Critical Review on Molecular Mechanisms for Genistein’s Beneficial Effects on Health Through Oxidative Stress Reduction
Abstract
1. Introduction
2. Methodology
3. The Characteristics of Genistein and Its Therapeutic Effect Through Inhibiting Oxidative Stress
3.1. The Chemical Structure of Genistein
3.2. The Therapeutic Effect of Genistein Through Inhibiting Oxidative Stress
4. Therapeutic Application of Genistein in Common Oxidative Stress-Induced Diseases
4.1. Parkinson’s Disease (PD)
4.2. Alzheimer’s Disease (AD)
4.3. Diabetes Mellitus (DM)
4.4. Cardiovascular Disease (CVD)
4.5. Cancer
5. The Role of Genistein in Recent Treatments
5.1. Pharmacokinetic Profile and Clinical Studies of Genistein
5.2. Combination Therapy with Exercise or Existing Agents to Enhance Genistein’s Bioavailability and Efficacy
5.3. Advances in the Use of Nanotechnology for Genistein Delivery to Enhance Bioavailability
5.4. Therapeutic Doses of Genistein by Disease Entity
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Preiser, J.C. Oxidative stress. J. Parenter. Enter. Nutr. 2012, 36, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Rani, V.; Deep, G.; Singh, R.K.; Palle, K.; Yadav, U.C. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016, 148, 183–193. [Google Scholar] [CrossRef] [PubMed]
- González, P.; Lozano, P.; Ros, G.; Solano, F. Hyperglycemia and oxidative stress: An integral, updated and critical overview of their metabolic interconnections. Int. J. Mol. Sci. 2023, 24, 9352. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, F.; Adam, R.H.I.; Broersen, K. Molecular mechanisms and genetics of oxidative stress in Alzheimer’s disease. J. Alzheimers Dis. 2019, 72, 981–1017. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Sathyapalan, T.; Atkin, S.L.; Sahebkar, A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid. Med. Cell Longev. 2020, 2020, 8609213. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Rios, E.; Castro, L.; Liu, J.; Yan, Y.; Dixon, D. Genistein: Dual role in women’s health. Nutrients 2021, 13, 3048. [Google Scholar] [CrossRef] [PubMed]
- Suraweera, T.L.; Merlin, J.P.J.; Dellaire, G.; Xu, Z.; Rupasinghe, H.P.V. Genistein and procyanidin B2 reduce carcinogen-induced reactive oxygen species and DNA damage through the activation of Nrf2/ARE cell signaling in bronchial epithelial cells in vitro. Int. J. Mol. Sci. 2023, 24, 3676. [Google Scholar] [CrossRef] [PubMed]
- Goh, Y.X.; Jalil, J.; Lam, K.W.; Husain, K.; Premakumar, C.M. Genistein: A review on its anti-inflammatory properties. Front. Pharmacol. 2022, 13, 820969. [Google Scholar] [CrossRef] [PubMed]
- Rajput, M.S.; Sarkar, P.D.; Nirmal, N.P. Inhibition of DPP-4 activity and neuronal atrophy with genistein attenuates neurological deficits induced by transient global cerebral ischemia and reperfusion in streptozotocin-induced diabetic mice. Inflammation 2017, 40, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Sarao, L.; Kaur, S.; Malik, T.; Singh, A. Genistein and daidzein. In Nutraceuticals and Health Care, 2022nd ed.; Kour, J., Nayik, G.A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 331–341. [Google Scholar]
- Kumar, V.; Chauhan, S.S. Daidzein induces intrinsic pathway of apoptosis along with ER α/β ratio alteration and ROS production. Asian Pac. J. Cancer Prev. 2021, 22, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Alorda-Clara, M.; Torrens-Mas, M.; Morla-Barcelo, P.M.; Roca, P.; Sastre-Serra, J.; Pons, D.G.; Oliver, J. High concentrations of genistein decrease cell viability depending on oxidative stress and inflammation in colon cancer cell lines. Int. J. Mol. Sci. 2022, 23, 7526. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ou, S.; Liu, Q.; Gan, L.; Zhang, L.; Wang, Y.; Qin, J.; Liu, J.; Wu, W. Genistein improves mitochondrial function and inflammatory in rats with diabetic nephropathy via inhibiting MAPK/NF-κB pathway. Acta Cir. Bras. 2022, 37, e370601. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Han, L.; Wang, X.; Li, Y.; Zhu, Y.; Wang, J.; Xue, C. Sialoglycoprotein isolated from eggs of Carassius auratus promotes fracture healing in osteoporotic mice. J. Food Drug Anal. 2018, 26, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhou, S.; Ma, S.; Suzuki, K. Effect of genistein supplementation on exercise-induced inflammation and oxidative stress in mice liver and skeletal muscle. Medicina 2021, 57, 1028. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, J.J.; Chen, R.J.; Chen, L.; Chen, S.; Yang, X.F.; Min, J.W. Genistein mitigates oxidative stress and inflammation by regulating Nrf2/HO-1 and NF-κB signaling pathways in hypoxic-ischemic brain damage in neonatal mice. Ann. Transl. Med. 2022, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Schreihofer, D.A.; Oppong-Gyebi, A. Genistein: Mechanisms of action for a pleiotropic neuroprotective agent in stroke. Nutr. Neurosci. 2019, 22, 375–391. [Google Scholar] [CrossRef] [PubMed]
