Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (491)

Search Parameters:
Keywords = polymer-precipitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3944 KiB  
Article
Functionalized Magnetic Nanoparticles as Recyclable Draw Solutes for Forward Osmosis: A Sustainable Approach to Produced Water Reclamation
by Sunith B. Madduri and Raghava R. Kommalapati
Separations 2025, 12(8), 199; https://doi.org/10.3390/separations12080199 - 29 Jul 2025
Viewed by 301
Abstract
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the [...] Read more.
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Graphical abstract

27 pages, 40365 KiB  
Article
Formation of Hybrid Spherical Silica Particles Using a Novel Alkoxy-Functional Polysilsesquioxane Macromonomer as a Precursor in an Acid-Catalyzed Sol-Gel Process
by Anna Kowalewska, Kamila Majewska-Smolarek, Agata S. Herc, Sławomir Kaźmierski and Joanna Bojda
Materials 2025, 18(14), 3357; https://doi.org/10.3390/ma18143357 - 17 Jul 2025
Viewed by 382
Abstract
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a [...] Read more.
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a new kind of polyalkoxysilane macromonomer–linear polysilsesquioxane (LPSQ) of ladder-like backbone, functionalized in side chains with trimethoxysilyl groups (LPSQ-R-Si(OMe)3), was designed following this approach. It was obtained by photoinitiated thiol-ene addition of 3-mercaptopropyltrimethoxysilane to the vinyl-functionalized polysilsesquioxane precursor, carried out in situ in tetraethoxysilane (TEOS). The mixture of LPSQ-R-Si(OMe)3 and TEOS (co-monomers) was used in a sol–gel process conducted under acidic conditions (0.5 M HCl/NaCl) in the presence of Pluronic® F-127 triblock copolymer as a template. LPSQ-R-Si(OMe)3 played a key role for the formation of microparticles of a spherical shape that were formed under the applied conditions, while their size (as low as 3–4 µm) was controlled by the stirring rate. The hybrid materials were hydrophobic and showed good thermal and oxidative stability. Introduction of zinc acetate (Zn(OAc)2) as an additive in the sol–gel process influenced the pH of the reaction medium, which resulted in structural reinforcement of the hybrid microparticles owing to more effective condensation of silanol groups and a relative increase of the content of SiO2. The proposed method shows directions in designing the properties of hybrid materials and can be translated to other silicon–organic polymers and oligomers that could be used to produce hollow silica particles. The established role of various factors (macromonomer structure, pH, and stirring rate) allows for the modulation of particle morphology. Full article
Show Figures

Graphical abstract

18 pages, 9768 KiB  
Article
Impact of Mixed-In Polyacrylic- and Phosphonate-Based Additives on Lime Mortar Microstructure
by Dulce Elizabeth Valdez Madrid, Encarnación Ruiz-Agudo, Sarah Bonilla-Correa, Nele De Belie and Veerle Cnudde
Materials 2025, 18(14), 3322; https://doi.org/10.3390/ma18143322 - 15 Jul 2025
Viewed by 335
Abstract
Aminotris(methylene phosphonic acid) (ATMP) and poly(acrylic acid) sodium salt (PAA) have shown favorable results in the treatment of porous building materials against weathering damage, showing promising potential as mixed-in additives during the production of lime-based mortars. This study investigates the impact of these [...] Read more.
Aminotris(methylene phosphonic acid) (ATMP) and poly(acrylic acid) sodium salt (PAA) have shown favorable results in the treatment of porous building materials against weathering damage, showing promising potential as mixed-in additives during the production of lime-based mortars. This study investigates the impact of these additives on microstructure and mechanical properties. Additives were introduced in various concentrations to assess their influence on CaCO3 crystallization, porosity, strength, and carbonation behavior. Results revealed significant modifications in the morphology of CaCO3 precipitates, showing evidence of nanostructured CaCO3 aggregates and vaterite stabilization, thus indicating a non-classical crystallization pathway through the formation of amorphous CaCO3 phase(s), facilitated by organic occlusions. These nanostructural changes, resembling biomimetic calcitic precipitates enhanced mechanical performance by enabling plastic deformation and intergranular bridging. Increased porosity and pore connectivity facilitated CO2 diffusion towards the mortar matrix, contributing to strength development over time. However, high additive concentrations resulted in poor mechanical performance due to the excessive air entrainment capabilities of short-length polymers. Overall, this study demonstrates that the optimized dosages of ATMP and PAA can significantly enhance the durability and mechanical performance of lime-based mortars and suggests a promising alternative for the tailored manufacturing of highly compatible and durable materials for both the restoration of cultural heritage and modern sustainable construction. Full article
Show Figures

