Viewed by 470
Abstract
Oxidative stress directly or indirectly contributes to the development and progression of various diseases; therefore, regulating oxidative stress is a promising strategy for preventing or treating these conditions. The unique substances in soybeans, soy isoflavones, notably genistein, which have a strong antioxidant capacity, [...] Read more.
Oxidative stress directly or indirectly contributes to the development and progression of various diseases; therefore, regulating oxidative stress is a promising strategy for preventing or treating these conditions. The unique substances in soybeans, soy isoflavones, notably genistein, which have a strong antioxidant capacity, are considered to regulate various signaling pathways, alleviate oxidative stress, and improve gut microbiota imbalance as well as mitochondrial dysfunction. In this literature review, we summarize the latest research on genistein, providing evidence of its development and application as a potential drug for preventing and treating five selected diseases (Parkinson’s disease, Alzheimer’s disease, diabetes mellitus, cardiovascular disease, and cancers). The literature was searched using keywords that include tripartite combinations of genistein and oxidative stress, along with each of the five selected diseases, from PubMed, Science Direct, and Google Scholar between 2014 and 2024. According to current in vitro, in vivo, and clinical trials, we comprehensively discuss the therapeutic dose used to target various disease entities to achieve optimal efficacy and meet safety requirements. Moreover, considering the poor water solubility and limited bioavailability of genistein, strategies for improving its therapeutic efficacy, such as combining it with exercise, existing medications, and advanced technologies, as well as applying nanotechnology, were assessed. Therefore, this review aims to provide robust evidence for the development and application of genistein as a potential therapeutic agent or functional food for preventing and treating these diseases. Full article
(This article belongs to the Special Issue Effect of Dietary Antioxidants in Chronic Disease Prevention)
Show Figures

Figure 1

43 pages, 3721 KiB  
Review
Novel Strategies for the Formulation of Poorly Water-Soluble Drug Substances by Different Physical Modification Strategies with a Focus on Peroral Applications
by Julian Quodbach, Eduard Preis, Frank Karkossa, Judith Winck, Jan Henrik Finke and Denise Steiner
Pharmaceuticals 2025, 18(8), 1089; https://doi.org/10.3390/ph18081089 - 23 Jul 2025
Viewed by 791
Abstract
The number of newly developed substances with poor water solubility continually increases. Therefore, specialized formulation strategies are required to overcome the low bioavailability often associated with this property. This review provides an overview of novel physical modification strategies discussed in the literature over [...] Read more.
The number of newly developed substances with poor water solubility continually increases. Therefore, specialized formulation strategies are required to overcome the low bioavailability often associated with this property. This review provides an overview of novel physical modification strategies discussed in the literature over the past decades and focuses on oral dosage forms. A distinction is made between ‘brick-dust’ molecules, which are characterized by high melting points due to the solid-state properties of the substances, and ‘grease-ball’ molecules with high lipophilicity. In general, the discussed strategies are divided into the following three main categories: drug nanoparticles, solid dispersions, and lipid-based formulations. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Graphical abstract