- Lignitto, L.; LeBoeuf, S.E.; Homer, H.; Jiang, S.; Askenazi, M.; Karakousi, T.R.; Pass, H.I.; Bhutkar, A.J.; Tsirigos, A.; Ueberheide, B.; et al. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell 2019, 178, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Done, A.J.; Traustadóttir, T. Nrf2 mediates redox adaptations to exercise. Redox Biol. 2016, 10, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Shen, L.; Li, Y.; Li, Y.; Yu, S.; Wang, S. Hyperoside attenuates dextran sulfate sodium-induced colitis in mice possibly via activation of the Nrf2 signalling pathway. J. Inflamm. 2017, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Caceres, S.; Crespo, B.; Alonso-Diez, A.; de Andrés, P.J.; Millan, P.; Silván, G.; Illera, M.J.; Illera, J.C. Long-term exposure to isoflavones alters the hormonal steroid homeostasis-impairing reproductive function in adult male Wistar rats. Nutrients 2023, 15, 1261. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Bandyopadhyay, A. Antioxidants in mitigating phthalate-induced male reproductive toxicity: A comprehensive review. Chemosphere 2024, 364, 143297. [Google Scholar] [CrossRef] [PubMed]
- Singh, S. Review on natural agents as aromatase inhibitors: Management of breast cancer. Comb. Chem. High Throughput Screen. 2024, 27, 2623–2638. [Google Scholar] [CrossRef] [PubMed]
- Li, D.W.; Zhou, F.Z.; Sun, X.C.; Li, S.C.; Yang, J.B.; Sun, H.H.; Wang, A.H. Ginsenoside Rb1 protects dopaminergic neurons from inflammatory injury induced by intranigral lipopolysaccharide injection. Neural Regen. Res. 2019, 14, 1814–1822. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Tripathi, P.; Yadawa, A.K.; Singh, S. Promising polyphenols in Parkinson’s disease therapeutics. Neurochem. Res. 2020, 45, 1731–1745. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.R.; Gu, Y.; Xie, X.M.; Zhang, M.; Jiang, G.Y.; Chen, W.F. GPER and IGF-1R mediate the anti-inflammatory effect of genistein against lipopolysaccharide (LPS)-induced nigrostriatal injury in rats. J. Steroid Biochem. Mol. Biol. 2021, 214, 105989. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.C.; Hu, Q.L.; Zhang, S.J.; Wang, Y.M.; Jin, Z.K.; Lv, L.F.; Zhang, S.; Liu, Z.L.; Wu, H.L.; Cheng, O.M. Neuroprotective effects of genistein on SH-SY5Y cells overexpressing A53T mutant α-synuclein. Neural Regen. Res. 2018, 13, 1375–1383. [Google Scholar] [PubMed]
- Siddique, Y.H.; Naz, F.; Jyoti, S.; Ali, F.; Rahul. Effect of genistein on the transgenic Drosophila model of Parkinson’s disease. J. Diet. Suppl. 2019, 16, 550–563. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Jahan, S.; Imtiyaz, Z.; Alshahrani, S.; Antar Makeen, H.; Mohammed Alshehri, B.; Kumar, A.; Arafah, A.; Rehman, M.U. Neuroprotection: Targeting multiple pathways by naturally occurring phytochemicals. Biomedicines 2020, 8, 284. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.F.; Bahr, B.A.; Kinsey, S.T. Endosomal-lysosomal dysfunction in metabolic diseases and Alzheimer’s disease. Int. Rev. Neurobiol. 2020, 154, 303–324. [Google Scholar] [PubMed]
- Brand, A.L.; Lawler, P.E.; Bollinger, J.G.; Li, Y.; Schindler, S.E.; Li, M.; Lopez, S.; Ovod, V.; Nakamura, A.; Shaw, L.M.; et al. The performance of plasma amyloid beta measurements in identifying amyloid plaques in Alzheimer’s disease: A literature review. Alzheimers Res. Ther. 2022, 14, 195. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Lendel, C. Extracellular protein components of amyloid plaques and their roles in Alzheimer’s disease pathology. Mol. Neurodegener. 2021, 16, 59. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Chen, S.; Xiang, J.; Tan, J.; Huang, K.; Zhang, H.; Wang, Y.; Wu, H. Genistein exerts a cell-protective effect via Nrf2/HO-1/ /PI3K signaling in Ab25-35-induced Alzheimer’s disease models in vitro. Folia Histochem. Cytobiol. 2021, 59, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Li, Y.; Xu, F.; Ding, H. Study on the neuroprotective effects of genistein on Alzheimer’s disease. Brain Behav. 2021, 11, e02100. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Yang, G.; He, Y.; Xu, H.; Fan, H.; An, J.; Zhang, L.; Zhang, R.; Cao, G.; Hao, D.; et al. Involvement of α7nAChR in the protective effects of genistein against β-amyloid-induced oxidative stress in neurons via a PI3K/Akt/Nrf2 pathway-related mechanism. Cell Mol. Neurobiol. 2021, 41, 377–393. [Google Scholar] [CrossRef] [PubMed]
