Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,596)

Search Parameters:
Keywords = ponds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5219 KiB  
Article
Utilizing a Transient Electromagnetic Inversion Method with Lateral Constraints in the Goaf of Xiaolong Coal Mine, Xinjiang
by Yingying Zhang, Bin Xie and Xinyu Wu
Appl. Sci. 2025, 15(15), 8571; https://doi.org/10.3390/app15158571 (registering DOI) - 1 Aug 2025
Viewed by 141
Abstract
The abandoned goaf resulting from coal resource integration in China poses a significant threat to coal mine safety. The transient electromagnetic method (TEM) has emerged as a crucial technology for detecting goafs in coal mines due to its adaptable equipment and efficient implementation. [...] Read more.
The abandoned goaf resulting from coal resource integration in China poses a significant threat to coal mine safety. The transient electromagnetic method (TEM) has emerged as a crucial technology for detecting goafs in coal mines due to its adaptable equipment and efficient implementation. In recent years, small-loop TEM has demonstrated high resolution and adaptability in challenging terrains with vegetation, such as coal mine ponding areas, karst regions, and reservoir seepage scenarios. By considering the sedimentary characteristics of coal seams and addressing the resistivity changes encountered in single-point inversion, a joint optimization inversion process incorporating lateral weighting factors and vertical roughness constraints has been developed to enhance the connectivity between adjacent survey points and improve the continuity of inversion outcomes. Through an OCCAM inversion approach, the regularization factor is dynamically determined by evaluating the norms of the data objective function and model objective function in each iteration, thereby reducing the reliance of inversion results on the initial model. Using the Xiaolong Coal Mine as a geological context, the impact of lateral and vertical weighting factors on the inversion outcomes of high- and low-resistivity structural models is examined through a control variable method. The analysis reveals that optimal inversion results are achieved with a combination of a lateral weighting factor of 0.5 and a vertical weighting factor of 0.1, ensuring both result continuity and accurate depiction of vertical and lateral electrical interfaces. The practical application of this approach validates its effectiveness, offering theoretical support and technical assurance for old goaf detection in coal mines, thereby holding significant engineering value. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

12 pages, 815 KiB  
Article
Profiles of Sensitivity to Antibiotics and Heavy Metals in Strains of Pseudomonas mendocina Isolates from Leachate Pond
by Aura Falco, Alejandra Mondragón-Quiguanas, Laura Burbano, Miguel Ángel Villaquirán-Muriel, Adriana Correa and Carlos Aranaga
Antibiotics 2025, 14(8), 781; https://doi.org/10.3390/antibiotics14080781 (registering DOI) - 1 Aug 2025
Viewed by 127
Abstract
Background/Objetives: Antimicrobial Resistance (AMR) is a multifaceted issue that the World Health Organization (WHO) identifies as one of the primary threats to global health for humans, animals, and the environment. In Colombia, AMR has been extensively studied at the hospital level; however, [...] Read more.
Background/Objetives: Antimicrobial Resistance (AMR) is a multifaceted issue that the World Health Organization (WHO) identifies as one of the primary threats to global health for humans, animals, and the environment. In Colombia, AMR has been extensively studied at the hospital level; however, there are limited environmental studies, particularly concerning leachates from landfills. The objective of this study was to identify and determine the genetic relationships, as well as the sensitivity profiles to antibiotics and heavy metals, of ten Pseudomonas mendocina isolates from a leachate pond. Methods: Identification was conducted using MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight), while genotyping was performed via rep-PCR. Antibiotic susceptibility to β-lactams, aminoglycosides, and quinolones was assessed using the Kirby-Bauer method. Additionally, sensitivity profile to heavy metals was evaluated using the broth microdilution technique. Results: Rep-PCR analysis indicated that 60% (n = 6/10) of the isolates exhibited a clonal relationship. Sensitivity testing revealed that 30% (n = 3/10) of the isolates displayed reduced sensitivity to aminoglycosides and β-lactams. Finally, the broth microdilution showed that 90% (n = 9/10) of the isolates were tolerant to copper sulfate. Conclusions: These results provide evidence that landfill leachates may serve as a potential reservoir for bacteria harboring antimicrobial resistance determinants. Full article
(This article belongs to the Special Issue Antibiotic Resistance: The Role of Aquatic Environments)
Show Figures

Figure 1

19 pages, 1482 KiB  
Article
Optimizing Power Sharing and Demand Reduction in Distributed Energy Resources for Apartments Through Tenant Incentivization
by Janak Nambiar, Samson Yu, Jag Makam and Hieu Trinh
Energies 2025, 18(15), 4073; https://doi.org/10.3390/en18154073 (registering DOI) - 31 Jul 2025
Viewed by 110
Abstract
The increasing demand for electricity in multi-tenanted residential areas has placed unforeseen strain on sub-transformers, particularly in dense urban environments. This strain compromises overall grid performance and challenges utilities with shifting and rising peak demand periods. This study presents a novel approach to [...] Read more.
The increasing demand for electricity in multi-tenanted residential areas has placed unforeseen strain on sub-transformers, particularly in dense urban environments. This strain compromises overall grid performance and challenges utilities with shifting and rising peak demand periods. This study presents a novel approach to enhance the operation of a virtual power plant (VPP) comprising a microgrid (MG) integrated with renewable energy sources (RESs) and energy storage systems (ESSs). By employing an advanced monitoring and control system, the proposed topology enables efficient energy management and demand-side control within apartment complexes. The system supports controlled electricity distribution, reducing the likelihood of unpredictable demand spikes and alleviating stress on local infrastructure during peak periods. Additionally, the model capitalizes on the large number of tenancies to distribute electricity effectively, leveraging locally available RESs and ESSs behind the sub-transformer. The proposed research provides a systematic framework for managing electricity demand and optimizing resource utilization, contributing to grid reliability and a transition toward a more sustainable, decentralized energy system. Full article
Show Figures

Figure 1

15 pages, 2232 KiB  
Article
A Multi-Objective Approach for Improving Ecosystem Services and Mitigating Environmental Externalities in Paddy Fields and Its Emergy Analysis
by Naven Ramdat, Hongshuo Zou, Shiwen Sheng, Min Fu, Yingying Huang, Yaonan Cui, Yiru Wang, Rui Ding, Ping Xu and Xuechu Chen
Water 2025, 17(15), 2244; https://doi.org/10.3390/w17152244 - 29 Jul 2025
Viewed by 277
Abstract
Traditional intensive agricultural system impedes ecological functions, such as nutrient cycling and biodiversity conservation, resulting in excessive nitrogen discharge, CH4 emission, and ecosystem service losses. To enhance critical ecosystem services and mitigate environmental externalities in paddy fields, we developed a multi-objective agricultural [...] Read more.
Traditional intensive agricultural system impedes ecological functions, such as nutrient cycling and biodiversity conservation, resulting in excessive nitrogen discharge, CH4 emission, and ecosystem service losses. To enhance critical ecosystem services and mitigate environmental externalities in paddy fields, we developed a multi-objective agricultural system (MIA system), which combines two eco-functional units: paddy wetlands and Beitang (irrigation water collection pond). Pilot study results demonstrated that the MIA system enhanced biodiversity and inhibited pest outbreak, with only a marginal reduction in rice production compared with the control. Additionally, the paddy wetland effectively removed nitrogen, with removal rates of total nitrogen and dissolved inorganic nitrogen ranging from 0.06 to 0.65 g N m−2 d−1 and from 0.02 to 0.22 g N m−2 d−1, respectively. Continuous water flow in the paddy wetland reduced the CH4 emission by 84.4% compared with the static water conditions. Furthermore, a simulation experiment indicated that tide flow was more effective in mitigating CH4 emission, with a 68.3% reduction compared with the drying–wetting cycle treatment. The emergy evaluation demonstrated that the MIA system outperformed the ordinary paddy field when considering both critical ecosystem services and environmental externalities. The MIA system exhibited higher emergy self-sufficiency ratio, emergy yield ratio, and emergy sustainable index, along with a lower environmental load ratio. Additionally, the system required minimal transformation, thus a modest investment. By presenting the case of the MIA system, we provide a theoretical foundation for comprehensive management and assessment of agricultural ecosystems, highlighting its significant potential for widespread application. Full article
Show Figures

Figure 1

23 pages, 4324 KiB  
Article
Monitoring Nitrogen Uptake and Grain Quality in Ponded and Aerobic Rice with the Squared Simplified Canopy Chlorophyll Content Index
by Gonzalo Carracelas, John Hornbuckle and Carlos Ballester
Remote Sens. 2025, 17(15), 2598; https://doi.org/10.3390/rs17152598 - 25 Jul 2025
Viewed by 431
Abstract
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs [...] Read more.
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs between high-yielding ponded and aerobic rice, (ii) validate the feasibility of using the squared simplified canopy chlorophyll content index (SCCCI2) for N uptake estimates, and (iii) explore the SCCCI2 and similar chlorophyll-sensitive indices for grain quality monitoring. Multispectral images were collected from an unmanned aerial vehicle during both rice-growing seasons. Above-ground biomass and nitrogen (N) uptake were measured at panicle initiation (PI). The performance of single-vegetation-index models in estimating rice N uptake, as previously published, was assessed. Yield and grain quality were determined at harvest. Results showed that canopy reflectance in the visible and near-infrared regions differed between aerobic and ponded rice early in the growing season. Chlorophyll-sensitive indices showed lower values in aerobic rice than in the ponded rice at PI, despite having similar yields at harvest. The SCCCI2 model (RMSE = 20.52, Bias = −6.21 Kg N ha−1, and MAPE = 11.95%) outperformed other models assessed. The SCCCI2, squared normalized difference red edge index, and chlorophyll green index correlated at PI with the percentage of cracked grain, immature grain, and quality score, suggesting that grain milling quality parameters could be associated with N uptake at PI. This study highlights canopy reflectance differences between high-yielding aerobic (averaging 15 Mg ha−1) and ponded rice at key phenological stages and confirms the validity of a single-vegetation-index model based on the SCCCI2 for N uptake estimates in ponded and non-ponded rice crops. Full article
Show Figures

Figure 1

17 pages, 1066 KiB  
Article
Comparative Study of the Microalgae-Based Wastewater Treatment, in an Oil Refining Industry Cogeneration Concept
by Ena Pritišanac, Maja Fafanđel, Ines Haberle, Sunčana Geček, Marinko Markić, Nenad Bolf, Jela Vukadin, Goranka Crnković, Tin Klanjšček, Luka Žilić and Maria Blažina
Water 2025, 17(15), 2217; https://doi.org/10.3390/w17152217 - 24 Jul 2025
Viewed by 341
Abstract
Microalage are broadly recognized as promising agents for sustainable wastewater treatment and biomass generation. However, industrial effluents such as petroleum refinery wastewater (WW) present challenges due to toxic growth inhibiting substances. Three marine microalgae species: Pseudochloris wilhelmii, Nannochloropsis gaditana and Synechococcus sp. [...] Read more.
Microalage are broadly recognized as promising agents for sustainable wastewater treatment and biomass generation. However, industrial effluents such as petroleum refinery wastewater (WW) present challenges due to toxic growth inhibiting substances. Three marine microalgae species: Pseudochloris wilhelmii, Nannochloropsis gaditana and Synechococcus sp. MK568070 were examined for cultivation potential in oil refinery WW. Their performance was evaluated in terms of growth dynamics, lipid productivity, and toxicity reduction, with a focus on their suitability for largescale industrial use. N. gaditana demonstrated the highest growth rate and lipid content (37% d.w.) as well as lipid productivity (29.45 mg/(Lday)) with the N-uptake rate of 0.698 mmol/(gday). The highest specific DIN uptake rate was observed inn P. wilhelmii (0.895 mmol/(gday) along with the highest volumetric productivity (93.9 mg/L/day) and WW toxicity removal (76.5%), while Synechococcus sp. MK568070 demonstrated lower performance metrics. A simple numerical model was applied to calculate continuous operation based on empirical results of batch experiments. Sustainability of the microalgae-based WW remediation under the conditions of optimized lipid biomass production was estimated, regarding 2019–2022–2025 cost dynamics. Parameters for optimum open raceway pond cultivation were calculated, and the biomass production accumulation was estimated, with the highest biomass production noted in P. wilhelmii (171.38 t/year). Comparison of treatment costs, production costs and revenue showed that the best candidate for WW remediation is N. gaditana. Full article
Show Figures

Figure 1

24 pages, 16011 KiB  
Article
Novel Giant Phages vB_AerVM_332-Vera and vB_AerVM_332-Igor and Siphophage vB_AerVS_332-Yulya Infecting the Same Aeromonas veronii Strain
by Igor V. Babkin, Vera V. Morozova, Yuliya N. Kozlova, Valeria A. Fedorets, Artem Y. Tikunov, Tatyana A. Ushakova, Alevtina V. Bardasheva, Elena V. Zhirakovskaya and Nina V. Tikunova
Viruses 2025, 17(8), 1027; https://doi.org/10.3390/v17081027 - 22 Jul 2025
Viewed by 281
Abstract
Three novel Aeromonas phages vB_AerVS_332-Yuliya, vB_AerVM_332-Vera, and vB_AerVM_332-Igor and their host Aeromonas veronii CEMTC7594 were found in the same water + sediments sample collected in a freshwater pond. Complete genome sequencing indicated that vB_AerVS_332-Yuliya (43,584 bp) is a siphophage, whereas vB_AerVM_332-Vera (294,685 bp) [...] Read more.
Three novel Aeromonas phages vB_AerVS_332-Yuliya, vB_AerVM_332-Vera, and vB_AerVM_332-Igor and their host Aeromonas veronii CEMTC7594 were found in the same water + sediments sample collected in a freshwater pond. Complete genome sequencing indicated that vB_AerVS_332-Yuliya (43,584 bp) is a siphophage, whereas vB_AerVM_332-Vera (294,685 bp) and vB_AerVM_332-Igor (237,907 bp) are giant phages. The host strain can grow at temperatures from 5 °C to 37 °C with an optimum of 25–37 °C; siphophage vB_AerVS_332-Yuliya effectively reproduced at temperature ≤ 25 °C, the optimal temperature for giant phage vB_AerVM_332-Igor was 25 °C, and giant phage vB_AerVM_332-Vera infected host cells at 5–10 °C. The genomes of these phages differed significantly from known phages; their level of nucleotide identity and values of intergenomic similarity with the corresponding neighboring phages indicated that each of these phages is a member of a new genus/subfamily. Giant phage vB_AerVM_332-Vera is a member of the proposed Chimallinviridae family, which forms Cluster D of giant phages that possibly evolved from phages with shorter genomes. Giant phage vB_AerVM_332-Igor is part of Cluster E, the known members of which preserve the size of genomes. Phages from Cluster F, containing Aeromonas phages among others, show a gradual decrease and/or increase in genomes during evolution, which indicates different strategies for giant phages. Full article
(This article belongs to the Special Issue Bacteriophage Diversity, 2nd Edition)
Show Figures

Figure 1

17 pages, 2288 KiB  
Article
Environmental Factors Modulate Feeding Behavior of Penaeus vannamei: Insights from Passive Acoustic Monitoring
by Hanzun Zhang, Chao Yang, Yesen Li, Bin Ma and Boshan Zhu
Animals 2025, 15(14), 2113; https://doi.org/10.3390/ani15142113 - 17 Jul 2025
Viewed by 281
Abstract
In recent years, passive acoustic monitoring (PAM) technology has significantly contributed to advancements in aquaculture techniques, system iterations, and increased production yields within intelligent feeding systems for Penaeus vannamei. However, current PAM-based intelligent feeding systems do not incorporate environmental factors into the [...] Read more.
In recent years, passive acoustic monitoring (PAM) technology has significantly contributed to advancements in aquaculture techniques, system iterations, and increased production yields within intelligent feeding systems for Penaeus vannamei. However, current PAM-based intelligent feeding systems do not incorporate environmental factors into the decision process, limiting the improvement of monitoring accuracy in complex environments such as ponds. To establish a connection between environmental factors and the feeding acoustics of P. vannamei, this study utilized PAM technology combined with video analysis to investigate the effects of three key environmental factors—temperature, ammonia nitrogen, and nitrite nitrogen—on the feeding behavioral characteristics of shrimp, with a specific focus on acoustic signals “clicks”. The results demonstrated a significant correlation between the number of clicks and feed consumption in shrimp across different treatments, establishing this stable relationship as a reliable indicator for assessing shrimp feeding status. When water temperature increased from 20 °C to 32 °C, shrimp feed consumption showed an elevation from 0.46 g to 0.95 g per 30 min, with the average number of clicks increasing from 388 to 2947.58 and sound pressure levels rising accordingly. Conversely, ammonia nitrogen at 12 mg/L reduced feed consumption by 0.15 g and decreased click counts by 911.75 pulses compared to controls, while nitrite nitrogen at 40 mg/L similarly suppressed feed consumption by 0.15 g and the average number of clicks by 304.75. A rise in water temperature stimulated shrimp behaviors such as feeding, swimming, and foraging, while elevated concentrations of ammonia nitrogen and nitrite nitrogen significantly inhibited shrimp activity. Redundancy analysis revealed that temperature was the most prominent factor among the three environmental factors influencing shrimp feeding. This study is the first to quantify the specific effects of common environmental factors on the acoustic feeding signals and feeding behavior of P. vannamei using PAM technology. It confirms the feasibility of using PAM technology to assess shrimp feeding conditions under diverse environmental conditions and the necessity of integrating environmental monitoring modules into future feeding systems. This study provides behavioral evidence for the development of precise feeding technologies and the upgrade of intelligent feeding systems for P. vannamei. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

17 pages, 1609 KiB  
Article
Green Macroalgae Biomass Upcycling as a Sustainable Resource for Value-Added Applications
by Ana Terra de Medeiros Felipe, Alliny Samara Lopes de Lima, Emanuelle Maria de Oliveira Paiva, Roberto Bruno Lucena da Cunha, Addison Ribeiro de Almeida, Francisco Ayrton Senna Domingos Pinheiro, Leandro De Santis Ferreira, Marcia Regina da Silva Pedrini, Katia Nicolau Matsui and Roberta Targino Hoskin
Appl. Sci. 2025, 15(14), 7927; https://doi.org/10.3390/app15147927 - 16 Jul 2025
Viewed by 326
Abstract
As the global demand for eco-friendly food ingredients grows, marine macroalgae emerge as a valuable resource for multiple applications using a circular bioeconomy approach. In this study, green macroalgae Ulva flexuosa, naturally accumulated in aquaculture ponds as a residual biomass (by-product) of [...] Read more.
As the global demand for eco-friendly food ingredients grows, marine macroalgae emerge as a valuable resource for multiple applications using a circular bioeconomy approach. In this study, green macroalgae Ulva flexuosa, naturally accumulated in aquaculture ponds as a residual biomass (by-product) of shrimp and oyster farming, were investigated regarding their bioactivity, chemical composition, and antioxidant properties. The use of aquaculture by-products as raw materials not only reduces waste accumulation but also makes better use of natural resources and adds value to underutilized biomass, contributing to sustainable production systems. For this, a comprehensive approach including the evaluation of its composition and environmentally friendly extraction of bioactive compounds was conducted and discussed. Green macroalgae exhibited high fiber (37.63% dry weight, DW) and mineral (30.45% DW) contents. Among the identified compounds, palmitic acid and linoleic acid (ω-6) were identified in the highest concentrations. Pigment analysis revealed a high concentration of chlorophylls (73.95 mg/g) and carotenoids (17.75 mg/g). To evaluate the bioactivity of Ulva flexuosa, ultrasound-assisted solid–liquid extraction was performed using water, ethanol, and methanol. Methanolic extracts showed the highest flavonoid content (59.33 mg QE/100 g), while aqueous extracts had the highest total phenolic content (41.50 mg GAE/100 g). Ethanolic and methanolic extracts had the most potent DPPH scavenging activity, whereas aqueous and ethanolic extracts performed best at the ABTS assay. Overall, we show the upcycling of Ulva flexuosa, an underexplored aquaculture by-product, as a sustainable and sensible strategy for multiple value-added applications. Full article
(This article belongs to the Special Issue Advanced Food Processing Technologies and Approaches)
Show Figures

Figure 1

16 pages, 5533 KiB  
Communication
Cultivation of Diverse Type I and Type II Methanotrophs from Tropical Wetlands in India, Including Rare Taxa (Methylocucumis and Methylolobus)
by Kajal Pardhi, Shubha Manvi, Rahul A. Bahulikar, Yukta Patil, Yash Kadam, Shirish Kadam, Chandani Saraf and Monali C. Rahalkar
Methane 2025, 4(3), 17; https://doi.org/10.3390/methane4030017 - 16 Jul 2025
Viewed by 745
Abstract
Wetlands are the most important natural sources of methane. Studies on the distribution and diversity of methanotrophs, especially in tropical wetlands, are limited. The studies on wetland methanotrophs help bridge the gap in the literature for understanding the community structure of methanotrophs in [...] Read more.
Wetlands are the most important natural sources of methane. Studies on the distribution and diversity of methanotrophs, especially in tropical wetlands, are limited. The studies on wetland methanotrophs help bridge the gap in the literature for understanding the community structure of methanotrophs in tropical wetlands. Our present study documents the methanotroph diversity from various wetland habitats across Western India. Samples from various sites, such as freshwater ponds, lake sediments, mangroves, etc., located in Western India, were collected and enriched for methanotroph isolation. An established protocol for the isolation of methanotrophs from Indian rice fields, involving serial dilution and long-term incubations, was slightly modified and used. Obtaining entirely pure cultures of methanotrophs is a labor-intensive and technically challenging process. Hence, for primary level characterization, ‘methanotroph monocultures’, which have a single methanotroph culture with minimal contamination, were established. Twenty monocultures and eight pure cultures of methanotrophs were obtained in this study. The pmoA gene has been used for the phylogenetic characterization of methanotrophs for the last 25 years. Monocultures were from seven genera: the Methylomonas, Methylocystis, Methylosinus, Methylocaldum, Methylocucumis, Methylomagnum, and Methylolobus genera. Eight pure cultures were obtained, which were strains of Methylomonas koyamae, Methylosinus sporium, and Methylolobus aquaticus. A maximum number of cultures belonged to the Type I genus Methylomonas and to the Type II genus Methylocystis. Thus, the cultivation-based community studies of methanotrophs from wetland habitats in India expanded the current knowledge about the methanotroph diversity in such regions. Additionally, the cultivation approach helped us obtain new methanotrophs from this previously unexplored habitat, which can be used for further biotechnological and environmental applications. The isolated monocultures can either be used as MMCs (mixed methanotroph consortia) for environmental applications or further purified and used as pure cultures. Full article
Show Figures

Figure 1

69 pages, 1738 KiB  
Article
The Plant Communities of the Class Isoëto-Nanojuncetea in Sardinia
by Salvatore Brullo, Gianluigi Bacchetta, Salvatore Cambria, Valeria Tomaselli, Gianpietro Giusso del Galdo, Pietro Minissale, Giovanni Rivieccio, Maria Carmela Caria and Simonetta Bagella
Plants 2025, 14(14), 2187; https://doi.org/10.3390/plants14142187 - 15 Jul 2025
Viewed by 947
Abstract
A syntaxonomical revision of the plant communities of the Isoëto-Nanojuncetea class occurring in Sardinia is provided. Within this class, the ephemeral herbaceous hygrophilous associations linked to temporarily submerged surfaces occur, which are widespread in the European, Mediterranean, and Macaronesian countries. It groups plant [...] Read more.
A syntaxonomical revision of the plant communities of the Isoëto-Nanojuncetea class occurring in Sardinia is provided. Within this class, the ephemeral herbaceous hygrophilous associations linked to temporarily submerged surfaces occur, which are widespread in the European, Mediterranean, and Macaronesian countries. It groups plant communities floristically characterized by a rich set of annual hygrophytes or more rarely hemicryptophytes and geophytes, which are also physiognomically, ecologically, and structurally well differentiated. Within this class, two orders are recognized in Sardinia, such as Isoëtetalia and Nanocyperetalia, which are represented by several alliances. In particular, four alliances can be referred to as Isoëtetalia (Isoëtion, Menthion cervinae, Cicendio-Solenopsion laurentiae, and Agrostion pourretii), while a single alliance (Verbenion supinae) belonging to Nanocyperetalia has been identified. Within these alliances, several associations already described have been surveyed, while several other unpublished ones, are here proposed as new to science. Overall, 35 associations are recognized, 18 of which are described for the first time. Each higher-rank syntaxa and related associations are examined from a nomenclatural, floristic, ecological, and chorological point of view. In particular, the more significant phytosociological relevés regarding the examined associations were processed using cluster analysis, DCA ordination, optimclass diagram in order to highlight the correlations between them. As regards the floristic aspects, a checklist of the species occurring in the phytosociological relevés is provided. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

16 pages, 2652 KiB  
Article
Evaluation of the Effect of Floating Treatment Wetlands Planted with Sesuvium portulacastrum on the Dynamics of Dissolved Inorganic Nitrogen, CO2, and N2O in Grouper Aquaculture Systems
by Shenghua Zheng, Man Wu, Jian Liu, Wangwang Ye, Yongqing Lin, Miaofeng Yang, Huidong Zheng, Fang Yang, Donglian Luo and Liyang Zhan
J. Mar. Sci. Eng. 2025, 13(7), 1342; https://doi.org/10.3390/jmse13071342 - 14 Jul 2025
Viewed by 245
Abstract
Aquaculture expansion to meet global protein demand has intensified concerns over nutrient pollution and greenhouse gas (GHG) emissions. While floating treatment wetlands (FTWs) are proven for water quality improvement, their potential to mitigate GHG emissions in marine aquaculture remains poorly understood. This study [...] Read more.
Aquaculture expansion to meet global protein demand has intensified concerns over nutrient pollution and greenhouse gas (GHG) emissions. While floating treatment wetlands (FTWs) are proven for water quality improvement, their potential to mitigate GHG emissions in marine aquaculture remains poorly understood. This study quantitatively evaluated the dual capacity of Sesuvium portulacastrum FTWs to (a) regulate dissolved inorganic nitrogen (DIN) and (b) reduce CO2/N2O emissions in grouper aquaculture systems. DIN speciation (NH4+, NO2, NO3) and CO2/N2O fluxes of six controlled ponds (three FTW and three control) were monitored for 44 days. DIN in the FTW group was approximately 90 μmol/L lower than that in the control group, and the water in the plant group was more “oxidative” than that in the control group. The former groups were dominated by NO3, with lower dissolved inorganic carbon (DIC) and N2O concentrations, whereas the latter were dominated by NH4+ during the first 20 days of the experiment and by NO2 at the end of the experiment, with higher DIC and N2O concentrations on average. Higher primary production may be the reason that the DIC concentration was lower in the plant group than in the control group, whereas efficient nitrification and uptake by plants reduced the availability of NH4+ in the plant group, thereby reducing the production of N2O. A comparison of the CO2 and N2O flux potentials in the plant group and control group revealed that, in the presence of FTWs, the CO2 and N2O emissions decreased by 14% and 36%, respectively. This showed that S. portulacastrum FTWs effectively couple DIN removal with GHG mitigation, offering a nature-based solution for sustainable aquaculture. Their low biomass requirement enhances practical scalability. Full article
(This article belongs to the Special Issue Coastal Geochemistry: The Processes of Water–Sediment Interaction)
Show Figures

Figure 1

28 pages, 16451 KiB  
Article
Effects of Fish Pond Sediment on Quality of Saline–Alkali Soil and Some Vegetables: Water Spinach, Lettuce, and Chili
by Zhaohui Luo, Zhuoyue Zhang, Ying Guo, Luhao Lv, Dan Chen and Jiaming Duan
Agronomy 2025, 15(7), 1670; https://doi.org/10.3390/agronomy15071670 - 10 Jul 2025
Viewed by 449
Abstract
With the rapid expansion of the aquaculture scale, the environmental pollution caused by the accumulation of fish pond sediment (FPS) has become increasingly prominent, making it urgent to establish sustainable resource utilization solutions. This study investigates the potential of using FPS as a [...] Read more.
With the rapid expansion of the aquaculture scale, the environmental pollution caused by the accumulation of fish pond sediment (FPS) has become increasingly prominent, making it urgent to establish sustainable resource utilization solutions. This study investigates the potential of using FPS as a soil amendment to improve saline–alkali soil (SAS) quality and enhance vegetable growth, while also quantifying ecological benefits through Gross Ecosystem Product (GEP) accounting. A pot experiment was conducted to evaluate the effects of different FPS mass percentages (0%, 20%, 40%, 80%, and 100%) on the growth of three vegetables (water spinach, lettuce, and chili) and soil quality. The results demonstrated that FPS addition at ≥40% significantly improves SAS quality, reducing the pH and salinity (p < 0.05), while enhancing organic matter, nutrient availability, and microbial activity. Among the treatments, 80% FPS maximized vegetable yields, with water spinach achieving the highest edible biomass (37.32 g). Compared to the control, nutritional quality under ≥80% FPS treatment showed substantial increases: vitamin C (133.33–307.03%), soluble sugars (49.97–73.53%), and protein (26.14–48.08%). An economic analysis revealed that 80% FPS with water spinach cultivation generated peak ecological benefits (274,951 CNY·ha−1; 185% above control). These findings provide a scientific basis and effective model for the resource utilization of FPS and the improvement of saline–alkali soil, offering significant implications for the sustainable development of agriculture and environmental protection. Full article
Show Figures

Figure 1

15 pages, 1325 KiB  
Article
Nutritional Value of Female Eriocheir sinensis from Three Different Habitats in the Lower Reach of the Yangtze River with a Special Emphasis on Lipid Quality
by Lizhi Yu, Xueqian Guo, Mingyu Yin and Xichang Wang
Foods 2025, 14(14), 2434; https://doi.org/10.3390/foods14142434 - 10 Jul 2025
Viewed by 278
Abstract
The cultured habitat of Eriocheir sinensis is a crucial factor influencing its nutritional quality. Therefore, it is essential to clarify the differences in the nutritional quality of Eriocheir sinensis reared in different habitats. This study investigated and compared the nutritional value of three [...] Read more.
The cultured habitat of Eriocheir sinensis is a crucial factor influencing its nutritional quality. Therefore, it is essential to clarify the differences in the nutritional quality of Eriocheir sinensis reared in different habitats. This study investigated and compared the nutritional value of three edible parts (the hepatopancreas, gonads, and muscles) of female Eriocheir sinensis from three different habitats in the lower reach of the Yangtze River, with a special emphasis on lipid compounds. In addition to tissue indices, proximate composition, energy content, lipid classes, and fatty acid profile, eight lipid quality indices were proposed to evaluate the lipid nutritional quality. The results indicated that the Eriocheir sinensis from the three different habitats were all in good developmental condition. No significant differences were observed for the hepatopancreas index (HIS), gonadosomatic index (GSI), and total edible yield (TEY) among the three habitats, except for muscle index (MI), which was significantly higher in the L-crabs and E-crabs compared to the P-crabs. The highest protein content was found in the gonads, while the hepatopancreas had the highest crude lipid content. Regarding lipid classes, triglycerides dominated the hepatopancreas, and phospholipids were predominant in muscles, whereas phospholipids and triglycerides were predominant in approximately equal amounts in the gonads. Taking eight lipid quality indices into account together, the three major edible tissues of Eriocheir sinensis from the estuarine habitat had the highest nutritional value, followed by the hepatopancreas from the pond habitat. The current research will provide basic nutritional data for consumers to purchase Eriocheir sinensis and establish the theoretical groundwork for paving new paths for improving the nutritional quality combined with habitat conditions in future studies. Full article
Show Figures

Figure 1

21 pages, 3801 KiB  
Article
Influence of Snow Redistribution and Melt Pond Schemes on Simulated Sea Ice Thickness During the MOSAiC Expedition
by Jiawei Zhao, Yang Lu, Haibo Zhao, Xiaochun Wang and Jiping Liu
J. Mar. Sci. Eng. 2025, 13(7), 1317; https://doi.org/10.3390/jmse13071317 - 9 Jul 2025
Viewed by 274
Abstract
The observations of atmospheric, oceanic, and sea ice data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition were used to analyze the influence of snow redistribution and melt-pond processes on the evolution of sea ice thickness (SIT) in [...] Read more.
The observations of atmospheric, oceanic, and sea ice data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition were used to analyze the influence of snow redistribution and melt-pond processes on the evolution of sea ice thickness (SIT) in 2019 and 2020. To mitigate the effect of missing atmospheric observations from the time of the expedition, we used ERA5 atmospheric reanalysis along the MOSAiC drift trajectory to force the single-column sea ice model Icepack. SIT simulations from six combinations of two melt-pond schemes and three snow-redistribution configurations of Icepack were compared with observations and analyzed to investigate the sources of model–observation discrepancies. The three snow-redistribution configurations are the bulk scheme, the snwITDrdg scheme, and one simulation conducted without snow redistribution. The bulk scheme describes snow loss from level ice to leads and open water, and snwITDrdg describes wind-driven snow redistribution and compaction. The two melt-pond schemes are the TOPO scheme and the LVL scheme, which differ in the distribution of melt water. The results show that Icepack without snow redistribution simulates excessive snow–ice formation, resulting in an SIT thicker than that observed in spring. Applying snow-redistribution schemes in Icepack reduces snow–ice formation while enhancing the congelation rate. The bulk snow-redistribution scheme improves the SIT simulation for winter and spring, while the bias is large in simulations using the snwITDrdg scheme. During the summer, Icepack underestimates the sea ice surface albedo, resulting in an underestimation of SIT at the end of simulation. The simulations using the TOPO scheme are characterized by a more realistic melt-pond evolution compared to those using the LVL scheme, resulting in a smaller bias in SIT simulation. Full article
(This article belongs to the Special Issue Recent Research on the Measurement and Modeling of Sea Ice)
Show Figures

Figure 1

Back to TopTop