26 pages, 24382 KiB  
Article
Carboxylated Mesoporous Carbon Nanoparticles as Bicalutamide Carriers with Improved Biopharmaceutical and Chemo-Photothermal Characteristics
by Teodora Popova, Borislav Tzankov, Marta Slavkova, Yordan Yordanov, Denitsa Stefanova, Virginia Tzankova, Diana Tzankova, Ivanka Spassova, Daniela Kovacheva and Christina Voycheva
Molecules 2025, 30(15), 3055; https://doi.org/10.3390/molecules30153055 - 22 Jul 2025
Viewed by 312
Abstract
Prostate cancer is a serious, life-threatening condition among men, usually requiring long-term chemotherapy. Due to its high efficacy, bicalutamide, a non-steroidal anti-androgen, has widespread use. However, its poor water solubility, low oral bioavailability, and nonspecific systemic exposure limit its application. To overcome these [...] Read more.
Prostate cancer is a serious, life-threatening condition among men, usually requiring long-term chemotherapy. Due to its high efficacy, bicalutamide, a non-steroidal anti-androgen, has widespread use. However, its poor water solubility, low oral bioavailability, and nonspecific systemic exposure limit its application. To overcome these obstacles, our study explored the potential of non-carboxylated and carboxylated mesoporous carbon nanoparticles (MCN) as advanced drug carriers for bicalutamide (MCN/B and MCN-COOH/B). The physicochemical properties and release behaviour were thoroughly characterized. Functionalization with carboxylic groups significantly improved wettability, dispersion stability, as well as loading efficiency due to enhanced hydrogen bonding and π–π stacking interactions. Moreover, all systems exhibited sustained and near-infrared (NIR) triggered drug release with reduced burst-effect, compared to the release of free bicalutamide. Higher particle size and stronger drug–carrier interactions determined a zero-order kinetics and notably slower release rate of MCN-COOH/B compared to non-functionalized MCN. Cytotoxicity assays on LNCaP prostate cancer cells demonstrated that both MCN/B and MCN-COOH/B possessed comparable antiproliferative activity as free bicalutamide, where MCN-COOH/B exhibited superior efficacy, especially under NIR exposure. These findings suggest that MCN-COOH nanoparticles could be considered as a prospective platform for controlled, NIR-accelerated delivery of bicalutamide in prostate cancer treatment. Full article
Show Figures

Graphical abstract

10 pages, 721 KiB  
Article
Pharmacokinetic Analysis of the Bioavailability of AQUATURM®, a Water-Soluble Curcumin Formulation, in Comparison to a Conventional Curcumin Tablet, in Human Subjects
by Lillian Jabur, Rishi Pandey, Meena Mikhael, Garry Niedermayer, Erika Gyengesi, David Mahns and Gerald Münch
Pharmaceuticals 2025, 18(7), 1073; https://doi.org/10.3390/ph18071073 - 21 Jul 2025
Viewed by 397
Abstract
Background/Objectives: Curcumin, the principal bioactive component of Curcuma longa, is known for its anti-inflammatory, antioxidant, and neuroprotective properties. Despite its therapeutic potential, curcumin exhibits poor oral bioavailability due to low solubility, rapid metabolism, and limited gastrointestinal absorption. Various delivery systems have been developed [...] Read more.
Background/Objectives: Curcumin, the principal bioactive component of Curcuma longa, is known for its anti-inflammatory, antioxidant, and neuroprotective properties. Despite its therapeutic potential, curcumin exhibits poor oral bioavailability due to low solubility, rapid metabolism, and limited gastrointestinal absorption. Various delivery systems have been developed to overcome these limitations. This study aimed to evaluate and compare the pharmacokinetic profile of AQUATURM®, a novel, water-soluble curcumin formulation, with that of a widely available commercial curcumin supplement. Methods: A randomized, double-blind, two-period crossover study was conducted in 12 healthy adult participants (6 male, 6 female; aged 20–45 years). Each participant received a single oral dose of either AQUATURM® or the comparator product, followed by a 7-day washout period before receiving the alternate treatment. Blood samples were collected at multiple time points over a 12-h period post-dosing. Plasma curcumin concentrations were quantified using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS). Results: AQUATURM® achieved a significantly higher systemic exposure compared to the comparator, with a more than 7-fold increase in area under the curve (AUC0–12h) and higher peak plasma concentrations (Cmax). AQUATURM® also maintained detectable curcumin levels for the full 12-h observation period, whereas levels from the comparator fell below quantification limits in most participants after 4 h. Conclusions: AQUATURM® significantly enhances curcumin bioavailability in humans compared to a standard curcumin formulation. These pharmacokinetic improvements support its potential for greater clinical efficacy and warrant further evaluation in therapeutic setting Full article
Show Figures