Figure 1

15 pages, 3660 KiB  
Article
Microencapsulation of Analgesics as an Analog Form of Medicine
by Aidana Nakipekova, Bates Kudaibergenova, Arkady S. Abdurashitov and Gleb B. Sukhorukov
Pharmaceutics 2025, 17(7), 916; https://doi.org/10.3390/pharmaceutics17070916 - 15 Jul 2025
Viewed by 497
Abstract
Objectives: This research focuses on the development of fabrication approaches for microparticles intended for controlled drug delivery. The primary objective is to identify the most suitable polymer type, particle size, and morphology for encapsulating a water-soluble crystalline drug. Optimizing these parameters may enhance [...] Read more.
Objectives: This research focuses on the development of fabrication approaches for microparticles intended for controlled drug delivery. The primary objective is to identify the most suitable polymer type, particle size, and morphology for encapsulating a water-soluble crystalline drug. Optimizing these parameters may enhance structural stability and prolong the release of this active substance. Methods: The microparticles were fabricated through the encapsulation of a drug substance within a polymer carrier and employing polymer casting on prepatterned surfaces, followed by the loading of drug precipitates and the application of a sealing layer. The crystalline powder 1-allyl-2,5-dimethylpiperidol-4 hydrochloride served as the core cargo material, while the walls of these particles were composed of polylactic acid (PLA) and a poly (α-caprolactone) (PCL) in a 70:30 composition ratio. Results: The size and volume of the microparticles were found to be dependent on the geometric parameters of the template and the concentration of the polymer solutions. The study demonstrates the formation, physical dimensions, and particle count at varied polymer compositions and concentrations. The formation of the PLA and PCL mixture occurred solely through physical interactions. Scanning electron microscopy (SEM) and optical microscopy were employed to observe the appearance and physical dimensions of the microparticles. The obtained data confirm that tailored polymer compositions can yield consistent particle morphology and a suitable drug elution rate. Conclusions: The results indicate that microparticles sealed with an optimal polymer composition exhibit enhanced release properties. This finding highlights the feasibility of microencapsulation at precise ratios and concentrations of polymers to achieve the long-lasting effects of water-soluble drugs. Full article
(This article belongs to the Special Issue Multifunctional Nanomaterials in Drug Delivery)
Show Figures

Figure 1

31 pages, 4369 KiB  
Article
Medicago Sativa Stems—A Multi-Output Integrated Biorefinery Approach
by Adrian Cătălin Puițel, George Bârjoveanu, Cătălin Dumitrel Balan and Mircea Teodor Nechita
Polymers 2025, 17(12), 1709; https://doi.org/10.3390/polym17121709 - 19 Jun 2025
Viewed by 357
Abstract
This study presents an investigation on the potential of using one-year-old field-stored Medicago sativa (alfalfa) as a raw material for a multi-output biorefinery. The main objective was to fractionate the biomass into valuable components—crude protein, hemicellulose-derived polysaccharides, lignin, and cellulose—and to explore the [...] Read more.
This study presents an investigation on the potential of using one-year-old field-stored Medicago sativa (alfalfa) as a raw material for a multi-output biorefinery. The main objective was to fractionate the biomass into valuable components—crude protein, hemicellulose-derived polysaccharides, lignin, and cellulose—and to explore the latter’s suitability in papermaking. To this end, three pretreatment strategies (water, alkaline buffer, and NaOH solution) were applied, followed by soda pulping under varying severity conditions. Both solid and liquid fractions were collected and chemically characterized using FTIR, HPLC, and standardized chemical methods. Water-based pretreatment was most effective for protein extraction, achieving over 40% protein content in precipitated fractions. The harshest pulping conditions (20% NaOH, 160 °C, 60 min) yielded cellulose-rich pulp with high glucan content, while also facilitating lignin and hemicellulose recovery from black liquor. Furthermore, the pulps derived from alfalfa stems were tested for papermaking. When blended with old corrugated cardboard (OCC), the fibers enhanced tensile and burst strength by 35% and 70%, respectively, compared to OCC alone. These findings support the valorization of unexploited alfalfa deposits and suggest a feasible biorefinery approach for protein, fiber, and polymer recovery, aligned with circular economy principles. Full article
(This article belongs to the Special Issue Recent Progress on Lignocellulosic-Based Polymeric Materials)
Show Figures

Figure 1

33 pages, 1666 KiB  
Review
Synthesis, Characterization, and Application of Magnetic Zeolite Nanocomposites: A Review of Current Research and Future Applications
by Sabina Vohl, Irena Ban, Janja Stergar and Mojca Slemnik
Nanomaterials 2025, 15(12), 921; https://doi.org/10.3390/nano15120921 - 13 Jun 2025
Viewed by 1080
Abstract
Magnetic zeolite nanocomposites (NCs) have emerged as a promising class of hybrid materials that combine the high surface area, porosity, and ion exchange capacity of zeolites with the magnetic properties of nanoparticles (NPs), particularly iron oxide-based nanomaterials. This review provides a comprehensive overview [...] Read more.
Magnetic zeolite nanocomposites (NCs) have emerged as a promising class of hybrid materials that combine the high surface area, porosity, and ion exchange capacity of zeolites with the magnetic properties of nanoparticles (NPs), particularly iron oxide-based nanomaterials. This review provides a comprehensive overview of the synthesis, characterization, and diverse applications of magnetic zeolite NCs. We begin by introducing the fundamental properties of zeolites and magnetic nanoparticles (MNPs), highlighting their synergistic integration into multifunctional composites. The structural features of various zeolite frameworks and their influence on composite performance are discussed, along with different interaction modes between MNPs and zeolite matrices. The evolution of research on magnetic zeolite NCs is traced chronologically from its early stages in the 1990s to current advancements. Synthesis methods such as co-precipitation, sol–gel, hydrothermal, microwave-assisted, and sonochemical approaches are systematically compared, emphasizing their advantages and limitations. Key characterization techniques—including X-Ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning and Transmission Electron Microscopy (SEM, TEM), Thermogravimetric Analysis (TGA), Nitrogen Adsorption/Desorption (BET analysis), Vibrating Sample Magnetometry (VSM), Zeta potential analysis, Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), and X-Ray Photoelectron Spectroscopy (XPS)—are described, with attention to the specific insights they provide into the physicochemical, magnetic, and structural properties of the NCs. Finally, the review explores current and potential applications of these materials in environmental and biomedical fields, focusing on adsorption, catalysis, magnetic resonance imaging (MRI), drug delivery, ion exchange, and polymer modification. This article aims to provide a foundation for future research directions and inspire innovative applications of magnetic zeolite NCs. Full article
Show Figures

Figure 1

29 pages, 11366 KiB  
Article
Unraveling the Multi-Omic Landscape of Extracellular Vesicles in Human Seminal Plasma
by Laura Governini, Alesandro Haxhiu, Enxhi Shaba, Lorenza Vantaggiato, Alessia Mori, Marco Bruttini, Francesca Loria, Natasa Zarovni, Paola Piomboni, Claudia Landi and Alice Luddi
Biomolecules 2025, 15(6), 836; https://doi.org/10.3390/biom15060836 - 7 Jun 2025
Viewed by 762
Abstract
Extracellular Vesicles (EVs) from seminal plasma have achieved attention due to their potential physiopathological role in male reproductive systems. This study employed a comprehensive proteomic and transcriptomic approach to investigate the composition and molecular signatures of EVs isolated from human seminal plasma. EVs [...] Read more.
Extracellular Vesicles (EVs) from seminal plasma have achieved attention due to their potential physiopathological role in male reproductive systems. This study employed a comprehensive proteomic and transcriptomic approach to investigate the composition and molecular signatures of EVs isolated from human seminal plasma. EVs from Normozoospermic (NORMO), OligoAsthenoTeratozoospermic (OAT), and Azoospermic (AZO) subjects were isolated using a modified polymer precipitation-based protocol and characterized for size and morphology. Comprehensive proteomic analysis, using both gel-free and gel-based approaches, revealed distinct protein profiles in each group (p<0.01), highlighting potential molecules and pathways involved in sperm function and fertility. The data are available via ProteomeXchange with identifiers PXD051361 and PXD051390, respectively. Transcriptomic analysis confirmed the trend of a general downregulation of AZO and OAT compared to NORMO shedding light on regulatory mechanisms of sperm development. Bioinformatic tools were applied for functional omics analysis; the integration of proteomic and transcriptomic data provided a comprehensive understanding of the cargo content and regulatory networks present in EVs. This study contributes to elucidating the key role of EVs in the paracrine communication regulating spermatogenesis. A full understanding of these pathways not only suggests potential mechanisms regulating male fertility but also offers new insights into the development of diagnostic tools targeting male reproductive disorders. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanism of Spermatogenesis)
Show Figures

Graphical abstract

21 pages, 4436 KiB  
Article
Alkaline Extraction and Ethanol Precipitation of High-Molecular-Weight Xylan Compounds from Eucalyptus Residues
by María Noel Cabrera, Antonella Rossi, Juan Ignacio Guarino, Fernando Esteban Felissia and María Cristina Area
Polymers 2025, 17(12), 1589; https://doi.org/10.3390/polym17121589 - 6 Jun 2025
Viewed by 641
Abstract
Alkaline treatment is well suited for extracting high-molecular-weight hemicelluloses, specifically hardwoods xylans, which, due to their polymer structure and chemical characteristics, enable the production of films with desirable mechanical, barrier, and optical properties for packaging applications. Despite its relevance, the optimization of antisolvent [...] Read more.
Alkaline treatment is well suited for extracting high-molecular-weight hemicelluloses, specifically hardwoods xylans, which, due to their polymer structure and chemical characteristics, enable the production of films with desirable mechanical, barrier, and optical properties for packaging applications. Despite its relevance, the optimization of antisolvent addition has received little attention in the literature. This study explores the use of eucalyptus industrial residue as feedstock, utilizing a statistical design to determine the optimal extraction conditions for hemicelluloses while minimizing the lignin content in the recovered liquor. The process uses alkali loads that are compatible with those in conventional Kraft pulp mills. Optimal extraction conditions involve a temperature of 105 °C, 16.7% NaOH charge, and 45 min at maximum temperature. The resulting liquor was subjected to ethanol precipitation under varying pH conditions (initial pH, 9, 7, 5, and 2) and different ethanol-to-liquor ratios (1:1 to 4:1). The acidification was performed using hydrochloric, sulfuric, and acetic acids. Ethanol served as the main antisolvent, while isopropyl alcohol and dioxane were tested for comparison. Results show that 2.3 ± 0.2% of xylans (based on oven-dry biomass) could be extracted, minimizing lignin content in the liquor. This value corresponds to the extraction of 15.6% of the xylans present in the raw material. The highest xylan precipitation yield (78%) was obtained at pH 7, using hydrochloric acid for pH adjustment and an ethanol-to-liquor ratio of 1:1. These findings provide valuable insight into optimizing hemicellulose recovery through antisolvent precipitation, contributing to more efficient biomass valorization strategies within lignocellulosic biorefineries. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

