Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (201)

Search Parameters:
Keywords = polymeric epoxy resin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3814 KiB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 - 1 Aug 2025
Viewed by 224
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

21 pages, 3663 KiB  
Article
A Study on the Road Performance of the Self-Healing Microcapsule for Asphalt Pavement
by Pei Li, Rongyi Ji, Chenlong Zhang, Jinghan Xu, Mulian Zheng and Xinghan Song
Materials 2025, 18(15), 3483; https://doi.org/10.3390/ma18153483 - 25 Jul 2025
Viewed by 326
Abstract
Asphalt pavement cracking is an important factor affecting its service life. Under certain conditions, the self-healing behavior of asphalt itself can repair pavement cracks. However, the self-healing ability of asphalt itself is limited. In order to strengthen the self-healing ability of asphalt, the [...] Read more.
Asphalt pavement cracking is an important factor affecting its service life. Under certain conditions, the self-healing behavior of asphalt itself can repair pavement cracks. However, the self-healing ability of asphalt itself is limited. In order to strengthen the self-healing ability of asphalt, the microcapsule wrapped with a repair agent is pre-mixed into the asphalt mixture. When the crack occurs and spreads to the surface of the microcapsule, the microcapsule ruptures and the healing agent flows out to realize the self-healing of the crack. Current microcapsules are mostly prepared with healing agents and bio-oil as core materials, and their high-temperature resistance to rutting is poor. While the epoxy resin contains a three-membered cyclic ether, it can undergo ring-opening polymerization to bond and repair the asphalt matrix. In addition, research on microcapsules mainly focuses on the self-healing properties of microcapsule-modified asphalt. In fact, before adding microcapsules to asphalt to improve its self-healing performance, it is necessary to ensure that the asphalt has a good road performance. On this basis, the self-healing performance of asphalt is improved, thereby extending the service life of asphalt pavement. Therefore, two-component epoxy self-healing microcapsules (E-mic and G-mic) were first prepared in this paper. Then, a temperature scanning test, rheological test of bending beams, and linear amplitude scanning test were, respectively, conducted for the microcapsule/asphalt to evaluate its road performance, including the high-temperature performance, low-temperature crack resistance, and fatigue performance. Finally, the self-healing performance of microcapsules/asphalt was tested. The results showed that the self-developed epoxy self-healing microcapsules were well encapsulated and presented as spherical micron-sized particles. The average particle size of the E-mic was approximately 23.582 μm, while the average particle size of the G-mic was approximately 22.440 μm, exhibiting a good normal distribution. In addition, they can remain intact and unbroken under high-temperature conditions. The results of road performance tests indicated that the microcapsule/asphalt mixture exhibits an excellent high-temperature resistance to permanent deformation, low-temperature crack resistance, and fatigue resistance. The self-healing test demonstrated that the microcapsule/asphalt exhibited an excellent self-healing performance. When the microcapsule content was 4%, the self-healing rate reached its optimal level of 67.8%, which was 149.2% higher than that of the base asphalt. Full article
(This article belongs to the Special Issue Innovative Approaches in Asphalt Binder Modification and Performance)
Show Figures

Figure 1

22 pages, 735 KiB  
Review
A Review on the Aging Behavior of BADGE-Based Epoxy Resin
by Wei He, Xinshuo Jiang, Rong He, Yuchao Zheng, Dongli Dai, Liang Huang and Xianhua Yao
Buildings 2025, 15(14), 2450; https://doi.org/10.3390/buildings15142450 - 12 Jul 2025
Viewed by 400
Abstract
Epoxy adhesives derived from bisphenol A diglycidyl ether (BADGE) are widely utilized in segmental construction—particularly in precast concrete structures—and in building structural strengthening, owing to their outstanding adhesion properties and long-term durability. These materials constitute a significant class of polymeric adhesives in structural [...] Read more.
Epoxy adhesives derived from bisphenol A diglycidyl ether (BADGE) are widely utilized in segmental construction—particularly in precast concrete structures—and in building structural strengthening, owing to their outstanding adhesion properties and long-term durability. These materials constitute a significant class of polymeric adhesives in structural engineering applications. However, BADGE-based epoxy adhesives are susceptible to aging under service conditions, primarily due to environmental stressors such as thermal cycling, oxygen exposure, moisture ingress, ultraviolet radiation, and interaction with corrosive media. These aging processes lead to irreversible physicochemical changes, manifested as degradation of microstructure, mechanical properties, and dynamic mechanical properties to varying degrees, with performance deterioration becoming increasingly significant over time. Notably, for the mechanical properties of concern, the decline can exceed 40% in accelerated aging tests. A comprehensive understanding of the aging behavior of BADGE-based epoxy resin under realistic environmental conditions is essential for predicting long-term performance and ensuring structural safety. This paper provides a critical review of existing studies on the aging behavior of BADGE-based epoxy resins. This paper summarizes the findings of various aging tests involving different influencing factors, identifies the main degradation mechanisms, and evaluates current methods for predicting long-term durability (such as the Arrhenius method, Eyring model, etc.). Furthermore, this review provides recommendations for future research, including investigating multifactorial aging, conducting natural exposure tests, and establishing correlations between laboratory-based accelerated aging and field-exposed conditions. These recommendations aim to advance the understanding of long-term aging mechanisms and enhance the reliability of BADGE-based epoxy resins in structural applications. Full article
(This article belongs to the Special Issue Advanced Green and Intelligent Building Materials)
Show Figures