Graphical abstract

17 pages, 2166 KiB  
Article
Effects of Fertilizer Application on Growth and Stoichiometric Characteristics of Nitrogen, Phosphorus, and Potassium in Balsa Tree (Ochroma lagopus) Plantations at Different Slope Positions
by Jialan Chen, Weisong Zhu, Yuanxi Liu, Gang Chen, Juncheng Han, Wenhao Zhang and Junwen Wu
Plants 2025, 14(14), 2221; https://doi.org/10.3390/plants14142221 - 18 Jul 2025
Viewed by 266
Abstract
Ochroma lagopus, a fast-growing tropical tree species, faces fertilization challenges due to slope heterogeneity in plantations. This study examined 3-year-old Ochroma lagopus at upper and lower slope positions under five treatments: CK (no fertilizer), F1 (600 g/plant), F2 (800 g/plant), F3 (1000 [...] Read more.
Ochroma lagopus, a fast-growing tropical tree species, faces fertilization challenges due to slope heterogeneity in plantations. This study examined 3-year-old Ochroma lagopus at upper and lower slope positions under five treatments: CK (no fertilizer), F1 (600 g/plant), F2 (800 g/plant), F3 (1000 g/plant), and F4 (1200 g/plant) of secondary macronutrient water-soluble fertilizer. Growth parameters and N-P-K stoichiometry were analyzed. Key results: (1) Height increased continuously with fertilizer dosage at both slopes, while DBH peaked and then declined. (2) At upper slopes (nutrient-poor soil), fertilization elevated leaf P but reduced branch N/K and increased root P/K. At lower slopes (nutrient-rich soil), late-stage leaf N increased significantly, with roots accumulating P/K via a “storage strategy”. Stoichiometric thresholds indicated N-K co-limitation (early-mid stage) shifting to P limitation (late stage) on upper slopes and persistent N-K co-limitation on lower slopes. (3) PCA identified F4 (1200 g/plant) and F1 (600 g/plant) as optimal for upper and lower slopes, respectively. This research provides a theoretical basis for precision fertilization in Ochroma lagopus plantations, emphasizing slope-specific nutrient status and element interactions for dosage optimization. Full article
Show Figures

Figure 1

18 pages, 1034 KiB  
Article
Preparation and Characterization of Efficient and Safe Rotenone Solid Nanodispersion by Self-Emulsifying Technique
by Yunfei Zhang, Xuesheng Lin, Yunlong Qian, Mingda Qin, Shujing Zhang, Lanying Wang and Yanping Luo
Nanomaterials 2025, 15(14), 1056; https://doi.org/10.3390/nano15141056 - 8 Jul 2025
Viewed by 378
Abstract
Self-emulsifying solid nanodispersion technology is emerging as an attractive strategy to prepare new eco-friendly and efficient nano-formulations due to its simple, energy efficient and easy scale-up process. However, it is still unknown whether this technology can be employed to cope with the drawbacks [...] Read more.
Self-emulsifying solid nanodispersion technology is emerging as an attractive strategy to prepare new eco-friendly and efficient nano-formulations due to its simple, energy efficient and easy scale-up process. However, it is still unknown whether this technology can be employed to cope with the drawbacks of botanical insecticides including poor water solubility, rapid photodegradation and limited targeting efficiency. In this study, rotenone (Rot) was selected as a model of botanical insecticides, and its solid nanodispersion (Rot–SND) was prepared by a self-emulsifying method combined with parameter optimization. Our target nano-formulation, consisting of 5% Rot, 20% surfactant complexes of 8% Ethylan 992 and 12% EL–80, and 75% lactose, exhibited excellent storage stability and significantly improved the pseudo-solubility of Rot by at least 250 times. The average particle size and polydispersity index (PDI) of Rot–SND were determined to be 101.19 nm and 0.21, respectively. Rot–SND displayed smaller contact angles and greater retention on both cucumber and cabbage leaves than those of a commercial emulsifiable concentrates (ECs). Rot–SND was also more resistant to photodegradation, with a degradation rate reduced by 27.01% as compared with the ECs. In addition, the toxicity of Rot–SND towards Aphis gossypii was 3.01 times that of the ECs, with a median lethal concentration (LC50) of 1.45 µg a.i./mL. Under the field conditions, Rot–SND showed a prolonged duration for A. gossypii control, with a significantly higher control efficacy (88.10%) on the 10th day than that of the ECs (77.02%). Moreover, a 2.34-fold decline in the toxicity towards nontarget mosquito larvae was observed for Rot–SND as compared with the EC. Overall, for the first time, our results indicate the role of Rot–SND as an eco-friendly and efficient way to improve the solubility, foliar affinity, photostability, bioactivity and eco-safety of Rot. This research also provided a feasible strategy to prepare more eco-friendly botanical pesticide formulations of high efficiency. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