19 pages, 12347 KiB  
Article
Long-Term Physical and Chemical Stability and Energy Recovery Potential Assessment of a New Chelating Resin Used in Brine Treatment for Chlor-Alkali Plants
by Liliana Lazar, Loredana-Vasilica Postolache, Valeria Danilova, Dumitru Coman, Adrian Bele, Daniela Rusu, Mirela-Fernanda Zaltariov and Gabriela Lisa
Polymers 2025, 17(11), 1575; https://doi.org/10.3390/polym17111575 - 5 Jun 2025
Viewed by 545
Abstract
Brine purification is an important process unit in chlor-alkali industrial plants for the production of sodium hydroxide, chlorine, and hydrogen. The membrane cell process requires ultrapure brine, which is obtained through mechanical filtration, chemical precipitation and fine polishing, and ion exchange using polymer [...] Read more.
Brine purification is an important process unit in chlor-alkali industrial plants for the production of sodium hydroxide, chlorine, and hydrogen. The membrane cell process requires ultrapure brine, which is obtained through mechanical filtration, chemical precipitation and fine polishing, and ion exchange using polymer resins. Temperature variations can lead to the degradation of the exchange properties of these resins, primarily causing a decrease in their exchange capacity, which negatively impacts the efficiency of the brine purification. After multiple ion exchange regeneration cycles, significant quantities of spent resins may be generated. These must be managed in accordance with resource efficiency and hazardous waste management to ensure the sustainability of the industrial process. In this paper, a comparative study is conducted to characterize the long-term stability of a new commercial chelating resin used in the industrial electrolysis process. The spectroscopic methods of physicochemical characterization included: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR). The thermal behavior of the polymer resins was evaluated using the following thermogravimetric methods: thermogravimetry (TG), derivative thermogravimetry (DTG), and differential thermal analysis (DTA), while the moisture behavior was studied using dynamic vapor sorption (DVS) analysis. To assess the energy potential, the polymer resins were analyzed to determine their calorific value and overall energy content. Full article
(This article belongs to the Special Issue Current and Future Trends in Thermosetting Resins)
Show Figures

Figure 1

21 pages, 3889 KiB  
Article
Effects of Organic Acidic Products from Discharge-Induced Decomposition of the FRP Matrix on ECR Glass Fibers in Composite Insulators
by Dandan Zhang, Zhiyu Wan, Kexin Shi, Ming Lu and Chao Gao
Polymers 2025, 17(11), 1540; https://doi.org/10.3390/polym17111540 - 31 May 2025
Viewed by 594
Abstract
This study investigates the degradation mechanisms of fiber-reinforced polymer (FRP) matrices in composite insulators under partial discharge (PD) conditions. The degradation products may further cause deterioration of the electrical and chemical resistance (ECR) glass fibers. Using pyrolysis–gas chromatography-mass spectrometry (PY-GC-MS) and high-performance liquid [...] Read more.
This study investigates the degradation mechanisms of fiber-reinforced polymer (FRP) matrices in composite insulators under partial discharge (PD) conditions. The degradation products may further cause deterioration of the electrical and chemical resistance (ECR) glass fibers. Using pyrolysis–gas chromatography-mass spectrometry (PY-GC-MS) and high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS-MS), the thermal degradation gas and liquid products of the degraded FRP matrix were analyzed, revealing the presence of organic acids. These acids form when the epoxy resin’s cross-linked bonds break at high temperatures, generating anhydrides that hydrolyze into carboxylic acids in the presence of moisture. The hydrolyzation process is accelerated by hydroxyl radicals produced during PD. The resulting carboxylic acids deteriorate the glass fibers within the FRP matrix by degrading surface coupling agents and reacting with the alkali metal–silica network, leading to the substitution and precipitation of metal ions. Organic acids, particularly carboxylic acids, were found to have a more severe deteriorating effect on glass fibers compared to inorganic acids, with high temperatures exacerbating this process. These findings provide critical insights into the deterioration mechanisms of FRP under operational conditions, offering valuable guidance for optimizing manufacturing processes and enhancing the longevity of composite insulators. Full article
(This article belongs to the Special Issue New Insights into Fiber-Reinforced Polymer Composites)
Show Figures

Figure 1

18 pages, 6158 KiB  
Article
Study of Mechanisms and Protective Strategies for Polymer-Containing Wastewater Reinjection in Sandstone Reservoirs
by Jie Cao, Liqiang Dong, Yuezhi Wang and Liangliang Wang
Processes 2025, 13(5), 1511; https://doi.org/10.3390/pr13051511 - 14 May 2025
Viewed by 440
Abstract
Wastewater reinjection is an important measure for balancing the sustainable development of petroleum resources with environmental protection. However, the polymer-containing wastewater generated after polymer injection presents challenges such as reservoir damage and waterflooded zone identification in oilfields. To address this, this study systematically [...] Read more.
Wastewater reinjection is an important measure for balancing the sustainable development of petroleum resources with environmental protection. However, the polymer-containing wastewater generated after polymer injection presents challenges such as reservoir damage and waterflooded zone identification in oilfields. To address this, this study systematically examined the impact of injection water with varying salinities on the flow characteristics and electrical responses of low-permeability reservoirs, based on rock-electrical and multiphase displacement experiments. Additionally, this study analyzed the factors influencing the damage to reservoirs during polymer-containing wastewater reinjection. Mass spectrometry, chemical compatibility tests, and SEM-based micro-characterization techniques were employed to reveal the micro-mechanisms of reservoir damage during the reinjection process, and corresponding protective measures were proposed. The results indicated the following: (1) The salinity of injected water significantly influences the electrical response characteristics of the reservoir. When low-salinity wastewater is injected, the resistivity–saturation curve exhibits a concave shape, whereas high-salinity wastewater results in a linear and monotonically increasing trend. (2) Significant changes were observed in the pore-throat radius distribution before and after displacement experiments. The average frequency of throats within the 0.5–2.5 µm range increased by 1.894%, while that for the 2.5–5.5 µm range decreased by 2.073%. In contrast, changes in the pore radius distribution were relatively minor. Both the experimental and characterization results suggest that pore-throat damage is the primary form of reservoir impairment following wastewater reinjection. (3) To mitigate formation damage during wastewater reinjection, a combined physical–chemical deblocking strategy was proposed. First, multi-stage precision filtration would be employed to remove suspended solids and oil contaminants. Then, a mildly acidic organic-acid-based compound would be used to inhibit the precipitation of metal ions and dissolve the in situ blockage within the core. This integrated approach would effectively alleviate the reservoir damage associated with wastewater reinjection. Full article
(This article belongs to the Special Issue Recent Developments in Enhanced Oil Recovery (EOR) Processes)
Show Figures

Figure 1

16 pages, 4066 KiB  
Article
Synthesis and Characterization of MAPTAC-Modified Cationic Corn Starch: An Integrated DFT-Based Experimental and Theoretical Approach for Wastewater Treatment Applications
by Joaquín Alejandro Hernández Fernández and Jose Alfonso Prieto Palomo
J. Compos. Sci. 2025, 9(5), 240; https://doi.org/10.3390/jcs9050240 - 14 May 2025
Viewed by 504
Abstract
Phosphorus contamination in water bodies is a major contributor to eutrophication, leading to algal overgrowth, oxygen depletion, and ecological imbalance. Conventional treatment methods, including chemical precipitation and synthetic adsorbents, are often limited by high operational costs, low biodegradability, and secondary pollutant generation. In [...] Read more.
Phosphorus contamination in water bodies is a major contributor to eutrophication, leading to algal overgrowth, oxygen depletion, and ecological imbalance. Conventional treatment methods, including chemical precipitation and synthetic adsorbents, are often limited by high operational costs, low biodegradability, and secondary pollutant generation. In this study, a cationic starch was synthesized through free radical graft polymerization of 3-methacrylamoylaminopropyl trimethyl ammonium chloride (MAPTAC) onto corn starch. The modified polymer exhibited a high degree of substitution (DS = 1.24), indicating successful functionalization with quaternary ammonium groups. Theoretical calculations using zDensity Functional Theory (DFT) at the B3LYP/6-311+G(d,p) level revealed a decrease in chemical hardness (from 0.10442 eV to 0.04386 eV) and a lower ionization potential (from 0.24911 eV to 0.15611 eV) in the modified starch, indicating enhanced electronic reactivity. HOMO-LUMO analysis and molecular electrostatic potential (MEP) maps confirmed increased electron-accepting capacity and the formation of new electrophilic sites. Experimentally, the cationic starch showed stable zeta potential values averaging +15.3 mV across pH 5.0–10.0, outperforming aluminum sulfate (Alum), which reversed its charge above pH 7.5. In coagulation-flocculation trials, the modified starch achieved 87% total suspended solids (TSS) removal at a low coagulant-to-biomass ratio of 0.0601 (w/w) using Scenedesmus obliquus, and 78% TSS removal in real wastewater at a 1.5:1 ratio. Additionally, it removed 30% of total phosphorus (TP) under environmentally benign conditions, comparable to Alum but with lower chemical input. The integration of computational and experimental approaches demonstrates that MAPTAC-modified starch is an efficient, eco-friendly, and low-cost alternative for nutrient and solids removal in wastewater treatment. Full article
Show Figures