Figure 1

11 pages, 1841 KiB  
Article
Construction of Silane-Modified Diatomite-Magnetic Nanocomposite Superhydrophobic Coatings Using Multi-Scale Composite Principle
by Dan Li, Mei Wu, Rongjun Xia, Jiwen Hu and Fangzhi Huang
Coatings 2025, 15(7), 786; https://doi.org/10.3390/coatings15070786 - 3 Jul 2025
Viewed by 412
Abstract
To address the challenges of cotton cellulose materials being susceptible to environmental humidity and pollutant erosion, a strategy for constructing superhydrophobic functional coatings with biomimetic micro–nano composite structures was proposed. Through surface silanization modification, diatomite (DEM) and Fe3O4 nanoparticles were [...] Read more.
To address the challenges of cotton cellulose materials being susceptible to environmental humidity and pollutant erosion, a strategy for constructing superhydrophobic functional coatings with biomimetic micro–nano composite structures was proposed. Through surface silanization modification, diatomite (DEM) and Fe3O4 nanoparticles were functionalized with octyltriethoxysilane (OTS) to prepare superhydrophobic diatomite flakes (ODEM) and OFe3O4 nanoparticles. Following the multi-scale composite principle, ODEM and OFe3O4 nanoparticles were blended and crosslinked via the hydroxyl-initiated ring-opening polymerization of epoxy resin (EP), resulting in an EP/ODEM@OFe3O4 composite coating with hierarchical roughness. Microstructural characterization revealed that the micrometer-scale porous structure of ODEM and the nanoscale protrusions of OFe3O4 form a hierarchical micro–nano topography. The special topography combined with the low surface energy property leads to a contact angle of 158°. Additionally, the narrow bandgap semiconductor characteristic of OFe3O4 induces the localized surface plasmon resonance effect. This enables the coating to attain 80% light absorption across the 350–2500 nm spectrum, and rapidly heat to 45.8 °C within 60 s under 0.5 sun, thereby demonstrating excellent deicing performance. This work provides a theoretical foundation for developing environmentally tolerant superhydrophobic photothermal coatings, which exhibit significant application potential in the field of anti-icing and anti-fouling. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Graphical abstract

17 pages, 4816 KiB  
Article
The Effects of Fiber Concentration, Orientation, and Aspect Ratio on the Frontal Polymerization of Short Carbon-Fiber-Reinforced Composites: A Numerical Study
by Aurpon Tahsin Shams, Easir Arafat Papon and Anwarul Haque
J. Compos. Sci. 2025, 9(6), 307; https://doi.org/10.3390/jcs9060307 - 17 Jun 2025
Viewed by 895
Abstract
The cure kinetics in frontal polymerization (FP) of short carbon-fiber-reinforced composites are investigated numerically, focusing on the influence of fiber aspect ratio, volume fraction, and orientation. A classical heat conduction equation is used in FP, where the enthalpic reaction generates heat. The heat [...] Read more.
The cure kinetics in frontal polymerization (FP) of short carbon-fiber-reinforced composites are investigated numerically, focusing on the influence of fiber aspect ratio, volume fraction, and orientation. A classical heat conduction equation is used in FP, where the enthalpic reaction generates heat. The heat generation term is expressed in terms of the rate of degree of cure (dα/dt) in thermoset resin. A rate equation of the degree of cure for epoxy is established in terms of a pre-exponential factor, activation energy, Avogadro’s gas constant, and temperature. The cure kinetics parameters for epoxy resin used in this study are determined using the Ozawa method. The numerical model was validated with experimental data. The results reveal that the aspect ratio of fibers has a minimal effect on the polymerization time. The volume percentage of fibers significantly influences the curing time and temperature distribution, with higher fiber volume fractions leading to faster curing due to enhanced heat transfer. Additionally, fiber orientation plays a critical role in cure kinetics, with specific angles facilitating more effective heat transfer, thereby influencing the curing rate and frontal velocity. The results offer valuable insights into optimizing the design and manufacturing processes for high-performance epoxy-based composites through FP, where precise control over curing is critical. Full article
Show Figures

Figure 1

22 pages, 8920 KiB  
Article
Microscopic Mechanisms and Pavement Performance of Waterborne Epoxy Resin-Modified Emulsified Asphalt
by Fan Yang, Fang Yu, Hongren Gong, Liming Yang, Qian Zhou, Lihong He, Wanfeng Wei and Qiang Chen
Materials 2025, 18(12), 2825; https://doi.org/10.3390/ma18122825 - 16 Jun 2025
Viewed by 389
Abstract
To address the deficiencies of traditional emulsified asphalt-pavement maintenance material in cohesive strength, high-temperature rutting resistance, as well as adhesion to aggregates, this study developed waterborne epoxy resin-modified emulsified asphalt (WEA) binders using a two-component waterborne epoxy resin (WER) and systematically investigated their [...] Read more.
To address the deficiencies of traditional emulsified asphalt-pavement maintenance material in cohesive strength, high-temperature rutting resistance, as well as adhesion to aggregates, this study developed waterborne epoxy resin-modified emulsified asphalt (WEA) binders using a two-component waterborne epoxy resin (WER) and systematically investigated their modification mechanisms and pavement performance. The results indicated that WER emulsions and curing agents could polymerize to form epoxy resin within the emulsified asphalt dispersion medium, with the modification process dominated by physical interactions. When the WER content exceeded 12%, a continuous modifier network structure was established within the emulsified asphalt. The epoxy resin formed after curing could significantly increase the polarity component of the binder, thereby increasing the surface free energy. The linear viscoelastic range of the WEA binder exhibited a negative correlation with the dosage of the WER modifier. Notably, when the WER content exceeded 6%, the high-temperature stability (rutting resistance and elastic recovery performance) of the binder was significantly enhanced. Concurrently, stress sensitivity and frequency dependence gradually decrease, demonstrating superior thermomechanical stability. Furthermore, WER significantly enhanced the interfacial interaction and adhesion between the binder and aggregates. However, the incorporation of WER adversely affects the low-temperature cracking resistance of the binder, necessitating strict control over its dosage in practical applications. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

75 pages, 15988 KiB  
Review
Tailoring Polymer Properties Through Lignin Addition: A Recent Perspective on Lignin-Derived Polymer Modifications
by Nawoda L. Kapuge Dona and Rhett C. Smith
Molecules 2025, 30(11), 2455; https://doi.org/10.3390/molecules30112455 - 3 Jun 2025
Viewed by 902
Abstract
Lignin, an abundant and renewable biopolymer, has gained significant attention as a sustainable modifier and building block in polymeric materials. Recent advancements highlight its potential to tailor mechanical, thermal, and barrier properties of polymers while offering a greener alternative to petroleum-based additives. This [...] Read more.
Lignin, an abundant and renewable biopolymer, has gained significant attention as a sustainable modifier and building block in polymeric materials. Recent advancements highlight its potential to tailor mechanical, thermal, and barrier properties of polymers while offering a greener alternative to petroleum-based additives. This review provides an updated perspective on the incorporation of lignin into various polymer matrices, focusing on lignin modification techniques, structure–property relationships, and emerging applications. Special emphasis is given to recent innovations in lignin functionalization and its role in developing high-performance, biodegradable, and recyclable materials such as polyurethanes, epoxy resins, phenol-formaldehyde resins, lignin-modified composites, and lignin-based films, coatings, elastomers, and adhesives. These lignin-based materials are gaining attention for potential applications in construction, automated industries, packaging, textiles, wastewater treatment, footwear, supporting goods, automobiles, printing rollers, sealants, and binders. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Figure 1

24 pages, 14529 KiB  
Article
Comparison of the Performance of Basalt Fiber-Reinforced Composites Incorporating a Recyclable and a Conventional Epoxy Resin
by Farid Taheri, Shahriar Ahamed Chowdhury and Ahmad Ghiaskar
Polymers 2025, 17(10), 1348; https://doi.org/10.3390/polym17101348 - 15 May 2025
Viewed by 962
Abstract
The present study focuses on the mechanical performances of basalt fiber-reinforced composites based on the more environmentally friendly Recyclamine® resin (BR) and conventional and widely used room-cured epoxy systems (BE). Specifically, the study probes the tensile and compressive responses of the composites [...] Read more.
The present study focuses on the mechanical performances of basalt fiber-reinforced composites based on the more environmentally friendly Recyclamine® resin (BR) and conventional and widely used room-cured epoxy systems (BE). Specifically, the study probes the tensile and compressive responses of the composites fabricated by vacuum-assisted resin transfer molding. Experimental results revealed that the tensile strength of basalt–Recyclamine was higher than its counterpart (464 MPa compared to 390.9 MPa). At the same time, the BR performed only marginally better under compression, with a strength of 237.7 MPa compared to 233.9 MPa for BE. However, the BR demonstrated significantly enhanced ductility reflected by its greater compressive strain capacity (3.9% compared to only 1.1%). Different microscopic analyses unveiled distinct failure mechanisms, with more progressive failure patterns observed in BR compared with the brittle fracture characteristics of the BE composite. The performance of several micromechanical models was also investigated, with their results corroborating with the experimental results with varying degrees of accuracy. The statistical analysis showed great consistency in the results, with the CoV value below 10%. Experimental results indicated that the basalt–Recyclamine composites can be considered a promising sustainable alternative to traditional polymeric resin-based systems due to their balanced mechanical performance and environmental advantages. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Graphical abstract

24 pages, 8896 KiB  
Article
Morphological and Spectroscopic Characterization of Multifunctional Self-Healing Systems
by Liberata Guadagno, Elisa Calabrese, Raffaele Longo, Francesca Aliberti, Luigi Vertuccio, Michelina Catauro and Marialuigia Raimondo
Polymers 2025, 17(10), 1294; https://doi.org/10.3390/polym17101294 - 8 May 2025
Viewed by 581
Abstract
Multifunctional self-healing supramolecular structural toughened resins, formulated to counteract the insulating properties of epoxy polymers and integrating auto-repair mechanisms, are morphologically and spectroscopically characterized using Tunneling Atomic Force Microscopy (TUNA) and Fourier transform infrared spectroscopy (FT-IR), respectively. Specifically, the multifunctional resin comprises self-healing [...] Read more.
Multifunctional self-healing supramolecular structural toughened resins, formulated to counteract the insulating properties of epoxy polymers and integrating auto-repair mechanisms, are morphologically and spectroscopically characterized using Tunneling Atomic Force Microscopy (TUNA) and Fourier transform infrared spectroscopy (FT-IR), respectively. Specifically, the multifunctional resin comprises self-healing molecular fillers and electrically conductive carbon nanotubes (CNTs) embedded in the matrix. The selected self-healing molecules can form non-covalent bonds with the hydroxyl (OH) and carbonyl (C=O) groups of the toughened epoxy matrix through their H-bonding donor and acceptor sites. An FT-IR analysis has been conducted to evaluate the interactions that the barbiturate acid derivatives, serving as self-healing fillers, can form with the constituent parts of the toughened epoxy blend. Tunneling Atomic Force Microscopy (TUNA) highlights the morphological characteristics of CNTs, their dispersion within the polymeric matrix, and their affinity for the globular rubber domains. The TUNA technique maps the samples’ electrical conductivity at micro- and nanoscale spatial domains. Detecting electrical currents reveals supramolecular networks, determined by hydrogen bonds, within the samples, showcasing the morphological features of the sample containing an embedded conductive nanofiller in the hosting matrix. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 3732 KiB  
Article
Near-Infrared Light-Induced Deep Curing of Thiol–Epoxy Networks Based on Upconversion Photochemistry
by Pin Yang, Yaoxin Huang, Xiaoxuan Liu and Zhiquan Li
Coatings 2025, 15(4), 494; https://doi.org/10.3390/coatings15040494 - 21 Apr 2025
Viewed by 670
Abstract
Thiol–epoxy photopolymerization offers exceptional advantages for high-performance protective coatings, yet efficiently curing thick formulations remains a significant challenge due to the limited penetration depth of conventional UV light. Herein, we report a novel near-infrared (NIR) light-activated photopolymerization system for deep-curing applications, strategically integrating [...] Read more.
Thiol–epoxy photopolymerization offers exceptional advantages for high-performance protective coatings, yet efficiently curing thick formulations remains a significant challenge due to the limited penetration depth of conventional UV light. Herein, we report a novel near-infrared (NIR) light-activated photopolymerization system for deep-curing applications, strategically integrating upconversion nanoparticles (UCNPs) as NIR-to-UV converters, isopropylthioxanthone (ITX) as a photosensitizer, and a liquid N-phenylglycine-based photobase generator (NPG-TBD) with enhanced resin solubility. Upon 980 nm NIR irradiation, photogenerated TBD efficiently catalyzes thiol–epoxy polymerization through an anionic mechanism, enabling uniform network formation with epoxy and thiol functional group conversions greater than 90% throughout samples exceeding 2.5 cm in thickness. The resulting coatings exhibit excellent mechanical properties including 3H pencil hardness, strong adhesion (0 grade), and good flexibility (2 mm), significantly outperforming conventional UV systems limited to approximately 1.5 mm. Additionally, the cured materials demonstrate multifunctional characteristics including distinctive upconversion luminescence and dual-responsive shape memory behavior. This approach addresses critical limitations in deep-photocuring technology while offering significant potential for applications in protective coatings for marine infrastructure, chemical storage facilities, and smart materials requiring both substantial barrier properties and programmable responsiveness. Full article
Show Figures

Figure 1

25 pages, 8101 KiB  
Article
Frontal Polymerization of Epoxy Resins: Kinetic Modeling, Rate Regulation and Curing Process Simulation for Space Manufacturing Applications
by Haisheng Wu, Yizhuo Gu, Xinyu Liu and Chaobo Xin
Polymers 2025, 17(5), 680; https://doi.org/10.3390/polym17050680 - 4 Mar 2025
Viewed by 1320
Abstract
Frontal polymerization (FP) technology has attracted significant attention as an efficient, low-energy curing method for thermosetting resins. By enabling self-sustaining polymerization reactions, FP significantly reduces curing time and minimizes external energy dependence, making it ideal for in-orbit manufacturing applications. In contrast to traditional [...] Read more.
Frontal polymerization (FP) technology has attracted significant attention as an efficient, low-energy curing method for thermosetting resins. By enabling self-sustaining polymerization reactions, FP significantly reduces curing time and minimizes external energy dependence, making it ideal for in-orbit manufacturing applications. In contrast to traditional curing methods, which are limited by high energy consumption and low efficiency, FP offers a more efficient and flexible alternative. Nonetheless, the FP process is sensitive to material composition, processing and environmental factors, requiring systematic studies to enhance performance. This work focuses on reaction mechanisms, curing kinetics and processing factors of a self-developed FP epoxy resin system. The revealed curing mechanism and kinetics reveals a high initiation energy barrier and rapid curing characteristics, showing appropriate reaction inertness before initiation and stable reaction without continuous external energy input. The influences of initiator concentration and epoxy resin type on polymerization rate and the properties of cured resin were examined. Additionally, a curing simulation method validated by the experiment were employed to analyze the effects of mold material, resin cross-sectional area, initial temperature and environmental conditions on polymerization behavior. The results provide valuable insights for optimizing FP, advancing the understanding of the curing process and improving resin performance in space-based applications. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

13 pages, 2318 KiB  
Article
Preparation and Properties of Epoxy Modified Acrylic Polymer
by Shiyan Zhou, Jinmei Ma, Jun-Wen Yu, Zhigang Gao, Fei Li, Fenghua Zhang and Yu-Peng He
Polymers 2025, 17(3), 380; https://doi.org/10.3390/polym17030380 - 30 Jan 2025
Cited by 2 | Viewed by 1165
Abstract
This paper describes the synthesis of a viscosity-reducing agent using butyl acrylate (BA), ethyl methacrylate (EMA), acrylic acid (AA) and N-hydroxymethylacrylamide (N-MAM) monomers through emulsion polymerization. A series of viscosity-reducing agents were developed by incorporating varying amounts of glycidyl methacrylate (GMA) monomers. [...] Read more.
This paper describes the synthesis of a viscosity-reducing agent using butyl acrylate (BA), ethyl methacrylate (EMA), acrylic acid (AA) and N-hydroxymethylacrylamide (N-MAM) monomers through emulsion polymerization. A series of viscosity-reducing agents were developed by incorporating varying amounts of glycidyl methacrylate (GMA) monomers. The reaction mechanism of epoxy acrylate viscosity reducer was analyzed by Fourier transform infrared spectroscopy (FTIR). Additionally, the particle size and Zeta potential were used to analyze the stability of the polymer and the difference in the polymer after adding GMA monomer. Thermogravimetric (TG) analysis indicated a significant improvement in the thermal stability of the resin due to GMA modification. The viscosity reduction test results demonstrated a substantial decrease in the viscosity of heavy oil, along with a notable increase in the viscosity reduction rate. The FTIR analysis results confirmed that GMA successfully introduced polyacrylate molecular chains. Furthermore, particle size and Zeta potential measurements showed that the average particle size of the emulsion increased from 132 nm to 187 nm, while the Zeta potential changed from −43 mV to −40 mV with the addition of 15% GMA. Compared with W0, the final thermal degradation temperature of W15 increased from 450 °C to 517 °C. When the GMA content reached 15 wt%, the maximum weight loss temperature increased by approximately 12 °C compared to the sample without GMA. Specifically, adding 8% W15 epoxy acrylate resulted in an 89% viscosity reduction rate for heavy oil, demonstrating an excellent viscosity reduction effect. This study successfully developed a novel epoxy acrylate viscosity reducer using a simple synthesis method, showcasing excellent stability, cost-effectiveness and remarkable viscosity reduction. Full article
(This article belongs to the Special Issue Surface and Interface Analysis of Polymeric Materials)
Show Figures

Figure 1

13 pages, 2882 KiB  
Article
Effect of Styrene Polymerization on the Bondability of Beech and Alder Wood with Different Adhesives
by Emil Żmuda, Anita Wronka, Grzegorz Kowaluk and Andrzej Radomski
Materials 2024, 17(24), 6212; https://doi.org/10.3390/ma17246212 - 19 Dec 2024
Viewed by 1115
Abstract
This study aimed to evaluate the bondability of beech and alder wood modified through styrene polymerization within the wood lumen. Unmodified wood samples served as the reference material. Bondability was tested using four adhesive types commonly used in wood technology: polyvinyl acetate (PVAc), [...] Read more.
This study aimed to evaluate the bondability of beech and alder wood modified through styrene polymerization within the wood lumen. Unmodified wood samples served as the reference material. Bondability was tested using four adhesive types commonly used in wood technology: polyvinyl acetate (PVAc), urea-formaldehyde (UF), phenol-resorcinol-formaldehyde (PRF), and epoxy resin. In addition to shear strength measurements, the adhesive density profile was also assessed. Results indicated that styrene modification generally reduced wood bondability, with reductions in shear strength ranging from 8% to 23% for beech wood and 1.6% to 29% for alder wood, depending on the adhesive type. The only exception was observed with the epoxy adhesive, which showed a 13% improvement in bonding quality for modified wood. These findings suggest that while styrene modification may enhance specific properties of wood, it can adversely affect its adhesion performance with some adhesive systems, except epoxy, which displayed improved compatibility with styrene-modified wood. The study offers insights for selecting suitable adhesives when using modified wood in structural applications. Full article
(This article belongs to the Special Issue Modification, Properties and Application of Epoxy Adhesives/Materials)
Show Figures

Graphical abstract

12 pages, 3778 KiB  
Article
Synthesis of Three Ternary NiPP@PDA@DTA by Bridging Polydopamine and Its Flame Retardancy in Epoxy Resin
by Wenxin Zhu, Huiyu Chai, Yue Lu, Wang Zhan and Qinghong Kong
Batteries 2024, 10(12), 428; https://doi.org/10.3390/batteries10120428 - 3 Dec 2024
Cited by 2 | Viewed by 1080
Abstract
Epoxy resin (EP) is an indispensable packaging material for batteries. Excellent thermal and flame-retardant properties of EP can ensure the safety performance of batteries. To solve the low-efficiency flame retardant of EP, nickel phenyl phosphate (NiPP) was synthesized and its surface was modified [...] Read more.
Epoxy resin (EP) is an indispensable packaging material for batteries. Excellent thermal and flame-retardant properties of EP can ensure the safety performance of batteries. To solve the low-efficiency flame retardant of EP, nickel phenyl phosphate (NiPP) was synthesized and its surface was modified by polymerization of dopamine (PDA). [3-(hydroxy-phenyl-methylidene) imimine] triazole (DTA) was synthesized using 9,10-dihydro-9-oxygen-10-phosphophene-10-oxide (DOPO), 3-amino-1,2,4-triazole and p-hydroxybenzaldehyde. The hybrid flame retardance NiPP@PDA@DTA was further synthesized by self-assembly between the negative charge on the surface of DTA and the positive charge on the surface of modified NiPP@PDA. Then, NiPP@PDA@DTA was added to EP to prepare EP/NiPP@PDA@DTA composites. The results showed that the incorporation of NiPP@PDA@DTA promoted the residual yield at high temperatures. Furthermore, EP composites showed excellent flame retardancy when NiPP@PDA@DTA was added. The EP/4 wt% NiPP@PDA@DTA composites can reach UL-94 V0 grade with a limit oxygen index (LOI) of 33.7%. While the heat release rate (HRR), total release rate (THR), CO2 production (CO2P) and total smoke release (TSR) of EP/4 wt% NiPP@PDA@DTA composites decreased by 16.9%, 30.8%, 16.9% and 27.7% compared with those of EP. These improvements are mainly due to the excellent catalytic carbonization performance of Ni metal and P compounds. The azazole and phosphaphenanthrene groups have the effects of dilution quenching in the gas phase and cross-linking network blocking, as well as enhanced blowing-out effects. Full article
(This article belongs to the Special Issue Thermal Safety of Lithium Ion Batteries—2nd Edition)
Show Figures

Figure 1

19 pages, 10253 KiB  
Article
Eco-Friendly Tannic Acid-Based Concrete Coating with Anti-Chloride Performance via One-Step Assembly
by Zhong Xiao, Zhe Chang, Ying Liu, Yichao Ma, Fei Wei and Di Xiao
Sustainability 2024, 16(21), 9422; https://doi.org/10.3390/su16219422 - 30 Oct 2024
Viewed by 1290
Abstract
Chloride ion erosion in seawater is a major cause of durability damage to reinforced concrete structures. Most of the currently used anti-corrosion coatings are organic polymer coatings, which are prone to aging and peeling off and polluting the environment. Inspired by the underwater [...] Read more.
Chloride ion erosion in seawater is a major cause of durability damage to reinforced concrete structures. Most of the currently used anti-corrosion coatings are organic polymer coatings, which are prone to aging and peeling off and polluting the environment. Inspired by the underwater adhesion behavior of mussels, a green substance-tannic acid (TA) is found and used as the main material of anti-chloride coatings. Three assembly methods of green concrete chloride-resistant coatings fabricated by the oxidative self-polymerization of tannic acid, coordination-driven one-step assembly and multistep assembly of tannic acid (TA), and trivalent iron cation (Fe(III)) on a concrete surface are proposed. Compared to the other two assembly methods and existing coatings, the one-step assembly of the TA and Fe(III) coating was recommended to be the first choice because of its good continuity; shortest time-consumption (just 10 min); lowest price (only one-third of epoxy coating); and the best chloride-resistant effectiveness per unit thickness reaching 52.17%, far better the multistep assembly method and the oxidative self-polymerization method by 12.67% and 2.42%, which is 79-times higher than that of epoxy resin A. This study offers a TA-based concrete coating fabricated by the one-step assembly method with an excellent anti-chloride performance and cheap price, which is promising for a wide range of applications for the chloride-resistant corrosion protection of steel-reinforced concrete in seawater environments. Full article
(This article belongs to the Special Issue Coastal Management and Marine Environmental Sustainability)
Show Figures

Graphical abstract

Back to TopTop