21 pages, 750 KiB  
Review
Targeting Ocular Biofilms with Plant-Derived Antimicrobials in the Era of Antibiotic Resistance
by Monika Dzięgielewska, Michał Tomczyk, Adrian Wiater, Aleksandra Woytoń and Adam Junka
Molecules 2025, 30(13), 2863; https://doi.org/10.3390/molecules30132863 - 5 Jul 2025
Cited by 1 | Viewed by 685
Abstract
Microbial biofilms present a formidable challenge in ophthalmology. Their intrinsic resistance to antibiotics and evasion of host immune defenses significantly complicate treatments for ocular infections such as conjunctivitis, keratitis, blepharitis, and endophthalmitis. These infections are often caused by pathogens, including Staphylococcus aureus, [...] Read more.
Microbial biofilms present a formidable challenge in ophthalmology. Their intrinsic resistance to antibiotics and evasion of host immune defenses significantly complicate treatments for ocular infections such as conjunctivitis, keratitis, blepharitis, and endophthalmitis. These infections are often caused by pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, particularly in patients using contact lenses or intraocular implants—devices that serve as surfaces for biofilm formation. The global rise in antimicrobial resistance has intensified the search for alternative treatment modalities. In this regard, plant-derived antimicrobials have emerged as promising candidates demonstrating broad-spectrum antimicrobial and antibiofilm activity through different mechanisms from those of conventional antibiotics. These mechanisms include inhibiting quorum sensing, disrupting established biofilm matrices, and interfering with microbial adhesion and communication. However, the clinical translation of phytochemicals faces significant barriers, including variability in chemical composition due to environmental and genetic factors, difficulties in standardization and reproducibility, poor water solubility and ocular bioavailability, and a lack of robust clinical trials evaluating their efficacy and safety in ophthalmic settings. Furthermore, regulatory uncertainties and the absence of unified guidelines for approving plant-derived formulations further hinder their integration into evidence-based ophthalmic practice. This review synthesizes the current knowledge on the pathogenesis and treatment of biofilm-associated ocular infections, critically evaluating plant-based antimicrobials as emerging therapeutic agents. Notably, resveratrol, curcumin, abietic acid, and selected essential oils demonstrated notable antibiofilm activity against S. aureus, P. aeruginosa, and C. albicans. These findings support the potential of phytochemicals as adjunctive or alternative agents in managing biofilm-associated ocular infections. By highlighting both their therapeutic promise and translational limitations, this review contributes to the ongoing discourse on sustainable, innovative approaches to managing antibiotic-resistant ocular infections. Full article
(This article belongs to the Special Issue Research Progress of New Antimicrobial Drugs)
Show Figures