Figure 1

14 pages, 2399 KiB  
Article
Purification of Human Immunoglobulin G with Bathophenanthroline–Zn2+, –Fe2+, or –Cu2+ Complexes
by Thisara Jayawickrama Withanage, Ron Alcalay, Olga Krichevsky, Ellen Wachtel, Ohad Mazor and Guy Patchornik
Antibodies 2025, 14(2), 40; https://doi.org/10.3390/antib14020040 - 12 May 2025
Viewed by 712
Abstract
Background/Objectives: Pharmaceutical companies are aware of the ongoing effort to satisfy the increasing global demand for therapeutic-grade monoclonal antibodies (mAbs), an especially difficult challenge for poor and developing countries. We present a simple, economical, single-step purification approach at neutral pH for polyclonal human [...] Read more.
Background/Objectives: Pharmaceutical companies are aware of the ongoing effort to satisfy the increasing global demand for therapeutic-grade monoclonal antibodies (mAbs), an especially difficult challenge for poor and developing countries. We present a simple, economical, single-step purification approach at neutral pH for polyclonal human IgG (hIgG), which does not require any expensive ligands, chromatography columns, polymers, or membranes. Methods/Results: Instead, porous precipitates of commercial, recyclable aromatic [bathophenanthroline:cation] complexes were found to efficiently capture impurity proteins from CHO cells or E. coli lysate while maintaining the majority of the highly concentrated hIgG (5–15 mg/mL) in the supernatant. [(Batho)3:Zn2+] complexes were the most promising, resulting in hIgG with a purity of ≈95%, by SDS-PAGE. This purified hIgG is monomeric (by dynamic light scattering, DLS) and preserves the native secondary structure (by far UV circular dichroism spectroscopy, CD). The process yield is >90% (by densitometry) and is maintained after a 100-fold increase in the reaction volume, which required only proportional increases in reagents. Conclusions: Although Protein A chromatographic columns, the industry gold standard, have a limited binding capacity, are costly, and require familiarity with column maintenance, we are attempting, by our efforts, to help to produce a more efficient, simple, and economical purification platform. Full article
(This article belongs to the Section Antibody-Based Therapeutics)
Show Figures

Graphical abstract

14 pages, 2415 KiB  
Article
Influence of Ionization and the Addition of Cyclodextrins and Hydrophilic Excipients on the Solubility of Benzthiazide, Isoxicam, and Piroxicam
by Diego Lucero-Borja, Rebeca Ruiz, Elisabet Fuguet and Clara Ràfols
Pharmaceutics 2025, 17(5), 571; https://doi.org/10.3390/pharmaceutics17050571 - 25 Apr 2025
Viewed by 442
Abstract
Background: The bioavailability of a drug depends, among other parameters, on solubility. One of the strategies used to enhance the solubility of sparingly soluble drugs is the use of excipients. Excipients can interact with the drug by increasing its solubility and/or stabilizing [...] Read more.
Background: The bioavailability of a drug depends, among other parameters, on solubility. One of the strategies used to enhance the solubility of sparingly soluble drugs is the use of excipients. Excipients can interact with the drug by increasing its solubility and/or stabilizing supersaturated solutions. Some of the most common excipients are cyclodextrins and hydrophilic polymers. Objectives: The effect of two cyclodextrins (captisol and cavasol) and three hydrophilic polymers (klucel, kollidon and plasdone S630) on the solubility of three ionizable drugs (benzthiazide, isoxicam, and piroxicam) is evaluated at biorelevant pH values, using two complementary techniques. Methods: The solubility enhancement was evaluated by the comparison of the solubility with and without the presence of excipients through the shake-flask and CheqSol methodology. Results: Captisol and cavasol slightly increase the concentration of the neutral species of the drugs in the solution before precipitation begins, although they do not enhance the supersaturation duration nor the thermodynamic solubility of the drugs. The increase in solubility in the presence of cyclodextrins is mainly caused by the ionization state of the drug. Hydrophilic polymers not only improve thermodynamic solubility but also the extent and the duration of the supersaturation. Some metastable forms are observed for benzthiazide and isoxicam in the presence of kollidon and plasdone S630. Conclusions: The shake-flask method enabled the evaluation of thermodynamic solubility both in the absence and presence of excipients. Meanwhile, the CheqSol method provided insights into the presence of supersaturated solutions. Different behavior is observed depending on the nature of the excipient. Full article
Show Figures

Figure 1

17 pages, 4093 KiB  
Article
Preparation, Characterization, and Antibacterial Activity of Various Polymerylated Divalent Metal-Doped MF2O4 (M = Ni, Co, Zn) Ferrites
by Enas AlMatri, Nawal Madkhali, Sakina Mustafa, O. M. Lemine, Saja Algessair, Alia Mustafa, Rizwan Ali and Kheireddine El-Boubbou
Polymers 2025, 17(9), 1171; https://doi.org/10.3390/polym17091171 - 25 Apr 2025
Cited by 1 | Viewed by 673
Abstract
The continuous discovery of novel effective antibacterial agents using nano-based materials is of high significance. In this study, we utilized Polymerylated divalent-metal-doped ferrite nanoparticles (PMFe2O4 NPs) and studied their antibacterial inhibition effects. Different panels of PVP- and PEG-coated metal-doped MFe [...] Read more.
The continuous discovery of novel effective antibacterial agents using nano-based materials is of high significance. In this study, we utilized Polymerylated divalent-metal-doped ferrite nanoparticles (PMFe2O4 NPs) and studied their antibacterial inhibition effects. Different panels of PVP- and PEG-coated metal-doped MFe2O4 (M ≅ Co, Ni, and Zn) were prepared via the Ko-precipitation Hydrolytic Basic (KHB) methodology and thoroughly analyzed using TEM, XRD, FTIR, and VSM. The as-synthesized doped ferrites displayed stable quasi-spherical particles (7–15 nm in size), well-ordered crystalline cubic spinel phases, and high-saturation magnetizations reaching up to 68 emu/g. The antibacterial efficacy of the doped ferrites was then assessed against a Gram-negative E. coli bacterial strain. The results demonstrated that both metal doping and polymer functionalization influence the antimicrobial efficacies and performance of the ferrite NPs. The presence of the PVP polymer along with the divalent metal ions, particularly Co and Ni, resulted in the highest antibacterial inhibition and effective inactivation of the bacterial cells. The antibacterial performance was as follows: PVP-CoFe2O4 > PVP-NiFe2O4 > PVP-ZnFe2O4. Lastly, cell viability assays conducted on human breast fibroblast (HBF) cells confirmed the good safety profiles of the doped ferrites. These interesting results demonstrate the distinctive inhibitory features of the biocompatible metal-doped ferrites in enhancing bacterial killing and highlights their promising potential as effective antimicrobial agents, with possible applications in areas such as water disinfection, biomedical devices, and antimicrobial coatings. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop