Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,333)

Search Parameters:
Keywords = polyphenol metabolites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3977 KiB  
Article
Exploring the Cytokinin Profile of Doliocarpus dentatus (Aubl.) Standl. From Guyana and Its Relationship with Secondary Metabolites: Insights into Potential Therapeutic Benefits
by Ewart A. Smith, Ainsely Lewis, Erin N. Morrison, Kimberly Molina-Bean, Suresh S. Narine and R. J. Neil Emery
Metabolites 2025, 15(8), 533; https://doi.org/10.3390/metabo15080533 (registering DOI) - 6 Aug 2025
Abstract
Background/Objectives: Possessing red and white ecotypes, and utilized in traditional Guyanese medicine, Doliocarpus dentatus’ red ecotype is preferred locally for its purported superior therapeutic efficacy. Although therapeutic metabolites were detected in D. dentatus previously, phytohormones remain largely unexplored, until now. Cytokinins, [...] Read more.
Background/Objectives: Possessing red and white ecotypes, and utilized in traditional Guyanese medicine, Doliocarpus dentatus’ red ecotype is preferred locally for its purported superior therapeutic efficacy. Although therapeutic metabolites were detected in D. dentatus previously, phytohormones remain largely unexplored, until now. Cytokinins, phytohormones responsible for plant cell division, growth and differentiation, are gaining traction for their therapeutic potential in human health. This study screened and quantified endogenous cytokinins and correlated detected cytokinins with selected secondary metabolites. Methods: Liquid chromatography–mass spectrometry was used to acquire phytohormone and metabolite data. Bioinformatics tools were used to assess untargeted metabolomics datasets via statistical and pathway analyses, and chemical groupings of putative metabolites. Results: In total, 20 of the 35 phytohormones were detected and quantified in both ecotypes, with the red ecotype displaying higher free base and glucoside cytokinin concentrations and exhibited 6.2 times the total CK content when compared to the white ecotype. Pathway analysis revealed flavonoid and monoterpenoid biosynthesis in red and white ecotypes, respectively. Positive correlations between specific cytokinins and alkaloids, and between trans-Zeatin and isopentenyladenosine riboside with phenolic compounds were observed. Conclusions: These results suggest that the red ecotype’s elevated cytokinin levels coupled with flavonoid biosynthesis enrichment support its preference in Guyanese traditional medicine. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

24 pages, 4193 KiB  
Article
Evaluation of Bioactive Compounds, Antioxidant Activity, and Anticancer Potential of Wild Ganoderma lucidum Extracts from High-Altitude Regions of Nepal
by Ishor Thapa, Ashmita Pandey, Sunil Tiwari and Suvash Chandra Awal
Curr. Issues Mol. Biol. 2025, 47(8), 624; https://doi.org/10.3390/cimb47080624 - 5 Aug 2025
Abstract
Wild Ganoderma lucidum from Nepal’s high-altitude regions was studied to identify key bioactive compounds and assess the influence of solvent type—water, ethanol, methanol, and acetone—on extraction efficiency and biological activity. Extracts were evaluated for antioxidant potential, cytotoxicity against HeLa cells, and phytochemical composition [...] Read more.
Wild Ganoderma lucidum from Nepal’s high-altitude regions was studied to identify key bioactive compounds and assess the influence of solvent type—water, ethanol, methanol, and acetone—on extraction efficiency and biological activity. Extracts were evaluated for antioxidant potential, cytotoxicity against HeLa cells, and phytochemical composition via gas chromatography–mass spectrometry (GC-MS). Solvent type significantly affected both yield and bioactivity. Acetone yielded the highest crude extract (5.01%), while ethanol extract exhibited the highest total phenolic (376.5 ± 9.3 mg PG/g) and flavonoid content (30.3 ± 0.5 mg QE/g). Methanol extract was richest in lycopene (0.07 ± 0.00 mg/g) and β-carotene (0.45 ± 0.02 mg/g). Ethanol extract demonstrated consistently strong DPPH, superoxide, hydroxyl, and nitric oxide radical scavenging activity, along with high reducing power. All extracts showed dose-dependent cytotoxicity against HeLa cells, with ethanol and water extracts showing the greatest inhibition (>65% at 1000 µg/mL). GC-MS profiling identified solvent-specific bioactive compounds including sterols, terpenoids, polyphenols, and fatty acids. Notably, pharmacologically relevant compounds such as hinokione, ferruginol, ergosterol, and geranylgeraniol were detected. These findings demonstrate the therapeutic potential of G. lucidum, underscore the importance of solvent selection, and suggest that high-altitude ecological conditions may influence its bioactive metabolite profile. Full article
Show Figures

