Microscopic Mechanisms and Pavement Performance of Waterborne Epoxy Resin-Modified Emulsified Asphalt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material Properties
2.2. Preparation of WEA Binder
2.3. Test Methods
2.3.1. Chemical Structure
2.3.2. Micromorphology
2.3.3. Surface Free Energy (SFE)
2.3.4. High-Temperature Rheological Properties
2.3.5. Low-Temperature Creep Performance
2.3.6. Mechanical Properties
3. Results
3.1. Modification Mechanism
3.1.1. Chemical Structural Changes
3.1.2. Micromorphology Changes
3.1.3. Evolution Process of the SFE
3.2. High-Temperature Rheological Properties
3.2.1. Linear Viscoelasticity
3.2.2. Temperature Dependence
3.2.3. Frequency Dependence
3.2.4. Creep and Recovery
3.3. Low-Temperature Stability
3.4. Mechanical Properties
4. Conclusions and Recommendations
- (1)
- The modification process of the WER on emulsified asphalt involves both the chemical synthesis of epoxy resin and physical modification. The average particle sizes of WER at 3%, 6%, and 9% dosages are 11.7 μm, 25.7 μm, and 28.8 μm, respectively. However, when the dosage reaches 12% or higher, WER forms a continuous network structure within the system.
- (2)
- The incorporation of WER significantly affects the SFE of emulsified asphalt. At modifier contents ranging from 3% to 15%, the SFE of the binder increases by 5.7% to 27.9%, with the polar component rising by 35.5% to 134%, while the non-polar component remains nearly unaffected. This enhancement in SFE improves the interfacial compatibility and adhesion properties of the binder.
- (3)
- Under WER dosages of 0–15%, the linear viscoelastic range of the binder at 35 °C and 50 °C varies between 31.91–0.13% and 65.21–0.2%, respectively. When the modifier content exceeds 6%, the binder exhibits significant improvements in high-temperature rutting resistance and elastic recovery, along with reduced stress sensitivity and frequency dependence.
- (4)
- WER enhances the mechanical strength and aggregate adhesion of the binder system. At modifier contents of 0%, 3%, 6%, 9%, 12%, and 15%, the pull-off strengths of the WEA binders are 1.27 MPa, 1.63 MPa, 1.81 MPa, 2.03 MPa, 2.29 MPa, and 2.62 MPa, respectively. However, WER increases the low-temperature stiffness modulus of WEA binders and reduces the creep rate, thereby adversely affecting the low-temperature flexibility of the system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, X.; Diao, W.; Xu, J.; Wang, D.; Hou, Y. Research on the Aging Characteristics of Simulated Asphalt Within Pavement Structures in Natural Environments. Materials 2025, 18, 434. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, S.; Chen, G. Regional variations of climate change impacts on asphalt pavement rutting distress. Transp. Res. Part D Transp. Environ. 2024, 126, 103968. [Google Scholar] [CrossRef]
- Cong, P.; Liu, C.; Zhang, X. Preparation of thermoplastic polyurethane sealant and its adherence properties under various environments. Compos. Part B Eng. 2025, 293, 112125. [Google Scholar] [CrossRef]
- Ministry of Transport of the People’s Republic of China. Statistical Bulletin on the Development of Transportation Industry in 2023. Available online: https://xxgk.mot.gov.cn/2020/jigou/zhghs/202406/t20240614_4142419.html (accessed on 5 March 2025.).
- Wang, W.; Wang, L. Review on Design, Characterization, and Prediction of Performance for Asphalt Materials and Asphalt Pavement Using Multi-Scale Numerical Simulation. Materials 2024, 17, 778. [Google Scholar] [CrossRef]
- He, J.; Ma, Y.; Zheng, K.; Cheng, Z.; Xie, S.; Xiao, R.; Haung, B. Quantifying the agglomeration effect of reclaimed asphalt pavement on performance of recycled hot mix asphalt. J. Clean. Prod. 2024, 442, 141044. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Wang, W.; Li, B.; He, C.; He, L.; Li, Y. Research on Factors Affecting Asphalt Mixtures’ Resistance to High-Frequency Freeze-Thaw in Plateau Areas. Materials 2025, 18, 640. [Google Scholar] [CrossRef]
- Ji, K.; Tian, Y.; Jiang, J.; Yan, X.; Tian, J.; Yang, J.; He, Z.; Lu, X. The demulsification mechanism of emulsified bitumen in microwave field through molecular dynamics simulation. Fuel 2025, 386, 134247. [Google Scholar] [CrossRef]
- Xiang, H.; Wang, Z.; Deng, M.; Tan, S.; Liang, H. Adhesion Characteristics of an Asphalt Binder–Aggregate Interface Based on Molecular Dynamics. Materials 2025, 18, 981. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Ma, T.; Gu, L.; Shi, S. Study on the performances of epoxy asphalt binders influenced by the dosage of epoxy resin and its application to steel bridge deck pavement. Constr. Build. Mater. 2024, 432, 136683. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Z.; Guo, H.; Wang, X.; Chen, W.; Liu, J.; Zhang, H.; Wan, C. Property improvement of epoxy emulsified asphalt modified by waterborne polyurethane in consideration of environmental benefits. Case Stud. Constr. Mater. 2024, 21, e03559. [Google Scholar] [CrossRef]
- Yang, S.; Li, R.; Zhu, H.; Qin, Y.; Huang, C. Review of the state-of-the-art techniques for enhancing the toughness of thermosetting epoxy asphalt. Constr. Build. Mater. 2024, 449, 137660. [Google Scholar] [CrossRef]
- Shi, Z.; Min, Z.; Chen, F.; Huang, W. Adhesion behavior and microscopic mechanism of epoxy asphalt-RAP aggregate interface. Constr. Build. Mater. 2024, 457, 139361. [Google Scholar] [CrossRef]
- Chen, D.; Wu, H.; Chen, X.; Zhan, Y.; Wada, S.A. Fabrication of High-Performance Asphalt Mixture Using Waterborne Epoxy-Acrylate Resin Modified Emulsified Asphalt (WEREA). Polymers 2024, 16, 2743. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, C.; Wang, Z.; Li, Y.; Feng, L.; Tan, S. Fog seal with polymer composite modified emulsified asphalt: Road performance and environmental adaptability. Wear 2025, 562–563, 205672. [Google Scholar] [CrossRef]
- Li, M.; He, Z.; Yu, J.; Yu, L.; Shen, Z.; Kong, L. Rheological Properties and Modification Mechanism of Emulsified Asphalt Modified with Waterborne Epoxy/Polyurethan Composite. Materials 2024, 17, 5361. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Khedmati, M.; Mensching, D.; Hofko, B.; Haghshenas, H.F. Aging characterization of asphalt binders through multi-aspect analyses: A critical review. Fuel 2024, 376, 132679. [Google Scholar] [CrossRef]
- Xu, L.; Dara, Y.; Magar, S.; Badughaish, A.; Xiao, F. Morphological and rheological investigation of emulsified asphalt/polymer composite based on gray-level co-occurrence matrix. Int. J. Transp. Sci. Technol. 2024, 14, 258–275. [Google Scholar] [CrossRef]
- Kong, L.; Su, S.; Wang, Z.; Wu, P.; Zhang, Y.; Chen, Z.; Ren, D.; Ai, C. Microscale mechanism and key factors of waterborne epoxy resin emulsified asphalt enhancing interlayer bonding performance and shear resistance of bridge deck pavement. Constr. Build. Mater. 2024, 419, 135570. [Google Scholar] [CrossRef]
- He, L.; Hou, Y.; Yang, F. Study of the Properties of Waterborne Epoxy Resin Emulsified Asphalt and Its Modification Mechanism. J. Mater. Civ. Eng. 2023, 35, 04023145. [Google Scholar] [CrossRef]
- Zhang, K.; Min, Z.; Hao, X.; Haung, W.; Shao, K. Experimental investigation of the properties of epoxy asphalt mastic. Constr. Build. Mater. 2024, 435, 136866. [Google Scholar] [CrossRef]
- Zhou, D.; Liang, R.; Kang, Y. A review of chemo-rheological and thermo-rheological investigations on epoxy asphalt cementitious materials. Constr. Build. Mater. 2023, 395, 132309. [Google Scholar] [CrossRef]
- Yang, F.; Zhou, Q.; Yang, L.; He, L.; Chen, Q.; Tang, S. Preparation and performance evaluation of waterborne epoxy resin modified emulsified asphalt binder. Case Stud. Constr. Mater. 2024, 21, e03548. [Google Scholar] [CrossRef]
- Yang, F.; Yang, L.; Zhou, Q.; Chen, Q.; Tang, S.; He, L. Research on pavement performance of waterborne epoxy resin-modified emulsified asphalt binders and pothole repair materials. Mater. Technol. 2025, 59, 55–66. [Google Scholar] [CrossRef]
- Li, P.; Ji, J.; Wang, Z.; Wu, Y.; Suo, Z.; Dong, Y.; Xu, M. Performance evaluation and equivalent conversion of waterborne epoxy resin emulsified asphalt based on different evaporation methods. J. Clean. Prod. 2022, 353, 131461. [Google Scholar] [CrossRef]
- Ji, J.; Shi, Q.; Zhang, R.; Suo, Z.; Wang, J. Viscosity, mechanical properties and phase-separated morphology of waterborne epoxy asphalt. Constr. Build. Mater. 2022, 334, 127074. [Google Scholar] [CrossRef]
- Yan, K.; Jun, J.; Shi, K.; Wang, M.; Li, G.; Zhe, H. Effects of the chemical structure of curing agents on rheological properties and microstructure of WER emulsified asphalt. Constr. Build. Mater. 2022, 347, 128531. [Google Scholar]
- Wang, L.; Zhang, Z.; Liu, W.; Wu, M.; Shi, J.; Yan, K. Effects of Epoxy Resin Value on Waterborne-Epoxy-Resin-Modified Emulsified Asphalt Mixture Performance. Appl. Sci. 2024, 14, 1353. [Google Scholar] [CrossRef]
- He, L.; Li, S.; Li, W.; Gu, Y.; Yang, K.; Dong, L.; Sang, Q. Performance evaluation of waterborne epoxy emulsified asphalt micro-surfacing with microwave-activated waste rubber powder. Constr. Build. Mater. 2024, 413, 134810. [Google Scholar] [CrossRef]
- Gu, Y.; Tang, B.; He, L.; Yang, F.; Wang, H.; Ling, J. Compatibility of cured phase-inversion waterborne epoxy resin emulsified asphalt. Constr. Build. Mater. 2019, 229, 116942. [Google Scholar] [CrossRef]
- Song, W.; Chen, D.; Wu, H.; Wu, Z.; Wada, S.A.; Yuan, H. Preparation and performance characterization of waterborne epoxy resin modified asphalt emulsion for tack coat. J. Clean. Prod. 2024, 475, 143715. [Google Scholar] [CrossRef]
- Wu, H.; Wu, Z.; Song, W.; Chen, D.; Yang, M.; Yuan, H. Investigation on One-Component Waterborne Epoxy Emulsified Asphalt (OWEEA) Used as Bonding Material. Buildings 2024, 14, 503. [Google Scholar] [CrossRef]
- Xu, O.; Li, Y.; Xu, R.; Liu, Y.; Dong, Y. Performance evaluation of waterborne epoxy resin modified emulsified asphalt mixtures for asphalt pavement pothole repair. Constr. Build. Mater. 2022, 325, 126709. [Google Scholar] [CrossRef]
- Fowkes, F.W. Dispersion Force Contributions to Surface and Interfacial Tensions, Contact Angles, and Heats of Immersion. Adv. Chem. Ser. 1964, 43, 99–111. [Google Scholar]
- Good, R.J.; van Oss, C.J. The Modern Theory of Contact Angles and the Hydrogen Bond Components of Surface Energies. In Modern Approaches to Wettability; Springer: Boston, MA, USA, 1992; pp. 1–27. [Google Scholar]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- ASTM D7175-23; Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM D6373-23; Standard Specification for Performance-Graded Asphalt Binder. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM D7405-24; Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer. ASTM International: West Conshohocken, PA, USA, 2024.
- Stempihar, J.; Gundla, A.; Underwood, B.S. Interpreting stress sensitivity in the multiple stress creep and recovery test. J. Mater. Civ. Eng. 2018, 30, 04017283. [Google Scholar] [CrossRef]
- Li, Z.; Yang, F.; Yuan, J.; Cong, L.; Yu, M. Study on preparation and pavement performance of polyurethane modified asphalt based on in-situ synthesis method. Constr. Build. Mater. 2021, 309, 125196. [Google Scholar] [CrossRef]
- ASTM D4541-22; Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers. ASTM International: West Conshohocken, PA, USA, 2024.
- Lavauxa, V.; Lalevée, J. Epoxy curing in mild and eco-friendly conditions: Towards bisphenol A-free systems. Prog. Polym. Sci. 2024, 157, 101873. [Google Scholar] [CrossRef]
- Zhu, K.; Hu, X.; Huang, Y. The effect of epoxy resin and curing agent groups on mechanical properties investigated by molecular dynamics. Mater. Today Commun. 2024, 41, 110447. [Google Scholar] [CrossRef]
- Yang, F.; Cong, L.; Li, Z.; Yuan, J.; Guo, H.; Tan, L. Study on preparation and performance of a thermosetting polyurethane modified asphalt binder for bridge deck pavements. Constr. Build. Mater. 2022, 326, 126784. [Google Scholar] [CrossRef]
- ASTM D7490-13(2022); Standard Test Method for Measurement of the Surface Tension of Solid Coatings, Substrates and Pigments using Contact Angle Measurements. ASTM International: West Conshohocken, PA, USA, 2022.
- Kwok, D.W.; Neumann, A.W. Contact angle measurement and contact angle Interpretation. Adv. Colloid Interface Sci. 1999, 81, 167–249. [Google Scholar] [CrossRef]
- Yang, F.; Gong, H.; Cong, L.; Shi, J.; Guo, G.; Mei, Z. Investigating on polymerization process and interaction mechanism of thermosetting polyurethane modified asphalt. Constr. Build. Mater. 2022, 335, 127261. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, X.; Xiao, P.; Qian, P.; Zhang, Y.; Kang, A. Properties and interaction evolution mechanism of CR modified asphalt. Fuel 2024, 371, 131886. [Google Scholar] [CrossRef]
- Wang, T.; Jiang, W.; Ruan, C.; Xiao, J.; Yuan, D.; Wu, W.; Xing, C. The rheological properties of high-viscosity modified reclaimed asphalt binder at multiple application temperatures. Constr. Build. Mater. 2023, 372, 130758. [Google Scholar] [CrossRef]
- ASTM D8239-23; Standard Specification for Performance-Graded Asphalt Binder Using the Multiple Stress Creep and Recovery (MSCR) Test. ASTM International: West Conshohocken, PA, USA, 2023.
- Zhao, L.; Li, W.; Zhang, C.; Yu, X.; Liu, A.; Huang, J. The Study on the Effect of Waterborne Epoxy Resin Content on the Performance of Styrene–Butadiene Rubber Modified Micro-Surface Mixture. Polymers 2025, 17, 1175. [Google Scholar] [CrossRef]
Ionic Type | Epoxy Value | Viscosity (25 °C, mPa·s) | pH | Solid Content (%) | Average Particle Size (μm) |
---|---|---|---|---|---|
Non-ionic | 0.23 | 800 | 8 | 55 | 1.5 |
Appearance | Active Hydrogen Equivalent | Solid Content (%) | pH | Viscosity (25 °C, mPa·s) | Specific Gravity |
---|---|---|---|---|---|
Light yellow uniform fluid | 240 | 50.5 | 9.5 | 600 | 1.04 |
Demulsification Speed | Angler Viscosity, 25 ℃ | Solid Content (%) | Penetration (25 °C, 0.1 mm) | Ductility (15 °C, cm) | Softening Point (°C) | Storage Stability (%) |
---|---|---|---|---|---|---|
Slow setting | 3.7 | 60 | 84 | ≥100 | 46.8 | 0.8 |
Liquid | SFE (γ, mJ/m2) | Dispersion Component (γLW, mJ/m2) | Polar Component (γAB, mJ/m2) |
---|---|---|---|
Formamide | 59.0 | 39.4 | 19.6 |
Glycerol | 65.2 | 28.3 | 36.9 |
Distilled water | 72.3 | 18.7 | 53.6 |
Absorption Peaks/cm−1 | Functional Groups | Vibration Form |
---|---|---|
3395, 3346, 3366 | -OH, -NH | Stretching vibration |
2851–2963 | C-H in alkyl groups | Symmetric and antisymmetric stretching vibrations |
1739 | -C=O | Stretching vibration |
1607, 1508 | -C=C- from benzene ring | Stretching vibration |
1456 | C-H | In-plane stretching vibration |
1376 | -CH3 | Bending vibration |
1034–1298 | C-O bond at different positions | In-plane stretching vibration |
721–874 | C-H on benzene ring | Out of plane rocking vibration |
WER Content (%) | Distilled Water | Glycerol | Formamide | |||
---|---|---|---|---|---|---|
Average Value (°) | C.V. (%) | Average Value (°) | C.V. (%) | Average Value (°) | C.V. (%) | |
0 | 98.3 | 0.89 | 90.0 | 0.22 | 83.4 | 0.66 |
3 | 95.1 | 0.96 | 87.2 | 0.45 | 81.2 | 0.23 |
6 | 93.6 | 0.09 | 86.1 | 0.58 | 80.5 | 0.08 |
9 | 91.3 | 182 | 84.1 | 0.68 | 76.8 | 0.24 |
12 | 88.3 | 0.93 | 82.3 | 0.41 | 74.2 | 1.21 |
15 | 86.7 | 1.01 | 80.8 | 0.79 | 73.1 | 0.81 |
WER Content (%) | γ (mJ/m2) | γLW (mJ/m2) | γAB (mJ/m2) |
---|---|---|---|
0% | 18.09 | 14.74 | 3.35 |
3% | 19.13 | 14.59 | 4.54 |
6% | 19.40 | 14.06 | 5.34 |
9% | 21.3 | 15.68 | 5.62 |
12% | 22.41 | 15.44 | 6.97 |
15% | 23.13 | 15.29 | 7.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Yu, F.; Gong, H.; Yang, L.; Zhou, Q.; He, L.; Wei, W.; Chen, Q. Microscopic Mechanisms and Pavement Performance of Waterborne Epoxy Resin-Modified Emulsified Asphalt. Materials 2025, 18, 2825. https://doi.org/10.3390/ma18122825
Yang F, Yu F, Gong H, Yang L, Zhou Q, He L, Wei W, Chen Q. Microscopic Mechanisms and Pavement Performance of Waterborne Epoxy Resin-Modified Emulsified Asphalt. Materials. 2025; 18(12):2825. https://doi.org/10.3390/ma18122825
Chicago/Turabian StyleYang, Fan, Fang Yu, Hongren Gong, Liming Yang, Qian Zhou, Lihong He, Wanfeng Wei, and Qiang Chen. 2025. "Microscopic Mechanisms and Pavement Performance of Waterborne Epoxy Resin-Modified Emulsified Asphalt" Materials 18, no. 12: 2825. https://doi.org/10.3390/ma18122825
APA StyleYang, F., Yu, F., Gong, H., Yang, L., Zhou, Q., He, L., Wei, W., & Chen, Q. (2025). Microscopic Mechanisms and Pavement Performance of Waterborne Epoxy Resin-Modified Emulsified Asphalt. Materials, 18(12), 2825. https://doi.org/10.3390/ma18122825