- Viña, J.; Escudero, J.; Baquero, M.; Cebrián, M.; Carbonell-Asíns, J.A.; Muñoz, J.E.; Satorres, E.; Meléndez, J.C.; Ferrer-Rebolleda, J.; Cózar-Santiago, M.D.P.; et al. Genistein effect on cognition in prodromal Alzheimer’s disease patients. The GENIAL clinical trial. Alzheimers Res. Ther. 2022, 14, 164. [Google Scholar] [CrossRef] [PubMed]
- Aimaier, S.; Tao, Y.; Lei, F.; Yupeng, Z.; Wenhui, S.; Aikemu, A.; Maimaitiyiming, D. Protective effects of the Terminalia bellirica tannin-induced Nrf2/HO-1 signaling pathway in rats with high-altitude pulmonary hypertension. BMC Complement. Altern. Med. 2023, 23, 150. [Google Scholar] [CrossRef] [PubMed]
- Pierzynowska, K.; Podlacha, M.; Gaffke, L.; Majkutewicz, I.; Mantej, J.; Węgrzyn, A.; Osiadły, M.; Myślińska, D.; Węgrzyn, G. Autophagy-dependent mechanism of genistein-mediated elimination of behavioral and biochemical defects in the rat model of sporadic Alzheimer’s disease. Neuropharmacology 2019, 148, 332–346. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Gao, J.; Zhu, M.; Liu, K.; Zhang, H.L. Gut microbiota and dysbiosis in Alzheimer’s disease: Implications for pathogenesis and treatment. Mol. Neurobiol. 2020, 57, 5026–5043. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.W.; Zhang, J.; Yu, Z.L.; Chung, S.K.; Xu, B.J. The roles of dietary polyphenols at crosstalk between type 2 diabetes and Alzheimer’s disease in ameliorating oxidative stress and mitochondrial dysfunction via PI3K/Akt signaling pathways. Ageing Res. Rev. 2024, 99, 102416. [Google Scholar] [CrossRef] [PubMed]
- Khalilzadeh, B.; Zayer, M.; Yousefi, H. Anti-inflammatory effect of swimming exercise and genistein in combination in the pancreas of ovariectomized diabetic rats. Med. J. Tabriz Univ. Med. Sci. Health Serv. 2024, 46, 38–47. [Google Scholar] [CrossRef]
- Braxas, H.; Rafraf, M.; Hasanabad, S.K.; Jafarabadi, M.A. Effectiveness of genistein supplementation on metabolic factors and antioxidant status in postmenopausal women with type 2 diabetes mellitus. Can. J. Diabetes. 2019, 43, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Goswami, K.; Badruddeen; Arif, M.; Akhtar, J.; Khan, M.I.; Ahmad, M. Flavonoids, isoflavonoids and others bioactives for insulin sensitizations. Curr. Diabetes Rev. 2024, 20, e270423216247. [Google Scholar] [CrossRef] [PubMed]
- Ram Makena, M.; Gatla, H.; Verlekar, D.; Sukhavasi, S.; Pandey, M.K.; Pramanik, K.C. Wnt/β-catenin signaling: The culprit in pancreatic carcinogenesis and therapeutic resistance. Int. J. Mol. Sci. 2019, 20, 4242. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Cruz, M.; Godinez-Salas, E.T.; Sanchez-Tapia, M.; Torres-Villalobos, G.; Pichardo-Ontiveros, E.; Guizar-Heredia, R.; Arteaga-Sanchez, L.; Gamba, G.; Mojica-Espinosa, R.; Schcolnik-Cabrera, A.; et al. Genistein stimulates insulin sensitivity through gut microbiota reshaping and skeletal muscle AMPK activation in obese subjects. BMJ Open Diabetes Res. 2020, 8, e000948. [Google Scholar] [CrossRef]
- Braxas, H.; Musazadeh, V.; Zarezadeh, M.; Ostadrahimi, A. Genistein effectiveness in improvement of glucose and lipid metabolism and homocysteine levels: A systematic review and meta-analysis. J. Funct. Foods 2023, 102, 105433. [Google Scholar] [CrossRef]
- Watanabe, S.; Haruyama, R.; Umezawa, K.; Tomioka, I.; Nakamura, S.; Katayama, S.; Mitani, T. Genistein enhances NAD(+) biosynthesis by upregulating nicotinamide phosphoribosyltransferase in adipocytes. J. Nutr. Biochem. 2023, 121, 109433. [Google Scholar] [CrossRef] [PubMed]
- Mitani, T.; Watanabe, S.; Wada, K.; Fujii, H.; Nakamura, S.; Katayama, S. Intracellular cAMP contents regulate NAMPT expression via induction of C/EBPβ in adipocytes. Biochem. Biophys. Res. Commun. 2020, 522, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Stromsdorfer, K.L.; Yamaguchi, S.; Yoon, M.J.; Moseley, A.C.; Franczyk, M.P.; Kelly, S.C.; Qi, N.; Imai, S.; Yoshino, J. NAMPT-Mediated NAD+ biosynthesis in adipocytes regulates adipose tissue function and multi-organ insulin sensitivity in mice. Cell Rep. 2016, 16, 1851–1860. [Google Scholar] [CrossRef] [PubMed]
- Liccardo, M.; Sapio, L.; Perrella, S.; Sirangelo, I.; Iannuzzi, C. Genistein prevents apoptosis and oxidative stress induced by methylglyoxal in endothelial cells. Molecules 2024, 29, 1712. [Google Scholar] [CrossRef] [PubMed]
- Laddha, A.P.; Kulkarni, Y.A. Tannins and vascular complications of diabetes: An update. Phytomedicine 2019, 56, 229–245. [Google Scholar] [CrossRef] [PubMed]
- Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020, 51, 102590. [Google Scholar] [CrossRef] [PubMed]