Graphical abstract

19 pages, 895 KiB  
Article
A Phytochemical and Biological Characterization of Cynara cardunculus L. subsp. scolymus Cultivar “Carciofo di Procida”, a Traditional Italian Agri-Food Product (PAT) of the Campania Region
by Giuseppina Tommonaro, Giulia De Simone, Carmine Iodice, Marco Allarà and Adele Cutignano
Molecules 2025, 30(15), 3285; https://doi.org/10.3390/molecules30153285 - 5 Aug 2025
Abstract
The artichoke (Cynara cardunculus L. subsp. scolymus) is an endemic perennial plant of the Mediterranean area commonly consumed as food. It is known since ancient times for its beneficial properties for human health, among which its antioxidant activity due to polyphenolics [...] Read more.
The artichoke (Cynara cardunculus L. subsp. scolymus) is an endemic perennial plant of the Mediterranean area commonly consumed as food. It is known since ancient times for its beneficial properties for human health, among which its antioxidant activity due to polyphenolics stands out. In the frame of our ongoing studies aiming to highlight the biodiversity and the chemodiversity of natural resources, we investigated the phenolic and saponin content of the cultivar “Carciofo di Procida” collected at Procida, an island of the Gulf of Naples (Italy). Along with the edible part of the immature flower, we included in our analyses the stem and the external bracts, generally discarded for food consuming or industrial preparations. The LCMS quali-quantitative profiling of polyphenols (including anthocyanins) and cynarasaponins of this cultivar is reported for the first time. In addition to antioxidant properties, we observed a significant cytotoxic activity due to extracts from external bracts against human neuroblastoma SH-SY5Y cell lines with 43% of cell viability, after 24 h from the treatment (50 μg/mL), and less potent but appreciable effects also against human colorectal adenocarcinoma CaCo-2 cells. This suggests that the different metabolite composition may be responsible for the bioactivity of extracts obtained from specific parts of artichoke and foresees a possible exploitation of the discarded material as a source of beneficial compounds. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—3rd Edition)
Show Figures

Figure 1

20 pages, 4580 KiB  
Article
Increased Oxygen Treatment in the Fermentation Process Improves the Taste and Liquor Color Qualities of Black Tea
by Xinfeng Jiang, Xin Lei, Chen Li, Lixian Wang, Xiaoling Wang and Heyuan Jiang
Foods 2025, 14(15), 2736; https://doi.org/10.3390/foods14152736 - 5 Aug 2025
Abstract
Black tea is widely consumed worldwide, and its characteristic taste and color result from fermentation, where polyphenols are enzymatically oxidized to generate major pigments, including theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). This study investigated the effects of increased oxygen treatment during fermentation [...] Read more.
Black tea is widely consumed worldwide, and its characteristic taste and color result from fermentation, where polyphenols are enzymatically oxidized to generate major pigments, including theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). This study investigated the effects of increased oxygen treatment during fermentation on the flavor attributes and chemical properties of Congou black tea. Fresh tea leaves (variety “Fuyun 6”) were subjected to four oxygen treatments: 0 h (CK), 1 h (TY-1h), 2 h (TY-2h), and 3 h (TY-3h), with oxygen supplied at 8.0 L/min. Sensory evaluation revealed that oxygen-treated samples exhibited tighter and deeper-colored leaves, a redder liquor, fuller taste, and a sweeter fragrance compared with CK. Chromatic analysis showed significant increases in redness (a*) and luminance (L*), alongside reduced yellowness (b*), indicating enhanced liquor color. Chemical analyses demonstrated elevated levels of TFs, TRs, and TBs in oxygen treatments, with TRs showing the most pronounced increase. Non-targeted metabolomics identified 2318 non-volatile and 761 volatile metabolites, highlighting upregulated flavonoids, phenolic acids, and lipids, and downregulated catechins and tannins, which collectively contributed to improved taste and aroma. Optimal results were achieved with 2–3 h of oxygen treatment, balancing pigment formation and sensory quality. These findings can provide a scientific basis for optimizing oxygen conditions in black tea fermentation to improve product quality. Full article
(This article belongs to the Collection Advances in Tea Chemistry)
Show Figures

Figure 1

16 pages, 3038 KiB  
Article
Comparative Effects of Maturity and Processing on Chemical Composition and Bioactivities in Toona sinensis Leaves
by Guohuo Wu, Zhaoyun Chen, Yan Tang, Shuolei Xu, Wenli Fan, Li Wu, Yuntao Ji and Changqing Qu
Foods 2025, 14(15), 2717; https://doi.org/10.3390/foods14152717 - 2 Aug 2025
Viewed by 253
Abstract
Toona sinensis (“Heiyouchun”) is a traditional Chinese woody vegetable, the leaves of which can also be processed into tea, known for its distinctive flavor and diverse bioactivities. However, the effects of leaf maturity and processing methods on its phytochemical composition and functional properties [...] Read more.
Toona sinensis (“Heiyouchun”) is a traditional Chinese woody vegetable, the leaves of which can also be processed into tea, known for its distinctive flavor and diverse bioactivities. However, the effects of leaf maturity and processing methods on its phytochemical composition and functional properties remain unclear. In this study, metabolomic analysis revealed 35 significantly different metabolites between tender and mature leaves, with higher concentrations of flavonoids, flavonoid glycosides, limonoids, and amino acids in tender leaves. Additionally, comparative analysis revealed that black tea fermentation preserves bioactive compounds more effectively than hot-air drying, particularly in tender leaves. In vitro activity assays showed that toon leaf tea extracts exhibited significant antioxidant and hypoglycemic effects, with black tea fermented tender leaves displaying the most potent bioactivity. Correlation analysis further confirmed a strong positive relationship between flavonoid/polyphenol content and bioactivity. These findings provide a theoretical foundation for optimizing processing techniques to enhance the functional properties of toon leaf tea. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

14 pages, 1470 KiB  
Article
Coffea arabica Extracts and Metabolites with Potential Inhibitory Activity of the Major Enzymes in Bothrops asper Venom
by Erika Páez, Yeisson Galvis-Pérez, Jaime Andrés Pereañez, Lina María Preciado and Isabel Cristina Henao-Castañeda
Pharmaceuticals 2025, 18(8), 1151; https://doi.org/10.3390/ph18081151 - 1 Aug 2025
Viewed by 143
Abstract
Background/Objectives: Most snakebite incidents in Latin America are caused by species of the Bothrops genus. Their venom induces severe local effects, against which antivenom therapy has limited efficacy. Metabolites derived from Coffea arabica have demonstrated anti-inflammatory and anticoagulant properties, suggesting their potential [...] Read more.
Background/Objectives: Most snakebite incidents in Latin America are caused by species of the Bothrops genus. Their venom induces severe local effects, against which antivenom therapy has limited efficacy. Metabolites derived from Coffea arabica have demonstrated anti-inflammatory and anticoagulant properties, suggesting their potential as therapeutic agents to inhibit the local effects induced by B. asper venom. Methods: Three enzymatic assays were performed: inhibition of the procoagulant and amidolytic activities of snake venom serine proteinases (SVSPs); inhibition of the proteolytic activity of snake venom metalloproteinases (SVMPs); and inhibition of the catalytic activity of snake venom phospholipases A2 (PLA2s). Additionally, molecular docking studies were conducted to propose potential inhibitory mechanisms of the metabolites chlorogenic acid, caffeine, and caffeic acid. Results: Green and roasted coffee extracts partially inhibited the enzymatic activity of SVSPs and SVMPs. Notably, the green coffee extract, at a 1:20 ratio, effectively inhibited PLA2 activity. Among the individual metabolites tested, partial inhibition of SVSP and PLA2 activities was observed, whereas no significant inhibition of SVMP proteolytic activity was detected. Chlorogenic acid was the most effective metabolite, significantly prolonging plasma coagulation time and achieving up to 82% inhibition at a concentration of 62.5 μM. Molecular docking analysis revealed interactions between chlorogenic acid and key active site residues of SVSP and PLA2 enzymes from B. asper venom. Conclusions: The roasted coffee extract demonstrated the highest inhibitory effect on venom toxins, potentially due to the formation of bioactive compounds during the Maillard reaction. Molecular modeling suggests that the tested inhibitors may bind to and occupy the substrate-binding clefts of the target enzymes. These findings support further in vivo research to explore the use of plant-derived polyphenols as adjuvant therapies in the treatment of snakebite envenoming. Full article
Show Figures

Graphical abstract

24 pages, 3523 KiB  
Article
Mechanistic Elucidation and Establishment of Drying Kinetic Models of Differential Metabolite Regulation in Rheum palmatum During Natural Sun Drying: An Integrated Physiology, Untargeted Metabolomics, and Enzymology Study
by Wen Luo, Jinrong Guo, Jia Zhou, Mingjun Yang and Yonggang Wang
Biology 2025, 14(8), 963; https://doi.org/10.3390/biology14080963 (registering DOI) - 1 Aug 2025
Viewed by 192
Abstract
Rhubarb, a medicinal herb in Gansu Province, China, undergoes significant quality changes during sun-drying. This study investigated color changes, drying kinetics, anthraquinone (AQ) content, metabolic profiles, and enzyme activity during the process. Results showed that drying induced enzymatic browning, with the browning index [...] Read more.
Rhubarb, a medicinal herb in Gansu Province, China, undergoes significant quality changes during sun-drying. This study investigated color changes, drying kinetics, anthraquinone (AQ) content, metabolic profiles, and enzyme activity during the process. Results showed that drying induced enzymatic browning, with the browning index (BI) progressively increasing over extended drying periods (4–16 h) and with greater slice thickness (2–8 mm). Catalase (CAT) activity first decreased and then increased, while polyphenol oxidase (PPO) activity decreased throughout drying. Slice thickness significantly affected AQ content, with the highest in 2 mm slices and the lowest in 4 mm slices. The drying process followed a logarithmic model (R2 = 0.99418, RMSE = 0.02310, and χ2 = 0.0005). Metabolomics analysis identified 631 differential metabolites, with 8 key metabolites linked to flavonoid biosynthesis, phenylalanine biosynthesis, and tyrosine metabolism. Fifteen enzymes were involved in metabolite synthesis and decomposition, though some enzyme activity trends contradicted metabolite changes. This study provides insight into rhubarb drying mechanisms and a basis for optimizing the drying process. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

19 pages, 8805 KiB  
Article
Effects of Inactive Yeast Biostimulants on Mechanical and Color Attributes of Wine Grape Cultivars
by Giovanni Gentilesco, Vittorio Alba, Giovanna Forte, Rosa Anna Milella, Giuseppe Roselli and Mauro Eugenio Maria D’Arcangelo
Sustainability 2025, 17(15), 6958; https://doi.org/10.3390/su17156958 - 31 Jul 2025
Viewed by 149
Abstract
Background: Biostimulants naturally improve plant growth, stress tolerance, and nutrient use efficiency and activate defenses by increasing protective metabolites (phenols, anthocyanins) in grapes. In viticulture, especially when using inactive yeasts, they modulate genetic expression and improve the skin resistance, color, and aroma profile [...] Read more.
Background: Biostimulants naturally improve plant growth, stress tolerance, and nutrient use efficiency and activate defenses by increasing protective metabolites (phenols, anthocyanins) in grapes. In viticulture, especially when using inactive yeasts, they modulate genetic expression and improve the skin resistance, color, and aroma profile of wine grapes in line with sustainable practices. Methods: Two wine grape cultivars, Merlot and Cabernet Sauvignon, were sprayed with the inactive yeast Saccharomyces cerevisiae in a single treatment in pre-veraison or in a double treatment in pre-veraison and veraison. Berry weight, must, total polyphenols, anthocyanins, and mechanical and colorimetric properties were measured on fresh grapes. Results: Two-way ANOVA revealed that titratable acidity (TA), pH, and total polyphenol content (TPC) were not affected, while mean berry weight and anthocyanin content varied by cultivar, treatment, and interaction; total soluble solids (TSS) differed only by cultivar. Inactive yeasts reduced weight in the single-treatment thesis but stabilized it in the double-treatment one; anthocyanins decreased in Cabernet Sauvignon but increased in Merlot. Mechanical and colorimetric analyses showed cultivar-dependent responses, with significant improvements in elasticity, skin thickness, and hue of berries, especially in Merlot when the treatment was applied twice. Conclusions: Inactive yeasts (IYs) showed an effect on the weight of the berries, the anthocyanins, the mechanics, and the color; Merlot significantly improved skin thickness, elasticity, and hue; and Cabernet remained less reactive to treatments. Full article
Show Figures

Graphical abstract

14 pages, 1769 KiB  
Article
The Effect of Colors and Light Intensity on the Growth and Biochemical Compounds of the Chlorophyceae Nephroselmis sp.
by Ichrak Sekri, Wassim Guermazi, Mohamad El-khateeb, George N. Hotos and Habib Ayadi
J. Mar. Sci. Eng. 2025, 13(8), 1452; https://doi.org/10.3390/jmse13081452 - 29 Jul 2025
Viewed by 277
Abstract
Light intensity and spectral quality play crucial roles in microalgal growth and biochemical biosynthesis. This study investigates the effects of different light intensities (3000, 8000 and 15,000 lux) and colors (red, white, yellow and green) on the growth and metabolites of Nephroselmis sp. [...] Read more.
Light intensity and spectral quality play crucial roles in microalgal growth and biochemical biosynthesis. This study investigates the effects of different light intensities (3000, 8000 and 15,000 lux) and colors (red, white, yellow and green) on the growth and metabolites of Nephroselmis sp. Moderate intensity (8000 lux) of white light is sufficient to produce this microalga. The colors of light strongly affect the parameters of the growth of Nephroselmis under each light intensity (p < 0.05). The yellow and green light supported the highest growth rates for the three intensities. Blue and green light at 15,000 Lux stimulates high levels of chl-a corresponding to antenna size 2.80 and 2.46. Nephroselmis illuminated with red light synthesizes carotenoids reaching 13 µg mL−1 at 15,000 lux. This latter for each color stops the proliferation of Nephroselmis, and cells shift their metabolism towards the accumulation of protein. Nephroselmis accumulates more protein, followed by carbohydrates, lipids and polyphenols. Nephroselmis exhibited the highest protein (64% D.W) content when cultured under white light, and the green at 15,000 lux enhanced their production. Nephroselmis is rich in carbohydrates, which accounted for more than 20% D.W under all combinations of light intensities and colors. The accumulation of polyphenols and carotenoids under high-intensity red and white light may reflect an oxidative stress response, suggesting their role as protective antioxidants. The capacity of Nephroselmis sp. to thrive and synthesize valuable metabolites under variable light regimes underscores its potential as a robust candidate for the production of various molecules. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

26 pages, 1614 KiB  
Review
The Role of LC-MS in Profiling Bioactive Compounds from Plant Waste for Cosmetic Applications: A General Overview
by Gilda D’Urso, Alessandra Capuano, Francesca Fantasma, Maria Giovanna Chini, Vincenzo De Felice, Gabriella Saviano, Gianluigi Lauro, Agostino Casapullo, Giuseppe Bifulco and Maria Iorizzi
Plants 2025, 14(15), 2284; https://doi.org/10.3390/plants14152284 - 24 Jul 2025
Viewed by 294
Abstract
The agro-industrial sector produces large amounts of by-products that have a high environmental impact, so it has become essential to recover food waste at all levels. This is because it often contains bioactive molecules that can be a valuable source of new products [...] Read more.
The agro-industrial sector produces large amounts of by-products that have a high environmental impact, so it has become essential to recover food waste at all levels. This is because it often contains bioactive molecules that can be a valuable source of new products such as animal feed, biopolymers, or products for human use, (e.g., cosmetics and nutraceuticals) due to its antioxidant, antimicrobial, and anti-inflammatory properties. Advanced analytical methodologies such as liquid chromatography coupled to mass spectrometry (LC-MS) are crucial for the characterisation of bioactive chemicals in these waste materials. LC-MS enables both targeted and untargeted metabolomic approaches, facilitating the identification and quantification of a wide range of secondary metabolites, including polyphenols, flavonoids, alkaloids, and terpenoids. The choice of extraction methodology is essential for the precise identification and quantification of these metabolites. This study provides an overview of LC-MS as an effective tool for analysing complex extracts derived from plant waste, discussing both methodological aspects and typical bioactive metabolites identified, and offering examples of their potential applications in cosmeceutics. Full article
(This article belongs to the Special Issue Plant-Based Foods and By-Products)
Show Figures

Figure 1

31 pages, 2338 KiB  
Review
ROS Regulation and Antioxidant Responses in Plants Under Air Pollution: Molecular Signaling, Metabolic Adaptation, and Biotechnological Solutions
by Muhammad Junaid Rao, Mingzheng Duan, Muhammad Ikram and Bingsong Zheng
Antioxidants 2025, 14(8), 907; https://doi.org/10.3390/antiox14080907 - 24 Jul 2025
Cited by 1 | Viewed by 560
Abstract
Air pollution acts as a pervasive oxidative stressor, disrupting global crop production and ecosystem health through the overproduction of reactive oxygen species (ROS). Hazardous pollutants impair critical physiological processes—photosynthesis, respiration, and nutrient uptake—triggering oxidative damage and yield losses. This review synthesizes current knowledge [...] Read more.
Air pollution acts as a pervasive oxidative stressor, disrupting global crop production and ecosystem health through the overproduction of reactive oxygen species (ROS). Hazardous pollutants impair critical physiological processes—photosynthesis, respiration, and nutrient uptake—triggering oxidative damage and yield losses. This review synthesizes current knowledge on plant defense mechanisms, emphasizing the integration of enzymatic (SOD, POD, CAT, APX, GPX, GR) and non-enzymatic (polyphenols, glutathione, ascorbate, phytochelatins) antioxidant systems to scavenge ROS and maintain redox homeostasis. We highlight the pivotal roles of transcription factors (MYB, WRKY, NAC) in orchestrating stress-responsive gene networks, alongside MAPK and phytohormone signaling (salicylic acid, jasmonic acid, ethylene), in mitigating oxidative stress. Secondary metabolites (flavonoids, lignin, terpenoids) are examined as biochemical shields against ROS and pollutant toxicity, with evidence from transcriptomic and metabolomic studies revealing their biosynthetic regulation. Furthermore, we explore biotechnological strategies to enhance antioxidant capacity, including overexpression of ROS-scavenging genes (e.g., TaCAT3) and engineering of phenolic pathways. By addressing gaps in understanding combined stress responses, this review provides a roadmap for developing resilient crops through antioxidant-focused interventions, ensuring sustainability in polluted environments. Full article
Show Figures

Figure 1

27 pages, 1179 KiB  
Article
Properties of Plant Extracts from Adriatic Maritime Zone for Innovative Food and Packaging Applications: Insights into Bioactive Profiles, Protective Effects, Antioxidant Potentials and Antimicrobial Activity
by Petra Babić, Tea Sokač Cvetnić, Iva Čanak, Mia Dujmović, Mojca Čakić Semenčić, Filip Šupljika, Zoja Vranješ, Frédéric Debeaufort, Nasreddine Benbettaieb, Emilie Descours and Mia Kurek
Antioxidants 2025, 14(8), 906; https://doi.org/10.3390/antiox14080906 - 24 Jul 2025
Viewed by 297
Abstract
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum [...] Read more.
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum, Rosmarinus officinalis, Olea europea, Phylliera latifolia and Mellisa officinalis were collected, and a total of 12 extracts were prepared. Extractions were performed under microwave-assisted conditions, with two solvent types: water (W) and a hydroalcoholic (ethanolic) solution (HA). Detailed extract analysis was conducted. Phenolics were analyzed by detecting individual bioactive compounds using high-performance liquid chromatography and by calculating total phenolic and total flavonoid content through spectrophotometric analysis. Higher concentrations of total phenolics and total flavonoids were obtained in the hydroalcoholic extracts, with the significantly highest total phenolic and flavonoid values in the rosemary hydroalcoholic extract (3321.21 mgGAE/L) and sea fennel flower extract (1794.63 mgQE/L), respectively; and the lowest phenolics in the water extract of olive leaves (204.55 mgGAE/L) and flavonoids in the water extracts of sea fennel leaves, rosemary, olive and mock privet (around 100 mgQE/L). Volatile organic compounds (VOC) were detected using HS-SPME/GC–MS (Headspace Solid-Phase Microextraction coupled with Gas Chromatography-Mass Spectrometry), and antioxidant capacity was estimated using DPPH (2,2-diphenyl-1-picrylhydrazyl assay) and FRAP (Ferric Reducing Antioxidant Power) methods. HS-SPME/GC–MS analysis of samples revealed that sea fennel had more versatile profile, with the presence of 66 and 36 VOCs in W and HA sea fennel leaf extracts, 52 and 25 in W and HA sea fennel flower extracts, 57 in rosemary W and 40 in HA, 20 in olive leaf W and 9 in HA, 27 in W mock privet and 11 in HA, and 35 in lemon balm W and 10 in HA extract. The lowest values of chlorophyll a were observed in sea fennel leaves (2.52 mg/L) and rosemary (2.21 mg/L), and chlorophyll b was lowest in sea fennel leaf and flower (2.47 and 2.25 mg/L, respectively), while the highest was determined in olive (6.62 mg/L). Highest values for antioxidant activity, determined via the FRAP method, were obtained in the HA plant extracts (up to 11,216 mgAAE/L for lemon balm), excluding the sea fennel leaf (2758 mgAAE/L) and rosemary (2616 mgAAE/L). Considering the application of these plants for fresh fish preservation, antimicrobial activity of water extracts was assessed against Vibrio fischeri JCM 18803, Vibrio alginolyticus 3050, Aeromonas hydrophila JCM 1027, Moraxella lacunata JCM 20914 and Yersinia ruckeri JCM 15110. No activity was observed against Y. ruckeri and P. aeruginosa, while the sea fennel leaf showed inhibition against V. fisheri (inhibition zone of 24 mm); sea fennel flower was active against M. lacunata (inhibition zone of 14.5 mm) and A. hydrophila (inhibition zone of 20 mm); and rosemary and lemon balm showed inhibition only against V. fisheri (inhibition zone from 18 to 30 mm). This study supports the preparation of natural extracts from Mediterranean plants using green technology, resulting in extracts rich in polyphenolics with strong antioxidant potential, but with no clear significant antimicrobial efficiency at the tested concentrations. Full article
Show Figures

Figure 1

48 pages, 2454 KiB  
Review
How Can Plant-Derived Natural Products and Plant Biotechnology Help Against Emerging Viruses?
by Gergana Zahmanova, Katerina Takova, Valeria Tonova, Ivan Minkov, Momchil Barbolov, Neda Nedeva, Deyana Vankova, Diana Ivanova, Yoana Kiselova-Kaneva and Georgi L. Lukov
Int. J. Mol. Sci. 2025, 26(15), 7046; https://doi.org/10.3390/ijms26157046 - 22 Jul 2025
Viewed by 1631
Abstract
Infectious diseases have been treated using plants and their compounds for thousands of years. This knowledge has enabled modern techniques to identify specific antiviral remedies and to understand their molecular mechanism of action. Numerous active phytochemicals, such as alkaloids, terpenoids, polyphenols (phenolic acids, [...] Read more.
Infectious diseases have been treated using plants and their compounds for thousands of years. This knowledge has enabled modern techniques to identify specific antiviral remedies and to understand their molecular mechanism of action. Numerous active phytochemicals, such as alkaloids, terpenoids, polyphenols (phenolic acids, flavonoids, stilbenes, and lignans), coumarins, thiophenes, saponins, furyl compounds, small proteins, and peptides, are promising options for treating and preventing viral infections. It has been shown that plant-derived products can prevent or inhibit viral entry into and replication by host cells. Biotechnological advances have made it possible to engineer plants with an increased capacity for the production and accumulation of natural antiviral compounds. Plants can also be engineered to produce various types of antivirals (cytokines, antibodies, vaccines, and lectins). This study summarizes the current understanding of the antiviral activity of specific plant-derived metabolites, emphasizing their mechanisms of action and exploring the enormous potential of plants as biological factories. Full article
(This article belongs to the Special Issue Molecular Insights in Antivirals and Vaccines)
Show Figures

Figure 1

27 pages, 1726 KiB  
Article
Integrated Spectroscopic Analysis of Wild Beers: Molecular Composition and Antioxidant Properties
by Dessislava Gerginova, Plamena Staleva, Zhanina Petkova, Konstantina Priboyska, Plamen Chorbadzhiev, Ralitsa Chimshirova and Svetlana Simova
Int. J. Mol. Sci. 2025, 26(14), 6993; https://doi.org/10.3390/ijms26146993 - 21 Jul 2025
Viewed by 276
Abstract
Wild ales represent a diverse category of spontaneously fermented beers, influenced by complex microbial populations and variable ingredients. This study employed an integrated metabolomic profiling approach combining proton nuclear magnetic resonance (1H NMR) spectroscopy, liquid chromatography–mass spectrometry (LC-MS), and spectrophotometric assays [...] Read more.
Wild ales represent a diverse category of spontaneously fermented beers, influenced by complex microbial populations and variable ingredients. This study employed an integrated metabolomic profiling approach combining proton nuclear magnetic resonance (1H NMR) spectroscopy, liquid chromatography–mass spectrometry (LC-MS), and spectrophotometric assays (DPPH and FRAP) to characterize the molecular composition and antioxidant potential of 22 wild ales from six countries. A total of 53 compounds were identified and quantified using NMR, while 62 compounds were identified by using LC-MS. The compounds in question included organic acids, amino acids, sugars, alcohols, bitter acids, phenolic compounds, and others. Ingredient-based clustering revealed that the addition of dark fruits resulted in a significant increase in the polyphenolic content and antioxidant activity. Concurrently, herb-infused and light-fruit beers exhibited divergent phytochemical profiles. Prolonged aging (>18 months) has been demonstrated to be associated with increased levels of certain amino acids, fermentation-derived aldehydes, and phenolic degradation products. However, the influence of maturation duration on the antioxidant capacity was found to be less significant than that of the type of fruit. Country-specific metabolite trends were revealed, indicating the influence of regional brewing practices on beer composition. Correlation analysis was employed to identify the major contributors to antioxidant activity, with salicylic, dihydroxybenzoic, and 4-hydroxybenzoic acids being identified as the most significant. These findings underscore the biochemical intricacy of wild ales and exemplify metabolomics’ capacity to correlate compositional variation with functionality and authenticity in spontaneously fermented beverages. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

23 pages, 739 KiB  
Review
Dietary Nitrogen and Its Role in the Gut Microbiome and Inflammatory Bowel Disease: A Narrative Review
by Matthew Herrera and Lauri O. Byerley
Nutrients 2025, 17(14), 2373; https://doi.org/10.3390/nu17142373 - 20 Jul 2025
Cited by 1 | Viewed by 673
Abstract
In recent years, gut microbiota has emerged as a critical regulator of gastrointestinal health and disease, with its role in inflammatory bowel disease (IBD)—including Crohn’s disease and ulcerative colitis—being particularly significant. Among the many factors influencing the gut microbiota, dietary components such as [...] Read more.
In recent years, gut microbiota has emerged as a critical regulator of gastrointestinal health and disease, with its role in inflammatory bowel disease (IBD)—including Crohn’s disease and ulcerative colitis—being particularly significant. Among the many factors influencing the gut microbiota, dietary components such as fibers, fats, and polyphenols have received substantial attention. However, nitrogen-containing compounds, such as amino acids, nitrates, urea, and even nucleic acids, such as purines, remain underexplored despite their integral role in shaping microbial ecology, host metabolism, and immune responses. Some of these compounds are metabolized by gut bacteria into bioactive molecules such as short-chain fatty acids, ammonia, and nitric oxide, which exert diverse effects on mucosal integrity and inflammation. IBD pathophysiology is characterized by chronic inflammation, microbial dysbiosis, and compromised epithelial barriers. Nitrogen metabolism contributes significantly to these processes by influencing microbial composition, metabolite production, and host immune pathways. The breakdown of various nitrogen-containing compounds in the body leads to the production of byproducts, such as ammonia and hydrogen sulfide, which have been implicated in mucosal damage and immune dysregulation. At the same time, nitrogen-derived molecules, such as short-chain fatty acids and nitric oxide, exhibit protective effects, underscoring the dual role of dietary nitrogen in health and disease. This narrative review highlights the complex interactions between dietary nitrogen sources, gut microbiota, and IBD pathogenesis. We summarize the mechanisms by which nitrogen compounds influence microbial dynamics, identify their contributions to inflammation and barrier dysfunction, and explore their therapeutic potential. Multidisciplinary approaches integrating clinical, metabolomic, and microbiome research are essential to unravel the full scope of nitrogen’s role in gut health and identify novel therapeutic targets. Full article
(This article belongs to the Special Issue Diet–Microbiome Interaction in Gastrointestinal Disorders)
Show Figures

Figure 1

Back to TopTop