Figure 1

19 pages, 2844 KiB  
Article
Chitosan Nanoparticles Enhance the Antiproliferative Effect of Lapachol in Urothelial Carcinoma Cell Lines
by Tatiane Roquete Amparo, Kamila de Fátima da Anunciação, Tamires Cunha Almeida, Lucas Resende Dutra Sousa, Viviane Flores Xavier, Janaína Brandão Seibert, Ana Paula Moreira Barboza, Paula Melo de Abreu Vieira, Orlando David Henrique dos Santos, Glenda Nicioli da Silva and Geraldo Célio Brandão
Pharmaceutics 2025, 17(7), 868; https://doi.org/10.3390/pharmaceutics17070868 - 2 Jul 2025
Viewed by 394
Abstract
Backgroud/Objectives: Lapachol is a naturally occurring prenylated naphthoquinone with antiproliferative effects. However, its clinical application remains limited due to several factors, including poor water solubility, low bioavailability, and adverse effects. The development of chitosan-based nanoparticles holds promise in overcoming these challenges and has [...] Read more.
Backgroud/Objectives: Lapachol is a naturally occurring prenylated naphthoquinone with antiproliferative effects. However, its clinical application remains limited due to several factors, including poor water solubility, low bioavailability, and adverse effects. The development of chitosan-based nanoparticles holds promise in overcoming these challenges and has emerged as a potential nanocarrier for cancer therapy, including bladder cancer. The objective of this study was to develop and evaluate the effects of chitosan nanoparticles on bladder tumor cell lines. Methods: The nanoemulsion was prepared using the hot homogenization method, while the chitosan nanoparticles were obtained through the ionic gelation technique. The nanoformulations were characterized in terms of particle size and polydispersity index (PDI) using photon correlation spectroscopy, and zeta potential by electrophoretic mobility. Encapsulation efficiency was determined by ultracentrifugation, and the drug release was analyzed using the dialysis method. The antineoplastic potential was assessed using the MTT assay, and the safety profile was assessed through ex vivo analysis. Cellular uptake was determined by fluorescence microscopy. Results: The study demonstrated that both the chitosan-based nanoemulsion and nanospheres encapsulating lapachol exhibited appropriate particle sizes (around 160 nm), high encapsulation efficiency (>90%), and a controlled release profile (Korsmeyer–Peppas model). These nanoemulsion systems enhanced the antiproliferative activity of lapachol in bladder tumor cells, with the nanospheres showing superior cellular uptake. Histopathological analysis indicated the safety of the formulations when administered intravesically. Conclusions: The results suggest that chitosan nanoparticles may represent a promising alternative for bladder cancer treatment. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

25 pages, 1414 KiB  
Review
Chlorin Activity Enhancers for Photodynamic Therapy
by Maciej Michalak, Jakub Szymczyk, Aleksandra Pawska, Marcin Wysocki, Dominika Janiak, Daniel Ziental, Marcin Ptaszek, Emre Güzel and Lukasz Sobotta
Molecules 2025, 30(13), 2810; https://doi.org/10.3390/molecules30132810 - 30 Jun 2025
Viewed by 544
Abstract
Photodynamic therapy (PDT) is a non-invasive therapeutic method with over a century of medical use, especially in dermatology, ophthalmology, dentistry, and, notably, cancer treatment. With an increasing number of clinical trials, there is growing demand for innovation in PDT. Despite being a promising [...] Read more.
Photodynamic therapy (PDT) is a non-invasive therapeutic method with over a century of medical use, especially in dermatology, ophthalmology, dentistry, and, notably, cancer treatment. With an increasing number of clinical trials, there is growing demand for innovation in PDT. Despite being a promising treatment for cancer and bacterial infections, PDT faces limitations such as poor water solubility of many photosensitizers (PS), limited light penetration, off-target accumulation, and tumor hypoxia. This review focuses on chlorins—well-established macrocyclic PSs known for their strong activity and clinical relevance. We discuss how nanotechnology addresses PDT’s limitations and enhances therapeutic outcomes. Nanocarriers like lipid-based (liposomes, micelles), polymer-based (cellulose, chitosan, silk fibroin, polyethyleneimine, PLGA), and carbon-based ones (graphene oxide, quantum dots, MOFs), and nanospheres are promising platforms that improve chlorin performance and reduce side effects. This review also explores their use in Antimicrobial Photodynamic Therapy (aPDT) against multidrug-resistant bacteria and in oncology. Recent in vivo studies demonstrate encouraging results in preclinical models using nanocarrier-enhanced chlorins, though clinical application remains limited. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop