Influence of Snow Redistribution and Melt Pond Schemes on Simulated Sea Ice Thickness During the MOSAiC Expedition
Abstract
1. Introduction
2. Materials and Methods
2.1. MOSAiC Expedition and Observations
2.2. Icepack Model
2.2.1. Thermodynamic Processes
2.2.2. Delta–Eddington Radiation Parameterization
2.2.3. Snow-Redistribution Scheme
2.2.4. Melt-Pond Scheme
2.3. Experiment Design
3. Results
3.1. MOSAiC and ERA5 Comparison
3.2. Sea Ice Thickness Simulations
3.3. Snow-Depth Simulations
3.4. Radiation Flux and Albedo
3.5. Melt Pond
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sweeney, A.J.; Fu, Q.; Po-Chedley, S.; Wang, H.; Wang, M. Internal Variability Increased Arctic Amplification During 1980–2022. Geophys. Res. Lett. 2023, 50, e2023GL106060. [Google Scholar] [CrossRef]
- Meier, W.N.; Stroeve, J. An Updated Assessment of the Changing Arctic Sea Ice Cover. Oceanography 2022, 35, 10–19. [Google Scholar] [CrossRef]
- Shupe, M.D.; Rex, M.; Blomquist, B.; Persson, P.O.G.; Schmale, J.; Uttal, T.; Althausen, D.; Angot, H.; Archer, S.; Bariteau, L.; et al. Overview of the MOSAiC expedition: Atmosphere. Elem. Sci. Anthr. 2022, 10, 00060. [Google Scholar] [CrossRef]
- Rabe, B.; Heuzé, C.; Regnery, J.; Aksenov, Y.; Allerholt, J.; Athanase, M.; Bai, Y.; Basque, C.; Bauch, D.; Baumann, T.M.; et al. Overview of the MOSAiC expedition: Physical oceanography. Elem. Sci. Anthr. 2022, 10, 00062. [Google Scholar] [CrossRef]
- Nicolaus, M.; Perovich, D.K.; Spreen, G.; Granskog, M.A.; von Albedyll, L.; Angelopoulos, M.; Anhaus, P.; Arndt, S.; Belter, H.J.; Bessonov, V.; et al. Overview of the MOSAiC expedition: Snow and sea ice. Elem. Sci. Anthr. 2022, 10, 000046. [Google Scholar] [CrossRef]
- Hunke, E.; Lipscomb, W. CICE: The Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 4.0 LA-CC-06-012; Tech. Rep. LA-CC-06-012; Los Alamos National Laboratory: Los Alamos, NM, USA, 2017. [Google Scholar]
- Thorndike, A.S.; Rothrock, D.A.; Maykut, G.A.; Colony, R. The thickness distribution of sea ice. J. Geophys. Res. (1896–1977) 1975, 80, 4501–4513. [Google Scholar] [CrossRef]
- Long, M.; Zhang, L.; Hu, S.; Qian, S. Multi-Aspect Assessment of CMIP6 Models for Arctic Sea Ice Simulation. J. Clim. 2021, 34, 1515–1529. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, X.; He, Y.; Liu, J.; Jin, J.; Cao, J.; He, J.; Yu, Y.; Gao, X.; Song, M.; et al. Influence of New Parameterization Schemes on Arctic Sea Ice Simulation. J. Mar. Sci. Eng. 2024, 12, 555. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, Z.; Liu, J.; Wu, H.; Zhang, L. Review of Sea Ice Albedo Parameterizations. Adv. Earth Sci. 2010, 25, 14–21. [Google Scholar]
- Sturm, M.; Holmgren, J.; Perovich, D.K. Winter snow cover on the sea ice of the Arctic Ocean at the Surface Heat Budget of the Arctic Ocean (SHEBA): Temporal evolution and spatial variability. J. Geophys. Res. Oceans 2002, 107, SHE 23-1–SHE 23-17. [Google Scholar] [CrossRef]
- Maykut, G.A.; Untersteiner, N. Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res. (1896–1977) 1971, 76, 1550–1575. [Google Scholar] [CrossRef]
- Hunke, E.; Allard, R.; Bailey, D.; Blain, P.; Craig, T.; Damsgaard, A.; Dupont, F.; DuVivier, A.; Grumbine, R.; Holland, M.; et al. CICE Consortium/Icepack Version 1.1.0; Los Alamos National Laboratory: Los Alamos, NM, USA, 2018. [Google Scholar] [CrossRef]
- Clemens-Sewall, D.; Smith, M.M.; Holland, M.M.; Polashenski, C.; Perovich, D. Snow redistribution onto young sea ice: Observations and implications for climate models. Elem. Sci. Anthr. 2022, 10, 00115. [Google Scholar] [CrossRef]
- Plante, M.; Lemieux, J.F.; Tremblay, L.B.; Tivy, A.; Angnatok, J.; Roy, F.; Smith, G.; Dupont, F. Using Icepack to reproduce Ice Mass Balance buoy observations in landfast ice: Improvements from the mushy layer thermodynamics. Cryosphere 2024, 18, 1708–1865. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, H.; Zhao, J.; Wang, X.; He, Y.; Lei, R.; Yu, X. Simulation error diagnosis of the seasonal evolution of sea ice thickness during MOSAiC in-situ observation. Haiyang Xuebao 2024, 46, 1–14. [Google Scholar] [CrossRef]
- Hunke, E.; Allard, R.; Bailey, D.A.; Blain, P.; Craig, A.; Dupont, F.; DuVivier, A.; Grumbine, R.; Hebert, D.; Holland, M.; et al. CICE-Consortium/Icepack: Icepack Version 1.4.1; Los Alamos National Laboratory: Los Alamos, NM, USA, 2024. [Google Scholar] [CrossRef]
- Cheng, B.; Zhang, Z.; Vihma, T.; Johansson, M.; Bian, L.; Li, Z.; Wu, H. Model experiments on snow and ice thermodynamics in the Arctic Ocean with CHINARE 2003 data. J. Geophys. Res. Oceans 2008, 113, C09020. [Google Scholar] [CrossRef]
- Gu, F.; Kauker, F.; Yang, Q.; Han, B.; Fang, Y.; Liu, C. Effects of Freezing Temperature Parameterization on Simulated Sea-Ice Thickness Validated by MOSAiC Observations. Geophys. Res. Lett. 2024, 51, e2024GL108281. [Google Scholar] [CrossRef]
- Raphael, I.A.; Perovich, D.K.; Polashenski, C.M.; Clemens-Sewall, D.; Itkin, P.; Lei, R.; Nicolaus, M.; Regnery, J.; Smith, M.M.; Webster, M.; et al. Sea ice mass balance during the MOSAiC drift experiment: Results from manual ice and snow thickness gauges. Elem. Sci. Anthr. 2024, 12, 00040. [Google Scholar] [CrossRef]
- Jackson, K.; Wilkinson, J.; Maksym, T.; Meldrum, D.; Beckers, J.; Haas, C.; Mackenzie, D. A Novel and Low-Cost Sea Ice Mass Balance Buoy. J. Atmos. Ocean. Technol. 2013, 30, 2676–2688. [Google Scholar] [CrossRef]
- Lei, R.; Cheng, B.; Hoppmann, M.; Zuo, G. Snow Depth and Sea Ice Thickness Derived from the Measurements of SIMBA Buoys Deployed in the Arctic Ocean During the Legs 1a, 1, and 3 of the MOSAiC Campaign in 2019–2020. PANGAEA 2021. [Google Scholar] [CrossRef]
- Rinke, A.; Cassano, J.J.; Cassano, E.N.; Jaiser, R.; Handorf, D. Meteorological conditions during the MOSAiC expedition: Normal or anomalous? Elem. Sci. Anthr. 2021, 9, 00023. [Google Scholar] [CrossRef]
- Hoppmann, M.; Kuznetsov, I.; Fang, Y.C.; Rabe, B. Mesoscale observations of temperature and salinity in the Arctic Transpolar Drift: A high-resolution dataset from the MOSAiC Distributed Network. Earth Syst. Sci. Data 2022, 14, 4901–4921. [Google Scholar] [CrossRef]
- Webster, M.A.; Holland, M.; Wright, N.C.; Hendricks, S.; Hutter, N.; Itkin, P.; Light, B.; Linhardt, F.; Perovich, D.K.; Raphael, I.A.; et al. Spatiotemporal evolution of melt ponds on Arctic sea ice: MOSAiC observations and model results. Elem. Sci. Anthr. 2022, 10, 000072. [Google Scholar] [CrossRef]
- Niehaus, H.; Spreen, G.; Birnbaum, G.; Istomina, L.; Jäkel, E.; Linhardt, F.; Neckel, N.; Fuchs, N.; Nicolaus, M.; Sperzel, T.; et al. Sea Ice Melt Pond Fraction Derived From Sentinel-2 Data: Along the MOSAiC Drift and Arctic-Wide. Geophys. Res. Lett. 2023, 50, e2022GL102102. [Google Scholar] [CrossRef]
- Pascual-Ahuir, E.G.; Wang, Z. Optimized sea ice simulation in MITgcm-ECCO2 forced by ERA5. Ocean Model. 2023, 183, 102183. [Google Scholar] [CrossRef]
- Graham, R.M.; Cohen, L.; Ritzhaupt, N.; Segger, B.; Graversen, R.G.; Rinke, A.; Walden, V.P.; Granskog, M.A.; Hudson, S.R. Evaluation of Six Atmospheric Reanalyses over Arctic Sea Ice from Winter to Early Summer. J. Clim. 2019, 32, 4121–4143. [Google Scholar] [CrossRef]
- Wang, C.; Graham, R.M.; Wang, K.; Gerland, S.; Granskog, M.A. Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: Effects on sea ice thermodynamics and evolution. Cryosphere 2019, 13, 1661–1679. [Google Scholar] [CrossRef]
- Briegleb, B.P.; Light, B. A Delta-Eddington Mutiple Scattering Parameterization for Solar Radiation in the Sea Ice Component of the Community Climate System Model; Technical Report; National Center for Atmospheric Research: Boulder, CO, USA, 2007. [Google Scholar]
- Bitz, C.M.; Lipscomb, W.H. An energy-conserving thermodynamic model of sea ice. J. Geophys. Res. Oceans 1999, 104, 15669–15677. [Google Scholar] [CrossRef]
- Feltham, D.L.; Untersteiner, N.; Wettlaufer, J.S.; Worster, M.G. Sea ice is a mushy layer. Geophys. Res. Lett. 2006, 33, L14501. [Google Scholar] [CrossRef]
- Lecomte, O.; Fichefet, T.; Flocco, D.; Schroeder, D.; Vancoppenolle, M. Interactions between wind-blown snow redistribution and melt ponds in a coupled ocean–sea ice model. Ocean Model. 2015, 87, 67–80. [Google Scholar] [CrossRef]
- Flocco, D.; Feltham, D.L. A continuum model of melt pond evolution on Arctic sea ice. J. Geophys. Res. Oceans 2007, 112, C08016. [Google Scholar] [CrossRef]
- Hunke, E.C.; Hebert, D.A.; Lecomte, O. Level-ice melt ponds in the Los Alamos sea ice model, CICE. Arct. Ocean 2013, 71, 26–42. [Google Scholar] [CrossRef]
- Lawrence, Z.D.; Perlwitz, J.; Butler, A.H.; Manney, G.L.; Newman, P.A.; Lee, S.H.; Nash, E.R. The Remarkably Strong Arctic Stratospheric Polar Vortex of Winter 2020: Links to Record-Breaking Arctic Oscillation and Ozone Loss. J. Geophys. Res. Atmos. 2020, 125, e2020JD033271. [Google Scholar] [CrossRef]
- Gu, F.; Yang, Q.; Kauker, F.; Liu, C.; Hao, G.; Yang, C.Y.; Liu, J.; Heil, P.; Li, X.; Han, B. The sensitivity of landfast sea ice to atmospheric forcing in single-column model simulations: A case study at Zhongshan Station, Antarctica. Cryosphere 2022, 16, 1873–1887. [Google Scholar] [CrossRef]
- Wagner, D.N.; Shupe, M.D.; Cox, C.; Persson, O.G.; Uttal, T.; Frey, M.M.; Kirchgaessner, A.; Schneebeli, M.; Jaggi, M.; Macfarlane, A.R.; et al. Snowfall and snow accumulation during the MOSAiC winter and spring seasons. Cryosphere 2022, 16, 2373–2402. [Google Scholar] [CrossRef]
- Willeit, M.; Ganopolski, A. The importance of snow albedo for ice sheet evolution over the last glacial cycle. Clim. Past 2018, 14, 697–707. [Google Scholar] [CrossRef]
- Hofsteenge, M. Evaluation of 1D and 3D Simulations with CICE: Sea Ice thermodynamics and Dynamics During the SHEBA Expedition; Zenodo: Genève, Switzerland, 2020. [Google Scholar] [CrossRef]
- Polashenski, C.; Perovich, D.; Courville, Z. The mechanisms of sea ice melt pond formation and evolution. J. Geophys. Res. Oceans 2012, 117, C01001. [Google Scholar] [CrossRef]
Melt Pond Scheme | Snow Redistribution | Initial Conditions | |||
---|---|---|---|---|---|
Sea Ice Thickness | Snow Depth | Pond Fraction | Pond Depth | ||
TOPO & LVL | none & bulk & snwITDrdg | 0.088 m | 0.12 m | 0 | 0 m |
Atmosphere Variables | RMSE | Correlation Coefficient |
---|---|---|
10 m u-component wind (m ) | 1.47 | 0.96 |
10 m v-component wind (m ) | 1.43 | 0.97 |
10 m wind (m ) | 1.62 | 0.94 |
2 m temperature (K) | 2.57 | 0.97 |
2 m absolute humidity (kg ) | 0.99 | |
snowfall/precipitation (m ) | 0.03 | |
downward shortwave radiation (W ) | 30.1 | 0.95 |
downward longwave radiation (W ) | 24.7 | 0.91 |
Melt-Pond Scheme | Snwredist | Subl Cond | New Ice | Snow Ice | Congelation | Top Melt | Bottom Melt | Lateral Melt | RMSE |
---|---|---|---|---|---|---|---|---|---|
TOPO | none | −0.084 | 0.077 | 0.73 | 0.66 | −1.29 | −0.28 | −0.062 | 0.16 |
TOPO | bulk | −0.075 | 0.086 | 0.48 | 0.77 | −1.17 | −0.26 | −0.043 | 0.16 |
TOPO | snwITDrdg | −0.094 | 0.066 | 0.71 | 0.79 | −1.26 | −0.26 | −0.067 | 0.16 |
LVL | none | −0.109 | 0.077 | 0.73 | 0.66 | −1.46 | −0.30 | −0.052 | 0.31 |
LVL | bulk | −0.116 | 0.086 | 0.48 | 0.77 | −1.49 | −0.30 | −0.048 | 0.33 |
LVL | snwITDrdg | −0.112 | 0.066 | 0.71 | 0.79 | −1.50 | −0.28 | −0.053 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Lu, Y.; Zhao, H.; Wang, X.; Liu, J. Influence of Snow Redistribution and Melt Pond Schemes on Simulated Sea Ice Thickness During the MOSAiC Expedition. J. Mar. Sci. Eng. 2025, 13, 1317. https://doi.org/10.3390/jmse13071317
Zhao J, Lu Y, Zhao H, Wang X, Liu J. Influence of Snow Redistribution and Melt Pond Schemes on Simulated Sea Ice Thickness During the MOSAiC Expedition. Journal of Marine Science and Engineering. 2025; 13(7):1317. https://doi.org/10.3390/jmse13071317
Chicago/Turabian StyleZhao, Jiawei, Yang Lu, Haibo Zhao, Xiaochun Wang, and Jiping Liu. 2025. "Influence of Snow Redistribution and Melt Pond Schemes on Simulated Sea Ice Thickness During the MOSAiC Expedition" Journal of Marine Science and Engineering 13, no. 7: 1317. https://doi.org/10.3390/jmse13071317
APA StyleZhao, J., Lu, Y., Zhao, H., Wang, X., & Liu, J. (2025). Influence of Snow Redistribution and Melt Pond Schemes on Simulated Sea Ice Thickness During the MOSAiC Expedition. Journal of Marine Science and Engineering, 13(7), 1317. https://doi.org/10.3390/jmse13071317