Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,631)

Search Parameters:
Keywords = polyphenolic compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1991 KiB  
Review
Emerging Technologies for Extracting Antioxidant Compounds from Edible and Medicinal Mushrooms: An Efficient and Sustainable Approach
by Salome Mamani Parí, Erick Saldaña, Juan D. Rios-Mera, María Fernanda Quispe Angulo and Nils Leander Huaman-Castilla
Compounds 2025, 5(3), 29; https://doi.org/10.3390/compounds5030029 - 28 Jul 2025
Abstract
Edible mushrooms are well-known for their culinary and nutritional values. Additionally, they serve as a natural source of polyphenols, a group of bioactive compounds that significantly treat diseases associated with oxidative stress. The polyphenolic profile of mushrooms mainly consists of phenolic acids and [...] Read more.
Edible mushrooms are well-known for their culinary and nutritional values. Additionally, they serve as a natural source of polyphenols, a group of bioactive compounds that significantly treat diseases associated with oxidative stress. The polyphenolic profile of mushrooms mainly consists of phenolic acids and flavonoids, whose chemical properties have attracted the attention of both the food and pharmaceutical industries. Consequently, methods for extracting polyphenols from mushrooms encompass conventional techniques (maceration and Soxhlet extraction) as well as innovative or green methods (ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, enzyme-assisted extraction, and pulsed electric field extraction). Nonetheless, extraction with pressurized liquids and supercritical fluids is considered the most suitable method, as they function in a gentle and selective manner, preserving the integrity of the phenolic compounds. The use of mushroom-derived phenolic compounds in food and pharmaceutical formulations continues to face challenges concerning the safety of these extracts, as they might contain unwanted substances. Future applications should incorporate purification systems to yield highly pure extracts, thereby creating safe polyphenol carriers (for food and pharmaceutical products) for consumers. Full article
(This article belongs to the Special Issue Compounds–Derived from Nature)
Show Figures

Graphical abstract

19 pages, 5967 KiB  
Article
Chitosan Application Improves the Growth and Physiological Parameters of Tomato Crops
by Juan José Reyes-Pérez, Luis Tarquino Llerena-Ramos, Wilmer Tezara, Víctor Reynel, Luis Guillermo Hernández-Montiel and Antonio Juárez-Maldonado
Horticulturae 2025, 11(8), 878; https://doi.org/10.3390/horticulturae11080878 - 28 Jul 2025
Abstract
Tomato crops are treated with high concentrations of synthetic fertilizers and insecticides to increase yields, but the careless use of these chemicals harms the environment and human health and affects plant pathogen resistance. The effect of foliar spray of three concentrations of chitosan [...] Read more.
Tomato crops are treated with high concentrations of synthetic fertilizers and insecticides to increase yields, but the careless use of these chemicals harms the environment and human health and affects plant pathogen resistance. The effect of foliar spray of three concentrations of chitosan (500, 1000, and 2000 mg L−1) on plant growth, yield, fruit quality, and physiological performance in two tomato varieties (Floradade and Candela F1) was studied. Physiological traits such as photosynthesis, chlorophyll content, and leaf area index of the plants were positively affected by chitosan, an effective compound that biostimulates growth, with increases in biomass of organs with respect to the control treatment. Chitosan also improved tomato quality, such as increases in polyphenols, antioxidant capacity, flavonoids, carotenoids, vitamin C, and total soluble solids in both tomato varieties. Finally, yield increased by 76.4% and 65.4% in Floradade and Candela F1, respectively. The responses of tomato plants to chitosan application were different depending on the variety evaluated, indicating a differential response to the biostimulant. The use of chitosan in agriculture is a tool that has no negative effects on plants and the environment and can increase the productive capacity of tomato plants. Full article
Show Figures

Figure 1

18 pages, 919 KiB  
Article
Polyphenol Profile and Biological Activity of the Extracts from Sideritis scardica Griseb. (Lamiaceae) Herb
by Magdalena Walasek-Janusz, Krzysztof Kamil Wojtanowski, Rafał Papliński, Agnieszka Grzegorczyk and Renata Nurzyńska-Wierdak
Pharmaceuticals 2025, 18(8), 1121; https://doi.org/10.3390/ph18081121 - 27 Jul 2025
Abstract
Background/Objectives: The beneficial and multifaceted effects of Sideritis scardica Griseb. extracts are attributed to the presence of polyphenolic compounds, particularly phenolic acids. Methods: The research was carried out for S. scardica herb of different origins (Albania, Bulgaria, North Macedonia, and Türkiye). Identification of [...] Read more.
Background/Objectives: The beneficial and multifaceted effects of Sideritis scardica Griseb. extracts are attributed to the presence of polyphenolic compounds, particularly phenolic acids. Methods: The research was carried out for S. scardica herb of different origins (Albania, Bulgaria, North Macedonia, and Türkiye). Identification of compounds was performed using the HPLC/ESI-QTOF-MS method; phenolic acids and flavonoids were determined spectrophotometrically. The antioxidant activity of methanol extracts from studied herbs was determined using the Folin–Ciocalteu, DPPH, and FRAP methods, and the antimicrobial activity was evaluated using the broth microdilution method in accordance with the guidelines of the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Results: We demonstrated the presence 18–20 active compounds, depending on the origin of the raw material, with verbascoside being the predominant compound in all samples. The raw material was characterized by significant polyphenol content and high antioxidant activity. DPPH tests revealed the highest antioxidant activity, ranging from 86.5% to 87.9%, in samples from Bulgaria, North Macedonia, and Türkiye, and the latter showed the strongest antimicrobial activity, particularly against Gram-positive pathogens and Candida spp. Conclusions: This research is the first report comparing the chemical composition and biological activity of S. scardica raw material of different origins. Our findings indicate that S. scardica herb extracts have significant phytotherapeutic potential, although this varies depending on the origin of the raw material, and point to the need for further research on this plant material, particularly in terms of the level of active compounds and their possible synergistic effects with conventional drugs, as well as the need for standardization. Full article
Show Figures

Graphical abstract

22 pages, 1071 KiB  
Article
Proximate Composition, Phytochemicals, Phenolic Compounds, and Bioactive Characterization of Mauritia flexuosa L.f. Seeds
by Claudia Cristina Pérez Jaramillo, Liceth N. Cuéllar Álvarez and Walter Murillo Arango
Plants 2025, 14(15), 2323; https://doi.org/10.3390/plants14152323 - 27 Jul 2025
Abstract
Mauritia flexuosa, commonly known as “canangucha,” holds significant nutritional and economic value in the Amazon region. While its pulp is widely utilized in local food products, the seed or kernel is largely underutilized. This study investigated the proximal and phytochemical composition of [...] Read more.
Mauritia flexuosa, commonly known as “canangucha,” holds significant nutritional and economic value in the Amazon region. While its pulp is widely utilized in local food products, the seed or kernel is largely underutilized. This study investigated the proximal and phytochemical composition of M. flexuosa, alongside its biological properties, specifically focusing on the hypoglycemic activity of an ethanolic extract from M. flexuosa seeds (MFSs). Proximal analysis revealed that MFSs are a notable source of crude fiber (28.4%) and a moderate source of protein (9.1%). Phytochemical screening indicated a high total polyphenol content (123.4 mg gallic acid equivalents/100 mg dry weight) and substantial antiradical capacity against the ABTS radical (IC50 = 171.86 µg/mL). Notably, MFS ethanolic extracts exhibited significant in vitro antihyperglycemic activity via inhibiting α-amylase and α-glucosidase enzymes, demonstrating comparable inhibition to acarbose at higher concentrations. This hypoglycemic effect was further corroborated in an in vivo rat model with induced diabetes, where the administration of 100 mg/kg of MFS ethanolic extract significantly reduced blood glucose levels compared to the diabetic control group (p < 0.05). A moderate antihypertensive effect was observed at a concentration of 150 mg/kg, correlating with ACE inhibition. High-performance liquid chromatography–mass spectrometry (UHPLC-ESI-HRMS) analysis of the seed extract identified phenolic compounds including ellagic, p-coumaric, and chlorogenic acids, as well as flavonoids such as quercetin, myricetin, and epicatechin. This study provides the first evidence of the hypoglycemic activity of MFSs, offering valuable insights into their phytochemistry and potential therapeutic applications. Full article
Show Figures

Figure 1

15 pages, 574 KiB  
Article
Polyphenol Intake from Herbs and Spices
by Cynthia Blanton
Nutrients 2025, 17(15), 2445; https://doi.org/10.3390/nu17152445 - 27 Jul 2025
Abstract
Background: Culinary herbs and spices are potent sources of bioactive compounds such as (poly)phenols that confer health benefits to consumers. Observational studies have quantified (poly)phenol intake levels from foods and beverages but not herbs and spices. Hence, the contribution of herbs and [...] Read more.
Background: Culinary herbs and spices are potent sources of bioactive compounds such as (poly)phenols that confer health benefits to consumers. Observational studies have quantified (poly)phenol intake levels from foods and beverages but not herbs and spices. Hence, the contribution of herbs and spices to (poly)phenol intakes is unclear. Methods: The current study measured herb and spice total (poly)phenol consumption in a convenience sample of adults (n = 212) using a validated online herb and spice questionnaire. Respondents reported the frequency and amount of consumption of 27 herbs and spices during the past month. Total (poly)phenol concentration (mg) for each herb and spice was calculated using the online database Phenol-Explorer. Results: Responses showed monthly intakes of 679.92 (1134.06) (median, IQR) mg total (poly)phenols from 47.44 (60.71) g herbs and spices. Cinnamon, black pepper and cloves were the largest contributors to total (poly)phenol intakes from herbs and spices. Conclusions: These findings suggest that herbs and spices contribute potentially meaningful amounts of (poly)phenols to total dietary (poly)phenol intakes and that existing reports of (poly)phenol consumption for populations may underestimate actual levels by 3–12%. Full article
Show Figures

Figure 1

19 pages, 3224 KiB  
Article
Supramolecular Co-Assembled Fmoc-FRGDF/Hyaluronic Acid Hydrogel for Quercetin Delivery: Multifunctional Bioactive Platform
by Xian-Ni Su, Yu-Yang Wang, Muhammed Fahad Khan, Li-Na Zhu, Zhong-Liang Chen, Zhuo Wang, Bing-Bing Song, Qiao-Li Zhao, Sai-Yi Zhong and Rui Li
Foods 2025, 14(15), 2629; https://doi.org/10.3390/foods14152629 - 26 Jul 2025
Viewed by 65
Abstract
Background: During food processing and storage, traditional protein-based delivery systems encounter significant challenges in maintaining the structural and functional integrity of bioactive compounds, primarily due to their temporal instability. Methods: In this study, a nanocomposite hydrogel was prepared through the co-assembly of a [...] Read more.
Background: During food processing and storage, traditional protein-based delivery systems encounter significant challenges in maintaining the structural and functional integrity of bioactive compounds, primarily due to their temporal instability. Methods: In this study, a nanocomposite hydrogel was prepared through the co-assembly of a self-assembling peptide, 9-Fluorenylmethoxycarbonyl-phenylalanine-arginine-glycine-aspartic acid-phenylalanine (Fmoc-FRGDF), and hyaluronic acid (HA). The stability of this hydrogel as a quercetin (Que) delivery carrier was systematically investigated. Furthermore, the impact of Que co-assembly on the microstructural evolution and physicochemical properties of the hydrogel was characterized. Concurrently, the encapsulation efficiency (EE%) and controlled release kinetics of Que were quantitatively evaluated. Results: The findings indicated that HA significantly reduced the storage modulus (G′) from 256.5 Pa for Fmoc-FRGDF to 21.1 Pa with the addition of 0.1 mg/mL HA. Despite this reduction, HA effectively slowed degradation rates; specifically, residue rates of 5.5% were observed for Fmoc-FRGDF alone compared to 14.1% with 0.5 mg/mL HA present. Notably, Que enhanced G′ within the ternary complex, increasing it from 256.5 Pa in Fmoc-FRGDF to an impressive 7527.0 Pa in the Que/HA/Fmoc-FRGDF hydrogel containing 0.1 mg/mL HA. The interactions among Que, HA, and Fmoc-FRGDF involved hydrogen bonding, electrostatic forces, and hydrophobic interactions; furthermore, the co-assembly process strengthened the β-sheet structure while significantly promoting supramolecular ordering. Interestingly, the release profile of Que adhered to the Korsmeyer–Peppas pharmacokinetic equations. Conclusions: Overall, this study examines the impact of polyphenol on the rheological properties, microstructural features, secondary structure conformation, and supramolecular ordering within peptide–polysaccharide–polyphenol ternary complexes, and the Fmoc-FRGDF/HA hydrogel system demonstrates a superior performance as a delivery vehicle for maintaining quercetin’s bioactivity, thereby establishing a multifunctional platform for bioactive agent encapsulation and controlled release. Full article
Show Figures

Figure 1

24 pages, 1580 KiB  
Article
Liposome-Based Encapsulation of Extract from Wild Thyme (Thymus serpyllum L.) Tea Processing Residues for Delivery of Polyphenols
by Aleksandra A. Jovanović, Bojana Balanč, Predrag M. Petrović, Natalija Čutović, Smilja B. Marković, Verica B. Djordjević and Branko M. Bugarski
Foods 2025, 14(15), 2626; https://doi.org/10.3390/foods14152626 - 26 Jul 2025
Viewed by 69
Abstract
This study developed phospholipid-based liposomes loaded with extract from wild thyme (Thymus serpyllum L.) tea processing residues to enhance polyphenol stability and delivery. Liposomes were prepared with phospholipids alone or combined with 10–30 mol% cholesterol or β-sitosterol. The effect of different lipid [...] Read more.
This study developed phospholipid-based liposomes loaded with extract from wild thyme (Thymus serpyllum L.) tea processing residues to enhance polyphenol stability and delivery. Liposomes were prepared with phospholipids alone or combined with 10–30 mol% cholesterol or β-sitosterol. The effect of different lipid compositions on encapsulation efficiency (EE), particle size, polydispersity index (PDI), zeta potential, stability, thermal properties, diffusion coefficient, and diffusion resistance of the liposomes was investigated. Liposomes with 10 mol% sterols (either cholesterol or β-sitosterol) exhibited the highest EE of polyphenols, while increasing sterol content to 30 mol% resulted in decreased EE. Particle size and PDI increased with sterol content, while liposomes prepared without sterols showed the smallest vesicle size. Encapsulation of the extract led to smaller liposomal diameters and slight increases in PDI values. Zeta potential measurements revealed that sterol incorporation enhanced the surface charge and stability of liposomes, with β-sitosterol showing the most pronounced effect. Stability testing demonstrated minimal changes in size, PDI, and zeta potential during storage. UV irradiation and lyophilization processes did not cause significant polyphenol leakage, although lyophilization slightly increased particle size and PDI. Differential scanning calorimetry revealed that polyphenols and sterols modified the lipid membrane transitions, indicating interactions between extract components and the liposomal bilayer. FT-IR spectra confirmed successful integration of the extract into the liposomes, while UV exposure did not significantly alter the spectral features. Thiobarbituric acid reactive substances (TBARS) assay demonstrated the extract’s efficacy in mitigating lipid peroxidation under UV-induced oxidative stress. In contrast, liposomes enriched with sterols showed enhanced peroxidation. Polyphenol diffusion studies showed that encapsulation significantly delayed release, particularly in sterol-containing liposomes. Release assays in simulated gastric and intestinal fluids confirmed controlled, pH-dependent polyphenol delivery, with slightly better retention in β-sitosterol-enriched systems. These findings support the use of β-sitosterol- and cholesterol-enriched liposomes as stable carriers for polyphenolic compounds from wild thyme extract, as bioactive antioxidants, for food and nutraceutical applications. Full article
(This article belongs to the Special Issue Encapsulation and Delivery Systems in the Food Industry)
Show Figures

Figure 1

26 pages, 4820 KiB  
Article
Olive Oil Wastewater Revalorization into a High-Added Value Product: A Biofertilizer Assessment Combining LCA and MCI
by Roberto Petrucci, Gabriele Menegaldo, Lucia Rocchi, Luisa Paolotti, Antonio Boggia and Debora Puglia
Sustainability 2025, 17(15), 6779; https://doi.org/10.3390/su17156779 - 25 Jul 2025
Viewed by 190
Abstract
The olive oil sector constitutes a fundamental pillar in the Mediterranean region from socio-economic and cultural perspectives. Nonetheless, it produces significant amounts of waste, leading to numerous environmental issues. These waste streams contain valuable compounds that can be recovered and utilized as inputs [...] Read more.
The olive oil sector constitutes a fundamental pillar in the Mediterranean region from socio-economic and cultural perspectives. Nonetheless, it produces significant amounts of waste, leading to numerous environmental issues. These waste streams contain valuable compounds that can be recovered and utilized as inputs for various applications. This study introduces a novel value chain for olive wastes, focused on extracting lignin from olive pomace by ionic liquids and polyphenols from olive mill wastewater, which are then incorporated as hybrid nanoparticles in the formulation of an innovative starch-based biofertilizer. This biofertilizer, obtained by using residual wastewater as a source of soluble nitrogen, acting at the same time as a plasticizer for the biopolymer, was demonstrated to surpass traditional NPK biofertilizers’ efficiency, allowing for root growth and foliage in drought conditions. In order to recognize the environmental impact due to its production and align it with the technical output, the circularity and environmental performance of the proposed system were innovatively evaluated through a combination of Life Cycle Assessment (LCA) and the Material Circularity Indicator (MCI). LCA results indicated that the initial upcycling process was potentially characterized by significant hot spots, primarily related to energy consumption (>0.70 kWh/kg of water) during the early processing stages. As a result, the LCA score of this preliminary version of the biofertilizer may be higher than that of conventional commercial products, due to reliance on thermal processes for water removal and the substantial contribution (56%) of lignin/polyphenol precursors to the total LCA score. Replacing energy-intensive thermal treatments with more efficient alternatives represents a critical area for improvement. The MCI value of 0.84 indicates limited potential for further enhancement. Full article
Show Figures

Figure 1

26 pages, 2613 KiB  
Article
Sustainable Olive Pomace Extracts for Skin Barrier Support
by Roberta Cougo Riéffel, Lucas Agostini, Naira Poener Rodrigues, Simone Jacobus Berlitz, Lígia Damasceno Ferreira Marczak and Irene Clemes Külkamp-Guerreiro
Pharmaceutics 2025, 17(8), 962; https://doi.org/10.3390/pharmaceutics17080962 - 25 Jul 2025
Viewed by 210
Abstract
Background: Olive pomace, a byproduct of olive oil production, represents approximately 85% of the processed material and poses environmental risks when improperly discarded. Its composition is rich in polyphenols with potential for cosmetic use, especially in skin barrier care. Objective: To [...] Read more.
Background: Olive pomace, a byproduct of olive oil production, represents approximately 85% of the processed material and poses environmental risks when improperly discarded. Its composition is rich in polyphenols with potential for cosmetic use, especially in skin barrier care. Objective: To develop a natural extract rich in antioxidants from olive pomace using sustainable solvents (water and 1,3-propanediol) for skin barrier support. Methods: The phenolic composition and in vitro biological activities of the extracts were analyzed. Results: The extracts demonstrated a reducing capacity (15 to 33 mg GAE/g) and flavonoid content (4 to 5 mg QE/g). In addition, their antioxidant capacity was proven through the inhibition of the DPPH radical (7% to 91%) and ABTS (7% to 95%) and the reduction in oxidation in the beta-carotene/linoleic acid system (6% to 35%), presenting results superior to those of tocopherol acetate. The hydroxytyrosol and oleuropein compounds, ranging from 28 to 54 and 51 to 85 µg/mL, respectively, were quantified via HPLC. The extract with the highest levels of hydroxytyrosol and oleuropein was analyzed via UHPLC-QqTOF-MS, and 33 compounds were identified. This extract showed antiglycation activity (24% to 40%). The incorporation of this extract into a cosmetic emulsion resulted in sufficient antioxidant capacity to replace tocopherol acetate. Conclusions: The use of effective extraction techniques and nontoxic solvents ensures the sustainability and safety of the extract for application as a natural cosmetic ingredient, aiming to promote the health and integrity of the skin barrier. Full article
Show Figures

Graphical abstract

15 pages, 1118 KiB  
Article
Identification of Novel Bioactive Molecules in Black Chiloe’s Giant Garlic (Allium ampeloprasum L.) by Green Microwave-Assisted Extraction and Effect-Directed Analysis Using High-Performance Thin Layer Chromatography-Bioassay and Mass Spectrometry
by Joaquín Fernández-Martínez, David Arráez-Román, Darlene Peterssen, Gerald Zapata, Karem Henríquez-Aedo and Mario Aranda
Antioxidants 2025, 14(8), 913; https://doi.org/10.3390/antiox14080913 - 25 Jul 2025
Viewed by 178
Abstract
Black Chiloe’s giant garlic is a functional food produced by a mild Maillard reaction that contains relevant bioactive molecules like organosulfur compounds (OSCs) and (poly)phenols (PPs). Compared with raw garlic, black garlic has a higher content of PPs and S-allyl cysteine (SAC), a [...] Read more.
Black Chiloe’s giant garlic is a functional food produced by a mild Maillard reaction that contains relevant bioactive molecules like organosulfur compounds (OSCs) and (poly)phenols (PPs). Compared with raw garlic, black garlic has a higher content of PPs and S-allyl cysteine (SAC), a key OSC due to its bioactivities. The objective of the present work was to optimize by chemometric tools a green microwave-assisted extraction (MAE) of SAC and PPs present in black Chiloe’s giant garlic to detect and identify novel bioactive molecules with antioxidant and/or inhibitory activities over cyclooxygenase, α-glucosidase, and acetylcholinesterase enzymes. The MAE factors were optimized using a central composite design, establishing optimal PP and SAC yields at 67 °C, 0% ethanol, 12 min and 30 °C, 40% ethanol, 3 min, respectively. PP and SAC values were 9.19 ± 0.18 mg GAE/g DW and 2.55 ± 0.10 mg SAC/g DW. Applying effect-directed analysis using high-performance thin layer chromatography-bioassay and mass spectrometry, the bioactive molecules present in the MAE extract with antioxidant and inhibitory activities over cyclooxygenase, α-glucosidase, and acetylcholinesterase enzymes were identified as N-fructosyl-glutamyl-S-(1-propenyl)cysteine, N-fructosyl-glutamylphenylalanine, and Harmane. Full article
Show Figures

Figure 1

17 pages, 661 KiB  
Article
An Ultrasonication-Assisted Green Process for Simultaneous Production of a Bioactive Compound-Rich Extract and a Multifunctional Fibrous Ingredient from Spent Coffee Grounds
by Jaquellyne B. M. D. Silva, Mayara T. P. Paiva, Henrique F. Fuzinato, Nathalia Silvestre, Marta T. Benassi and Suzana Mali
Molecules 2025, 30(15), 3117; https://doi.org/10.3390/molecules30153117 - 25 Jul 2025
Viewed by 199
Abstract
Spent coffee grounds (SCGs) are lignocellulosic residues generated from producing espresso or soluble coffee and have no commercial value. This study aimed to develop a new single-step process for extracting bioactive compounds from SCGs based on ultrasonication in an aqueous medium and simultaneously [...] Read more.
Spent coffee grounds (SCGs) are lignocellulosic residues generated from producing espresso or soluble coffee and have no commercial value. This study aimed to develop a new single-step process for extracting bioactive compounds from SCGs based on ultrasonication in an aqueous medium and simultaneously recovering the residual solid fraction, resulting in the integral utilization of the residue. This process resulted in a liquid aqueous extract (LAE) rich in bioactive compounds (caffeine: 400.1 mg/100 g; polyphenols: 800.4 mg GAE/100 g; melanoidins: 2100.2 mg/100 g) and, simultaneously, a solid multifunctional ingredient from modified spent coffee grounds (MSCGs) rich in bioactive compounds and dietary fibers (73.0 g/100 g). The liquid extract can be used as a natural ingredient for drinks or to isolate caffeine, while the solid matrix can be used to produce functional foods. This technique proved to be a promising eco-friendly alternative for the simultaneous production of two different materials from SCGs, maximizing resource efficiency, with some advantages, including short time, simplicity, and cost-effectiveness; using water as a solvent; and requiring no further purification processing. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

36 pages, 1354 KiB  
Review
Flavonol Technology: From the Compounds’ Chemistry to Clinical Research
by Tomasz Przybylski, Joanna Czerniel, Jakub Dobrosielski and Maciej Stawny
Molecules 2025, 30(15), 3113; https://doi.org/10.3390/molecules30153113 - 25 Jul 2025
Viewed by 260
Abstract
Flavonols, representing a subclass of flavonoids, are an important group of polyphenols. Their activity is associated with a number of beneficial properties, including hepatoprotective, senolytic, neuroprotective, and anticancer properties. They are found abundantly in many fruits, vegetables, and plant products, but flavonols’ chemistry [...] Read more.
Flavonols, representing a subclass of flavonoids, are an important group of polyphenols. Their activity is associated with a number of beneficial properties, including hepatoprotective, senolytic, neuroprotective, and anticancer properties. They are found abundantly in many fruits, vegetables, and plant products, but flavonols’ chemistry and structural properties result in their low bioavailability in vivo. In recent years, more and more studies have emerged that aim to increase the therapeutic potential of compounds belonging to this group, including by developing innovative nanoformulations. The present work focuses on the various steps, such as chemical analysis of the compounds, preformulation studies using drug delivery systems, preclinical studies, and finally clinical trials. Each of these elements is important not only for the innovation and efficacy of the therapy but most importantly for the patient’s health. There are also a limited number of studies assessing the population concentration of flavonols in the blood; therefore, this review presents an up-to-date survey of the most recent developments, using the most important compounds from the flavonol group. Full article
Show Figures

Figure 1

22 pages, 6702 KiB  
Article
Maintaining the Quality and Nutritional Integrity of Chilled Cordyceps sinensis: Comparative Effects and Mechanisms of Modified Atmosphere Packaging and UV-Based Interventions
by Tianzhuo Huang, Huanzhi Lv, Yubo Lin, Xin Xiong, Yuqing Tan, Hui Hong and Yongkang Luo
Foods 2025, 14(15), 2611; https://doi.org/10.3390/foods14152611 - 25 Jul 2025
Viewed by 168
Abstract
Cordyceps sinensis (C. sinensis) is widely recognized for its bioactive compounds and associated health benefits. However, due to its delicate nature, conventional chilled storage often results in the rapid degradation of valuable compounds, leading to loss of nutritional value and overall [...] Read more.
Cordyceps sinensis (C. sinensis) is widely recognized for its bioactive compounds and associated health benefits. However, due to its delicate nature, conventional chilled storage often results in the rapid degradation of valuable compounds, leading to loss of nutritional value and overall quality. This study integrated and evaluated comprehensive strategies: three gas-conditioning and two light-based preservation methods for maintaining both quality and nutritional integrity during 12-day chilled storage at 4 °C. The results revealed that vacuum packaging significantly inhibited weight loss (3.49%) compared to in the control group (10.77%) and preserved sensory quality (p < 0.05). UV-based interventions notably suppressed polyphenol oxidase and tyrosinase activities by 36.4% and 29.7%, respectively (p < 0.05). Modified atmosphere packaging (MAP) with 80% N2 and 20% CO2 (MAP-N2CO2) maintained higher levels of cordycepin (1.77 µg/g) and preserved energy charge above 0.7 throughout storage. The results suggest that MAP-based treatments are superior methods for the chilled storage of C. sinensis, with diverse advantages and their corresponding shelf lives associated with different gas compositions. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

21 pages, 2411 KiB  
Systematic Review
Response of Akkermansia muciniphila to Bioactive Compounds: Effects on Its Abundance and Activity
by Jair Alejandro Temis-Cortina, Harold Alexis Prada-Ramírez, Hulme Ríos-Guerra, Judith Espinosa-Raya and Raquel Gómez-Pliego
Fermentation 2025, 11(8), 427; https://doi.org/10.3390/fermentation11080427 - 24 Jul 2025
Viewed by 286
Abstract
Introduction: The gut microbiota is vital for human health, and its modulation through dietary and pharmaceutical compounds has gained increasing attention. Among gut microbes, Akkermansia muciniphila has been extensively researched due to its role in maintaining intestinal barrier integrity, regulating energy metabolism, and [...] Read more.
Introduction: The gut microbiota is vital for human health, and its modulation through dietary and pharmaceutical compounds has gained increasing attention. Among gut microbes, Akkermansia muciniphila has been extensively researched due to its role in maintaining intestinal barrier integrity, regulating energy metabolism, and influencing inflammatory responses. Subject: To analyze and synthesize the available scientific evidence on the influence of various bioactive compounds, including prebiotics, polyphenols, antioxidants, and pharmaceutical agents, on the abundance and activity of A. muciniphila, considering underlying mechanisms, microbial context, and its therapeutic potential for improving metabolic and intestinal health. Methods: A systematic literature review was conducted in accordance with the PRISMA 2020 guidelines. Databases such as PubMed, ScienceDirect, Scopus, Web of Science, SciFinder-n, and Google Scholar were searched for publications from 2004 to 2025. Experimental studies in animal models or humans that evaluated the impact of bioactive compounds on the abundance or activity of A. muciniphila were prioritized. The selection process was managed using the Covidence platform. Results: A total of 78 studies were included in the qualitative synthesis. This review compiles and analyzes experimental evidence on the interaction between A. muciniphila and various bioactive compounds, including prebiotics, antioxidants, flavonoids, and selected pharmaceutical agents. Factors such as the chemical structure of the compounds, microbial environment, underlying mechanisms, production of short-chain fatty acids (SCFAs), and mucin interactions were considered. Compounds such as resistant starch type 2, GOS, 2′-fucosyllactose, quercetin, resveratrol, metformin, and dapagliflozin showed beneficial effects on A. muciniphila through direct or indirect pathways. Discussion: Variability across studies reflects the influence of multiple variables, including compound type, dose, intervention duration, experimental models, and analytical methods. These differences emphasize the need for a contextualized approach when designing microbiota-based interventions. Conclusions: A. muciniphila emerges as a promising therapeutic target for managing metabolic and inflammatory diseases. Further mechanistic and clinical studies are necessary to validate its role and to support the development of personalized microbiota-based treatment interventions. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

27 pages, 1179 KiB  
Article
Properties of Plant Extracts from Adriatic Maritime Zone for Innovative Food and Packaging Applications: Insights into Bioactive Profiles, Protective Effects, Antioxidant Potentials and Antimicrobial Activity
by Petra Babić, Tea Sokač Cvetnić, Iva Čanak, Mia Dujmović, Mojca Čakić Semenčić, Filip Šupljika, Zoja Vranješ, Frédéric Debeaufort, Nasreddine Benbettaieb, Emilie Descours and Mia Kurek
Antioxidants 2025, 14(8), 906; https://doi.org/10.3390/antiox14080906 - 24 Jul 2025
Viewed by 153
Abstract
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum [...] Read more.
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum, Rosmarinus officinalis, Olea europea, Phylliera latifolia and Mellisa officinalis were collected, and a total of 12 extracts were prepared. Extractions were performed under microwave-assisted conditions, with two solvent types: water (W) and a hydroalcoholic (ethanolic) solution (HA). Detailed extract analysis was conducted. Phenolics were analyzed by detecting individual bioactive compounds using high-performance liquid chromatography and by calculating total phenolic and total flavonoid content through spectrophotometric analysis. Higher concentrations of total phenolics and total flavonoids were obtained in the hydroalcoholic extracts, with the significantly highest total phenolic and flavonoid values in the rosemary hydroalcoholic extract (3321.21 mgGAE/L) and sea fennel flower extract (1794.63 mgQE/L), respectively; and the lowest phenolics in the water extract of olive leaves (204.55 mgGAE/L) and flavonoids in the water extracts of sea fennel leaves, rosemary, olive and mock privet (around 100 mgQE/L). Volatile organic compounds (VOC) were detected using HS-SPME/GC–MS (Headspace Solid-Phase Microextraction coupled with Gas Chromatography-Mass Spectrometry), and antioxidant capacity was estimated using DPPH (2,2-diphenyl-1-picrylhydrazyl assay) and FRAP (Ferric Reducing Antioxidant Power) methods. HS-SPME/GC–MS analysis of samples revealed that sea fennel had more versatile profile, with the presence of 66 and 36 VOCs in W and HA sea fennel leaf extracts, 52 and 25 in W and HA sea fennel flower extracts, 57 in rosemary W and 40 in HA, 20 in olive leaf W and 9 in HA, 27 in W mock privet and 11 in HA, and 35 in lemon balm W and 10 in HA extract. The lowest values of chlorophyll a were observed in sea fennel leaves (2.52 mg/L) and rosemary (2.21 mg/L), and chlorophyll b was lowest in sea fennel leaf and flower (2.47 and 2.25 mg/L, respectively), while the highest was determined in olive (6.62 mg/L). Highest values for antioxidant activity, determined via the FRAP method, were obtained in the HA plant extracts (up to 11,216 mgAAE/L for lemon balm), excluding the sea fennel leaf (2758 mgAAE/L) and rosemary (2616 mgAAE/L). Considering the application of these plants for fresh fish preservation, antimicrobial activity of water extracts was assessed against Vibrio fischeri JCM 18803, Vibrio alginolyticus 3050, Aeromonas hydrophila JCM 1027, Moraxella lacunata JCM 20914 and Yersinia ruckeri JCM 15110. No activity was observed against Y. ruckeri and P. aeruginosa, while the sea fennel leaf showed inhibition against V. fisheri (inhibition zone of 24 mm); sea fennel flower was active against M. lacunata (inhibition zone of 14.5 mm) and A. hydrophila (inhibition zone of 20 mm); and rosemary and lemon balm showed inhibition only against V. fisheri (inhibition zone from 18 to 30 mm). This study supports the preparation of natural extracts from Mediterranean plants using green technology, resulting in extracts rich in polyphenolics with strong antioxidant potential, but with no clear significant antimicrobial efficiency at the tested concentrations. Full article
Show Figures

Figure 1

Back to TopTop