- Larsen, N.; Vogensen, F.K.; van den Berg, F.W.; Nielsen, D.S.; Andreasen, A.S.; Pedersen, B.K.; Al-Soud, W.A.; Sørensen, S.J.; Hansen, L.H.; Jakobsen, M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 2010, 5, e9085. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhou, L.; Zhang, Q.; Yu, M.; Xiao, X. Genistein improves glucose metabolism and promotes adipose tissue browning through modulating gut microbiota in mice. Food Funct. 2022, 13, 11715–11732. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Jia, Q.; Mehmood, S.; Ma, S.; Liu, X. Genistein ameliorates inflammation and insulin resistance through mediation of gut microbiota composition in type 2 diabetic mice. Eur. J. Nutr. 2021, 60, 2155–2168. [Google Scholar] [CrossRef] [PubMed]
- Senoner, T.; Dichtl, W. Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients 2019, 11, 2090. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Cong, L.; Liu, S.; Xiang, L.; Fu, X. Genistein alleviates chronic vascular inflammatory response via the miR-21/NF-κB p65 axis in lipopolysaccharide-treated mice. Mol. Med. Rep. 2021, 23, 192. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.T.; Chandy, M.; Nishiga, M.; Zhang, A.; Kumar, K.K.; Thomas, D.; Manhas, A.; Rhee, S.; Justesen, J.M.; Chen, I.Y.; et al. Cannabinoid receptor 1 antagonist genistein attenuates marijuana-induced vascular inflammation. Cell 2022, 185, 1676–1693.e1623. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Xu, L.; Yu, X.; Jiao, X.; Yan, J.; Li, W.; Guo, M. Genistein inhibited estradiol-induced vascular endothelial cell injury by downregulating the FAK/focal adhesion pathway. Cell Physiol. Biochem. 2018, 49, 2277–2292. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.G.; Sun, N.; Liu, K.L.; Su, Q.; Qi, J.; Fu, L.Y.; Xin, G.R.; Kang, Y.M. Genistein alleviates oxidative stress and inflammation in the hypothalamic paraventricular nucleus by activating the SIRT1/Nrf2 pathway in high salt-induced hypertension. Cardiovasc. Toxicol. 2022, 22, 898–909. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Z.; Pang, X.; Yang, J.; Yu, H.; Zhang, Y.; Zhou, H.; Zhao, J. MiR-34a/sirtuin-1/foxo3a is involved in genistein protecting against ox-LDL-induced oxidative damage in HUVECs. Toxicol. Lett. 2017, 277, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Haddad, Y.H.; Said, R.S.; Kamel, R.; Morsy, E.M.E.; El-Demerdash, E. Phytoestrogen genistein hinders ovarian oxidative damage and apoptotic cell death-induced by ionizing radiation: Co-operative role of ER-β, TGF-β, and FOXL-2. Sci. Rep. 2020, 10, 13551. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Tang, Y.; Tan, Y.; Li, J.; Zhang, X. KCNK9 mediates the inhibitory effects of genistein on hepatic metastasis from colon cancer. Clinics 2023, 78, 100141. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Tian, W.; Ning, J.; Xiao, G.; Zhou, Y.; Wang, Z.; Zhai, Z.; Tanzhu, G.; Yang, J.; Zhou, R. Cancer stem cells: Advances in knowledge and implications for cancer therapy. Sig. Transduct Target Ther. 2024, 9, 170.f. [Google Scholar] [CrossRef] [PubMed]
- Victoir, B.; Croix, C.; Gouilleux, F.; Prié, G. Targeted therapeutic strategies for the treatment of cancer. Cancers 2024, 16, 461. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, N.; Yang, D.; Yang, M.; Guo, X.; He, J.; Wu, W.; Ji, B.; Cheng, Q.; Zhou, F. Protective effects of five structurally diverse flavonoid subgroups against chronic alcohol-induced hepatic damage in a mouse model. Nutrients 2018, 10, 1754. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Pi, A.; Hao, L.; Xu, T.; Zhu, Q.; Shu, L.; Yu, X.; Wang, W.; Si, C.; Li, S. Genistein protects against acetaldehyde-induced oxidative stress and hepatocyte injury in chronic alcohol-fed mice. J. Agric. Food Chem. 2023, 71, 1930–1943. [Google Scholar] [CrossRef] [PubMed]
- El-Far, Y.M.; Khodir, A.E.; Emarah, Z.A.; Ebrahim, M.A.; Al-Gayyar, M.M.H. Chemopreventive and hepatoprotective effects of genistein via inhibition of oxidative stress and the versican/PDGF/PKC signaling pathway in experimentally induced hepatocellular carcinoma in rats by thioacetamide. Redox Rep. 2022, 27, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wu, Y.; Gu, J.; Liang, P.; Shen, M.; Xi, J.; Qin, J. Anti-invasive effect and pharmacological mechanism of genistein against colorectal cancer. Biofactors 2020, 46, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Poetsch, A.R. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput. Struct. Biotechnol. J. 2020, 18, 207–219. [Google Scholar] [CrossRef]
- Salini, D.; Debanjan, T.; Debomita, S.; Sutapa, M. Restoration of radiosensitivity by soya isoflavone genistein is accomplished by facilitating DNA damage response in radioresistant cervical cancer in vitro. J. Radiat. Cancer Res. 2024, 15, 200–210. [Google Scholar] [CrossRef]
- Sohel, M.; Biswas, P.; Al Amin, M.; Hossain, M.A.; Sultana, H.; Dey, D.; Aktar, S.; Setu, A.; Khan, M.S.; Paul, P. Genistein, a potential phytochemical against breast cancer treatment-insight into the molecular mechanisms. Processes 2022, 10, 415. [Google Scholar] [CrossRef]
- Bhat, S.S.; Prasad, S.K.; Shivamallu, C.; Prasad, K.S.; Syed, A.; Reddy, P.; Cull, C.A.; Amachawadi, R.G. Genistein: A potent anti-breast cancer agent. Curr. Issues Mol. Biol. 2021, 43, 1502–1517. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.Y.; Suh, J.; Jang, J.H.; Kim, D.H.; Park, O.J.; Park, S.K.; Surh, Y.J. Genistein inhibits proliferation of brca1 mutated breast cancer cells: The GPR30-Akt axis as a potential target. J Cancer Prev. 2019, 24, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Wu, J.F.; Wang, D.M.; Zhang, J.; Zhang, W.J.; Xue, G. The correlation and role analysis of KCNK2/4/5/15 in human papillary thyroid carcinoma microenvironment. J. Cancer. 2020, 11, 5162–5176. [Google Scholar] [CrossRef] [PubMed]
- Garbiec, E.; Cielecka-Piontek, J.; Kowalówka, M.; Hołubiec, M.; Zalewski, P. Genistein-opportunities related to an interesting molecule of natural origin. Molecules 2022, 27, 815. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Kulkarni, K.; Zhu, W.; Hu, M. Bioavailability and pharmacokinetics of genistein: Mechanistic studies on its ADME. Anticancer Agents Med. Chem. 2012, 12, 1264–1280. [Google Scholar] [CrossRef] [PubMed]
- Braxas, H.; Rafraf, M.; Karimi Hasanabad, S.; Asghari Jafarabadi, M. Genistein supplementation improves some cardiovascular risk factors in postmenopausal women with Type 2 diabetes mellitus. Nutr. Food Sci. 2021, 51, 125–136. [Google Scholar] [CrossRef]
- Kumar, N.B.; Pow-Sang, J.; Spiess, P.; Dickinson, S.; Schell, M.J. A phase II randomized clinical trial using aglycone isoflavones to treat patients with localized prostate cancer in the pre-surgical period prior to radical prostatectomy. Oncotarget 2020, 11, 1218–1234. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, N.; Akhtar, J.; Singh, S.P.; Ahsan, F. An overview on genistein and its various formulations. Drug Res. 2019, 69, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Sadeghian, R.; Shahidi, S.; Komaki, A.; Habibi, P.; Ahmadiasl, N.; Yousefi, H.; Daghigh, F. Synergism effect of swimming exercise and genistein on the inflammation, oxidative stress, and VEGF expression in the retina of diabetic-ovariectomized rats. Life Sci. 2021, 284, 119931. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.; Orosz, T.; Singh, A.; Laxma, S.P.; Gross, R.E.; Smith, N.; Vroegop, S.; Sudler, S.; Porter, J.T.; Colon, M.; et al. Influence of exercise and genistein to mitigate the deleterious effects of high-fat high-sugar diet on Alzheimer’s disease-related markers in male mice. Int. J. Mol. Sci. 2024, 25, 9019. [Google Scholar] [CrossRef] [PubMed]
- Witayavanitkul, N.; Werawatganon, D.; Chayanupatkul, M.; Klaikeaw, N.; Siriviriyakul, P. Genistein and exercise treatment reduced NASH related HDAC3, IL-13 and MMP-12 expressions in ovariectomized rats fed with high fat high fructose diet. J. Tradit. Complement. Med. 2021, 11, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Zamani-Garmsiri, F.; Hashemnia, S.M.R.; Shabani, M.; Bagherieh, M.; Emamgholipour, S.; Meshkani, R. Combination of metformin and genistein alleviates non-alcoholic fatty liver disease in high-fat diet-fed mice. J. Nutr. Biochem. 2021, 87, 108505. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, P.H.A.; Amaral, C.; Almeida, C.F.; Correia-da-Silva, G.; Torqueti, M.R.; Teixeira, N. In vitro effects of combining genistein with aromatase inhibitors: Concerns regarding its consumption during breast cancer treatment. Molecules 2023, 28, 4893. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Kim, Y.; Kim, J.H. A combination of myokines and genistein suppresses cancer stemness in MCF-7 human breast cancer cells. Nutr. Res. Pract. 2024, 18, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Khamesi, S.M.; Barough, M.S.; Zargan, J.; Shayesteh, M.; Banaee, N.; Noormohammadi, A.H.; Mousavi, M.; Alikhani, H.K. Combined anticancer effects of neutron radiation and genistein on prostate cancer cells. J. Radiat. Res. Appl. Sci. 2023, 16, 100731. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Shanay Rab, S.R.; Suman, R. Applications of nanotechnology in medical field: A brief review. Glob. Health J. 2023, 7, 70–77. [Google Scholar] [CrossRef]
- Khan, H.; Ullah, H.; Martorell, M.; Valdes, S.E.; Belwal, T.; Tejada, S.; Sureda, A.; Kamal, M.A. Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Semin Cancer Biol. 2021, 69, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Syahputra, R.A.; Dalimunthe, A.; Utari, Z.D.; Halim, P.; Sukarno, M.A.; Zainalabidin, S.; Salim, E. Nanotechnology and flavonoids: Current research and future perspectives on cardiovascular health. J. Funct. Foods. 2024, 120, 106355. [Google Scholar] [CrossRef]
- Coutinho, A.J.; Pinheiro, M.; Neves, A.R.; Pinto, M.M.M. Therapeutic potential of genistein: Preclinical studies, clinical evidence, and nanotechnology application. Curr. Med. Chem. 2023, 30, 2480–2517. [Google Scholar] [CrossRef] [PubMed]
- Obinu, A.; Burrai, G.P.; Cavalli, R.; Galleri, G.; Migheli, R.; Antuofermo, E.; Rassu, G.; Gavini, E.; Giunchedi, P. Transmucosal solid lipid nanoparticles to improve genistein absorption via intestinal lymphatic transport. Pharmaceutics. 2021, 13, 267. [Google Scholar] [CrossRef] [PubMed]
- Vodnik, V.V.; Mojić, M.; Stamenović, U.; Otoničar, M.; Ajdžanović, V.; Maksimović-Ivanić, D.; Mijatović, S. Development of genistein-loaded gold nanoparticles and their antitumor potential against prostate cancer cell lines. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 124, 112078. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Dong, X.Y.; Gao, Y. Genistein in the treatment of Alzheimer’s disease: A systematic review and meta-analysis of preclinical studies. J. Agric. Food Chem. 2024, 72, 13500–13512. [Google Scholar] [CrossRef]
- Wang, J.W.; Yu, Z.L.; Peng, Y.; Xu, B.J. Insights into prevention mechanisms of bioactive components from healthy diets against Alzheimer’s disease. J. Nutr. Biochem. 2023, 119, 109397. [Google Scholar] [CrossRef] [PubMed]
- Baluchnejadmojarad, T.; Roghani, M.; Nadoushan, M.R.; Bagheri, M. Neuroprotective effect of genistein in 6-hydroxydopamine hemi-parkinsonian rat model. Phytother. Res. 2009, 23, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Kyuhou, S. Preventive effects of genistein on motor dysfunction following 6-hydroxydopamine injection in ovariectomized rats. Neurosci. Lett. 2008, 448, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, E.R.; Liu, D. Anti-diabetic functions of soy isoflavone genistein: Mechanisms underlying its effects on pancreatic β-cell function. Food Funct. 2013, 4, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wang, S.; Li, L.; Liang, Z.; Wang, L. Genistein reduces hyperglycemia and islet cell loss in a high-dosage manner in rats with alloxan-induced pancreatic damage. Pancreas. 2011, 40, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Q.; Zhou, D.; Chen, H. Genistein, a soya isoflavone, prevents azoxymethane-induced up-regulation of WNT/β-catenin signalling and reduces colon pre-neoplasia in rats. Br. J. Nutr. 2013, 109, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Chodon, D.; Banu, S.M.; Padmavathi, R.; Sakthisekaran, D. Inhibition of cell proliferation and induction of apoptosis by genistein in experimental hepatocellular carcinoma. Mol. Cell Biochem. 2007, 297, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F. Genistein and cancer: Current status, challenges, and future directions. Adv. Nutr. 2015, 6, 408–419. [Google Scholar] [CrossRef] [PubMed]
Targeting Diseases | Experimental Model | Treatment | Outcome Characteristics | References |
---|---|---|---|---|
PD | Human SH-SY5Y cells overexpressing the A53T mutant of α-synuclein | Incubated with 20 μM genistein and rotenone for 24 h. | Rotenone-induced cell death, mitochondrial oxidative stress, and apoptosis ↓ Protein expression level of nuclear NFE2L2, HMOX1, and p-Akt ↑ | [27] |
Lipopolysaccharide (LPS)-induced ovariectomized rats | Orally gavage with genistein (10 mg/kg) once daily for 14 consecutive days. Ovariectomy (OVX) was performed to eliminate the endogenous estrogen effect. | Apomorphine-induced rotational behavior ↓ Proinflammatory factor level (TNF-α and IL-1β) ↓ Protein expressions of COX-2 and iNOS ↓ Suppressing LPS-induced activation of MAPK and IκB signaling pathways through GPER and IGF-1R | [26] | |
Transgenic Drosophila expressing normal human αS panneurally | Treated with 0–40 μM genistein. | Lifespan ↑ Inhibition of oxidative stress damage: GSH ↑ GST activity ↓ LPO level ↓ PC content ↓ Dopamine content ↑ Monoamine oxidase activity ↓ | [28] | |
AD | Amyloid beta (Aβ)25–35-treated SH-SY5Y cells | After being treated with 0–50 μM genistein for 90 min, cells were exposed to Aβ25–35 at a concentration of 20 mM for 24 h. | Aβ-induced cell death ↓ Protein and mRNA expression of HO-1 ↑ Activation of Nrf2//HO-1/PI3K signaling | [33] |
Aβ25–35-treated Rat primary hippocampal neurons | After incubating with 0–1 μg/mL genistein for 24 h, neurons were continuously exposed to Aβ25–35 for 3 days. | Aβ-induced cytotoxicity and necroptosis ↓ Aβ-induced LDH release, ROS accumulation, and MDA production ↓ Activating PI3K/Akt phosphorylation via α7nAChR signaling Activation of endogenous Nrf2/Keap1 transcription factors ↑ | [35] | |
Streptozotocin (STZ)-induced male Wistar rat model of the sporadic form of AD | Rats were administered 150 mg/kg b.w. via an orogastric probe once a day for 30 or 90 days. | Locomotor activity, memory and cognitive ability ↑ Protein expression level of levels of APP, total Aβ, Aβ40, Aβ42, and p-tau in the cortex, hippocampus, and the rest of the brain ↓ Autophagy ↑ | [38] | |
DM | Methylglyoxal (MG)-treated EA.HY926 human endothelial cells | Cells were pre-incubated for 2 h with genistein (0–100 µM) before co-treatment with 250 μM MG for 24 h. | MG-induced toxicity and ROS formation ↓ G0/G1 percentage ↑ Prevented MG-induced apoptosis via Nrf2 activation and MAPK-mediated signaling pathway regulation. | [50] |
Ovariectomized diabetic rats | Animals underwent swimming training (1 h/day) or received genistein (35 mg/kg b.w.) or a combination of both for eight weeks. | Inflammatory protein levels of IL-1β, Nf-κB, and TNF-α ↓ Anti-inflammatory protein levels of SIRT1 ↑ | [41] | |
CVD | High-fat-diet (HFD)- and LPS-induced chronic vascular inflammation in C57BL/6 mice | Intraperitoneal injection of LPS, combined with a HFD, was used to create the chronic vascular inflammation model. Administered orally with genistein (10 mg/kg b.w.) for 20 weeks. | Expression of inflammation-associated factors (mRNA expression of TNF-α and IL-6, as well as iNOS and NF-κB p65 protein levels) ↓ miR-21 ↓ | [57] |
Δ9-THC-induced C57BL/6J male mice | The mice were randomized into three groups: control group; Δ9-THC treated group (1 mg/kg b.w./day); Δ9-THC (1 mg/kg b.w./day)- and genistein (50 mg/kg b.w./day)-treated group. | Reversed Δ9-THC-induced endothelial dysfunction, oxidative stress, and inflammation NF-κB phosphorylation ↓ | [58] | |
Estradiol-induced human umbilical vein endothelial cells (HUVECs) | Cells were treated with or without genistein in the presence of estradiol. | Cell viability ↑ NO level ↑ ROS formation ↓ Cell invasion and migration ↓ FAK protein expression ↓ | [59] |
Targeting Diseases | Experimental Model | Treatment | Outcome Characteristics | References |
---|---|---|---|---|
Liver cancer | Alcohol-fed male ICR mice | Mice in the flavonoid groups were orally administered five different kinds of flavonoids, respectively (quercetin, apigenin, naringenin, epigallocatechin gallate, and genistein; 0.3 mmol/kg b.w.), 1 h before the alcohol consumption for 5 weeks. | Hepatic function ↑ Prevented dyslipidemia Hepatic lipid peroxidation and oxidative stress ↓ Hepatic inflammatory stress ↓ Hepatic fibrosis and apoptosis ↓ | [66] |
Chronic alcohol-fed mice | Mice were subjected to a Lieber–DeCarli alcohol liquid diet with or without genistein (1 mg/kg b.w./day mixed into their diet) for 8 weeks. | Liver injury and hepatic steatosis ↓ Hepatic inflammatory cell infiltration ↓ Ameliorated alcohol-induced hepatic oxidative stress, ER stress, and mitochondrial dysfunction Acetaldehyde-induced hepatocyte apoptosis ↓ HO-1 restoration and upregulation of NRF2 are involved in the preventive effect of genistein against ALD | [67] | |
Thioacetamide (TAA)-induced Hepatocellular carcinoma (HCC) in Sprague Dawley rats | Rats were randomly divided into five groups: control group; genistein-treated group (75 mg/kg b.w., orally intake); HCC group (200 mg/kg b.w. TAA, i.p., twice a week); HCC + low dosage of genistein-treated group (25 mg/kg b.w., orally intake); and (v) HCC + high dosage of genistein-treated group (75 mg/kg b.w., orally intake). Treatments lasted for 16 weeks. | HCC-induced oxidative stress ↓ (hepatic MDA, and hydrogen peroxide ↓; hepatic Nrf2, GSH, and SOD levels ↑) Liver function ↑ (ALT, AST, alkaline phosphatase, and GGT serum levels ↓; serum albumin levels ↑) Protein expression of PDGF ↑, versican ↑, PKC ↓, and ERK-1 ↓ | [68] | |
Ovarian cancer | γ-radiation to induce POF in female Sprague Dawley rats | Rats were administered a single intraperitoneal injection of genistein (5 mg/kg body weight) for 7 days, followed by exposure to a 3.2 Gy single dose of γ-rays on the 7th day. | Protected the ovarian tissue from hemorrhage and fibrosis Oxidative stress ↓ (GSH level and GPx activity ↑) mRNA expression of Bax ↓ and Bcl-2 ↑ Optical densities of Cytochrome c and Caspase 3 ↓ Ovarian mRNA expression of ER-β ↑, FOXL2 ↑, and TGF-β ↓ | [62] |
Colorectal cancer | Human malignant cell line of SW480 | Cells were treated with different concentrations of genistein (0, 25, 50, and 100 μM) for 48 h. | Cell viability ↓ Cell apoptosis ↑ Cellular migration ↓ Protein expression of TTTY18, SGK1, AktSer473, p38 MAPKTyr323 ↓ | [69] |
Tumor-bearing nude mice | The mice were treated with 0, 20, 30, and 60 mg/kg b.w. genistein for 14 consecutive days. | Body mass ↓ Tumorous TGF-β1 and TTTY18 ↓ Intracellular numbers of SGK1, AktSer473, p38 MAPKTyr323 positive cells ↓ | [69] |
Disease | Experiment Model | Treatment | Outcome Characteristics | References |
---|---|---|---|---|
AD | 24 prodromal AD patients (54 to 76 years old) in a double-blind, placebo-controlled, and bicentric clinical trial | Randomly received genistein (one capsule/time, 60 mg/capsule) or placebo orally twice per day for up to 12 months. Orally twice per day for up to 12 months | Amyloid-beta deposition uptake in the anterior cingulate gyrus ↓ Individual cognitive behavior ↑ No reported deaths or serious adverse events | [36] |
DM | 58 postmenopausal women with T2DM (randomized, double-blind, placebo-controlled clinical trial) | Randomly received genistein (two capsules/day, 54 mg/capsule) or placebo orally for 12 weeks. | FBS, A1C, TG, and MDA ↓ TAC, HDL-C, and QUICKI ↑ | [42] |
Prostate cancer | 70 participants, of whom 36 participants (25 CM, 6AAM) were randomized to the isoflavone group and 34 (25 CM, 7AAM) to the placebo group | Administered isoflavones (20 mg BID) or placebo for 3–6 weeks. | No changes in serum steroid hormones PSA levels in CM ↓ IGF-1/IGF-BP-3 ↓ Ki-67 expression in the placebo group ↑ | [79] |
Disease | Experiment Model | Treatment | Outcome Characteristics | References |
---|---|---|---|---|
Obesity and AD | High-fat and high-sugar (HFHS) mouse model of neurodegeneration | Mice were treated with genistein (600 mg/kg in HFHS diet), exercise training, or a combination of both for 12 weeks. | Body weight, adipose mass, and inflammatory marker TNF-α ↓ Key proteins’ expression involved in AD (pGSK-3β/GSK, Aβ, ADAM10, Caspase-3, pIR/IR, p-IRS/IRS) ↓ | [82] |
Non-alcoholic steatohepatitis (NASH) | NASH model of OVX rats fed with high-fat high-fructose (HFHF) diet | Rats were given genistein (16 mg/kg b.w.), engaged in moderate running exercises, or both for 5 weeks. | Did not provide additional benefits for NASH in OVX rats fed with HFHF diet. | [83] |
Non-alcoholic fatty liver disease (NAFLD) | HFD-fed mice model of NAFLD | Mice were administered 0.23% metformin (MET, 2.3 g/kg diet) combined with 0.2% genistein (2 g/kg diet), or MET and genistein alone. | Body and liver weights ↓ FBG, fasting plasma insulin, HOMA-IR, glucose tolerance, ALT, AST, plasma TG, and liver TG ↓ Steatosis ↓ Gene expression of FAS, pro-inflammatory (TNFα, IL-1β, and IL-6), PEPCK, and G6Pase ↓ Protein expression of pGSK-3β ↑ Better efficacy than treatment with genistein or metformin alone | [84] |
Breast cancer | ER+ aromatase-overexpressing human breast cancer cell line MCF-7aro | Cells were treated with genistein (0.5–25 µM), with or without exemestane (Exe), anastrozole (Ana), or letrozole (Let ) (1, 5, and 10 µM) for 3 days. | Combination of genistein with Ana or Let negatively impacts the therapeutic efficacy of aromatase inhibitors. Genistein enhanced the anticancer properties of Exe. Hormone targets are not affected by this combination treatment. | [85] |
Human breast cancer MCF-7 cells | Cells were treated with various concentrations of myokines, genistein, or their combination for 72 h. | A larger reduction in colony formation than myokines or genistein alone. Higher reduction in sphere formation Higher decrease in SOX2 and OCT4 gene expressions | [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Wang, J.; Xu, B. Critical Review on Molecular Mechanisms for Genistein’s Beneficial Effects on Health Through Oxidative Stress Reduction. Antioxidants 2025, 14, 904. https://doi.org/10.3390/antiox14080904
Zhang K, Wang J, Xu B. Critical Review on Molecular Mechanisms for Genistein’s Beneficial Effects on Health Through Oxidative Stress Reduction. Antioxidants. 2025; 14(8):904. https://doi.org/10.3390/antiox14080904
Chicago/Turabian StyleZhang, Ke, Jingwen Wang, and Baojun Xu. 2025. "Critical Review on Molecular Mechanisms for Genistein’s Beneficial Effects on Health Through Oxidative Stress Reduction" Antioxidants 14, no. 8: 904. https://doi.org/10.3390/antiox14080904
APA StyleZhang, K., Wang, J., & Xu, B. (2025). Critical Review on Molecular Mechanisms for Genistein’s Beneficial Effects on Health Through Oxidative Stress Reduction. Antioxidants, 14(8), 904. https://doi.org/10.3390/antiox14080904