Influence of Ionization and the Addition of Cyclodextrins and Hydrophilic Excipients on the Solubility of Benzthiazide, Isoxicam, and Piroxicam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Instruments
2.2.1. Shake-Flask Method
2.2.2. CheqSol Method
2.3. Procedures
2.3.1. pKa and logPo/w Determination
2.3.2. Shake-Flask Solubility Determination
2.3.3. CheqSol Solubility Determination
3. Results and Discussion
3.1. Shake-Flask Determinations
3.2. CheqSol Determinations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
API | Active pharmaceutical ingredient |
EXC | Excipient |
CAV | Cavasol |
CAP | Captisol |
KLU | Klucel |
KOL | Kollidon |
S630 | Plasdone S630 |
References
- Avdeef, A. Absorption and Drug Development: Solubility, Permeability, and Charge State, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 9781118057452. [Google Scholar]
- Di, L. Drug-like Properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization, 2nd ed.; Kerns, E.H., Ed.; Academic Press: Amsterdam, The Netherlands, 2016; ISBN 0128013222. [Google Scholar]
- Völgyi, G.; Box, K.J.; Comer, J.E.A.; Takács-Novák, K. Study of PH-Dependent Solubility of Organic Bases. Revisit of Henderson-Hasselbalch Relationship. Anal. Chim. Acta 2010, 673, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Baka, E.; Comer, J.E.A.; Takács-Novák, K. Study of Equilibrium Solubility Measurement by Saturation Shake-Flask Method Using Hydrochlorothiazide as Model Compound. J. Pharm. Biomed. Anal. 2008, 46, 335–341. [Google Scholar] [CrossRef]
- Hsieh, Y.L.; Ilevbare, G.A.; Eerdenbrugh, B.; Box, K.J.; Sanchez-Felix, M.V.; Taylor, L.S. pH-induced precipitation behavior of weakly basic compounds: Determination of extent and duration of supersaturation using potentiometric titration and correlation to solid sstate properties. Pharm. Res. 2012, 29, 2738–2753. [Google Scholar] [CrossRef] [PubMed]
- Shoghi, E.; Fuguet, E.; Bosch, E.; Ràfols, C. Solubility-PH Profiles of Some Acidic, Basic and Amphoteric Drugs. Eur. J. Pharm. Sci. 2013, 48, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of In Vitro Drug Product Dissolution and In Vivo Bioavailability. Pharm. Res. 1995, 12, 413–420. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services, Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER). Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System; Guidance for Industry; Center for Drug Evaluation and Research: Silver Spring, MD, USA, 2017. [Google Scholar]
- Kostewicz, E.S.; Wunderlich, M.; Brauns, U.; Becker, R.; Bock, T.; Dressman, J.B. Predicting the Precipitation of Poorly Soluble Weak Bases upon Entry in the Small Intestine. J. Pharm. Pharmacol. 2004, 56, 43–51. [Google Scholar] [CrossRef]
- Fornells, E.; Fuguet, E.; Mañé, M.; Ruiz, R.; Box, K.; Bosch, E.; Ràfols, C. Effect of Vinylpyrrolidone Polymers on the Solubility and Supersaturation of Drugs; A Study Using the Cheqsol Method. Eur. J. Pharm. Sci. 2018, 117, 227–235. [Google Scholar] [CrossRef]
- Van Duong, T.; Van Den Mooter, G. The Role of the Carrier in the Formulation of Pharmaceutical Solid Dispersions. Part II: Amorphous Carriers. Expert Opin. Drug Deliv. 2016, 13, 1681–1694. [Google Scholar] [CrossRef]
- Van Duong, T.; Ni, Z.; Taylor, L.S. Phase Behavior and Crystallization Kinetics of a Poorly Water-Soluble Weakly Basic Drug as a Function of Supersaturation and Media Composition. Mol. Pharm. 2022, 19, 1146–1159. [Google Scholar] [CrossRef]
- Narang, A.S.; Boddu, S.H. Excipient Applications in Formulation Design and Drug Delivery; Springer: Cham, Switzerland, 2015; pp. 1–681. ISBN 978-3-319-20205-1. [Google Scholar] [CrossRef]
- Loftsson, T.; Duchêne, D. Historical Perspectives Cyclodextrins and Their Pharmaceutical Applications. Int. J. Pharm. 2007, 329, 1–11. [Google Scholar] [CrossRef]
- Warren, D.B.; Benameur, H.; Porter, C.J.H.; Pouton, C.W. Using Polymeric Precipitation Inhibitors to Improve the Absorption of Poorly Water-Soluble Drugs: A Mechanistic Basis for Utility. J. Drug Target. 2010, 18, 704–731. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Jarho, P.; Másson, M.; Järvinen, T. Cyclodextrins in Drug Delivery. Expert Opin. Drug Deliv. 2005, 2, 335–351. [Google Scholar] [CrossRef] [PubMed]
- Challa, R.; Ahuja, A.; Ali, J.; Khar, R.K. Cyclodextrins in Drug Delivery: An Updated Review. AAPS PharmSciTech 2005, 6, E329–E357. [Google Scholar] [CrossRef] [PubMed]
- Jansook, P.; Ogawa, N.; Loftsson, T. Cyclodextrins: Structure, Physicochemical Properties and Pharmaceutical Applications. Int. J. Pharm. 2018, 535, 272–284. [Google Scholar] [CrossRef]
- Loftsson, T.; Hreinsdóttir, D.; Másson, M. Evaluation of Cyclodextrin Solubilization of Drugs. Int. J. Pharm. 2005, 302, 18–28. [Google Scholar] [CrossRef]
- Jambhekar, S.S.; Breen, P. Cyclodextrins in Pharmaceutical Formulations II: Solubilization, Binding Constant, and Complexation Efficiency. Drug Discov. Today 2016, 21, 363–368. [Google Scholar] [CrossRef]
- Jagtap, P.S.; Tagad, R.R.; Shendge, R.S. A Brief Review on Kollidon. J. Drug Deliv. Ther. 2019, 9, 493–500. [Google Scholar] [CrossRef]
- Nikghalb, L.A.; Singh, G.; Singh, G.; Kahkeshan, K.F. Solid Dispersion: Methods and Polymers to Increase the Solubility of Poorly Soluble Drugs. J. Appl. Pharm. Sci. 2012, 2, 170–175. [Google Scholar] [CrossRef]
- Leuner, C.; Dressman, J. Improving Drug Solubility for Oral Delivery Using Solid Dispersions. Eur. J. Pharm. Biopharm. 2000, 50, 47–60. [Google Scholar] [CrossRef]
- Ghasemi-Asl, S.; Shayanfa, A. The effect of pH and beta-cyclodextrin on solubility and solution stability of piroxicam cocrystals. J. Mol. Liq. 2025, 422, 126936. [Google Scholar] [CrossRef]
- Lucero-Borja, D.; Subirats, X.; Barbas, R.; Prohens, R.; Avdeef, A.; Ràfols, C. Potentiometric CheqSol and Standardized Shake-Flask Solubility Methods Are Complimentary Tools in Physicochemical Profiling. Eur. J. Pharm. Sci. 2020, 148, 105305. [Google Scholar] [CrossRef] [PubMed]
- Avdeef, A.; Fuguet, E.; Llinàs, A.; Ràfols, C.; Bosch, E.; Völgyi, G.; Verbic, T.; Boldyreva, E.; Takács-Novák, K. Equilibrium Solubility Measurement of Ionizable Drugs—Consensus Recommendations for Improving Data Quality. ADMET DMPK 2016, 4, 117–178. [Google Scholar] [CrossRef]
- Stuart, M.; Box, K. Chasing Equilibrium: Measuring the Intrinsic Solubility of Weak Acids and Bases. Anal. Chem. 2005, 77, 983–990. [Google Scholar] [CrossRef] [PubMed]
- ACD Percepta Platform, version 2012; Advanced Chemistry Development, Inc. (ACD/Labs): Toronto, ON, Canada, 2012. Available online: www.acdlabs.com (accessed on 18 March 2025).
- Avdeef, A.; Bucher, J.J. Accurate Measurements of the Concentration of Hydrogen Ions with a Glass Electrode: Calibrations Using the Prideaux and Other Universal Buffer Solutions and a Computer-Controlled Automatic Titrator. Anal. Chem. 1978, 50, 2137–2142. [Google Scholar] [CrossRef]
- Allen, R.I.; Box, K.J.; Comer, J.E.A.; Peake, C.; Tam, K.Y. Multiwavelength Spectrophotometric Determination of Acid Dissociation Constants of Ionizable Drugs. J. Pharm. Biomed. Anal. 1998, 17, 699–712. [Google Scholar] [CrossRef]
- Avdeef, A. PH-Metric LogP. II: Refinement of Partition Coefficients and Lonization Constants of Multiprotic Substances. J. Pharm. Sci. 1993, 82, 183–190. [Google Scholar] [CrossRef]
- Avdeef, A.; Comer, J.E.A.; Thomson, S.J. PH-Metric Log P. 3. Glass Electrode Calibration in Methanol-Water, Applied to pKa Determination of Water-Insoluble Substances. Anal. Chem. 1993, 65, 42–49. [Google Scholar] [CrossRef]
- Biorelevant. Available online: www.biorelevant.com (accessed on 18 March 2025).
- Avdeef, A. Multi-Lab Intrinsic Solubility Measurement Reproducibility in CheqSol and Shake-Flask Methods. ADMET DMPK 2019, 7, 210–219. [Google Scholar] [CrossRef]
- Goswami, S.; Majumdar, A.; Sarkar, M. Painkiller Isoxicam and Its Copper Complex Can Form Inclusion Complexes with Different Cyclodextrins: A Fluorescence, Fourier Transform Infrared Spectroscopy, and Nuclear Magnetic Resonance Study. J. Phys. Chem. B 2017, 121, 8454–8466. [Google Scholar] [CrossRef]
Compound | Chemical Structure | pKa | log Po/w | Molar Volume 2 (cm3) |
---|---|---|---|---|
Benzthiazide | 6.64 1; 9.22 1 | 1.89 (0.02) | 259.0 | |
Isoxicam | 3.84 1 | 2.99 (0.02) | 211.0 | |
Piroxicam | 1.89 (0.01); 5.34 (0.01) | 1.71 (0.02) | 211.9 |
Excipient | SEXC/SAPI | |||
---|---|---|---|---|
Benzthiazide | Isoxicam | Piroxicam | ||
pH 2 1 | Captisol | 1.14 | 1.48 | 1.44 |
Cavasol | 0.97 | 1.45 | 1.12 | |
Klucel | 1.20 | 1.50 | 1.94 | |
Kollidon | 1.29 | 1.47 | 1.54 | |
S630 | 1.61 | 1.81 | 2.02 | |
pH 3.5 2 | Captisol | --- | --- | 1.27 |
Cavasol | --- | --- | 0.96 | |
Klucel | --- | --- | 1.69 | |
Kollidon | --- | --- | 1.55 | |
S630 | --- | --- | 2.19 | |
pH 5.8 | Captisol | 1.09 | 1.44 | 0.96 |
Cavasol | 0.83 | 1.56 | 1.25 | |
Klucel | 1.12 | 1.93 | 1.73 | |
Kollidon | 1.21 | 1.88 | 1.70 | |
S630 | 1.49 | 1.96 | 1.99 | |
pH 6.5 | Captisol | 1.29 | 1.52 | 1.03 |
Cavasol | 0.98 | 1.61 | 1.56 | |
Klucel | 1.15 | 1.84 | 2.01 | |
Kollidon | 1.24 | 1.93 | 2.24 | |
S630 | 1.28 | 1.73 | 2.92 |
Compound–Excipient | Cmax (µM) | ts (min) | Rs |
---|---|---|---|
Benzthiazide | 44 (11) | 6 (1) | 4 (1) |
Benzthiazide–Captisol | 50 (5) | 6 (1) | 4.2 (0.4) |
Benzthiazide–Cavasol | 92 (10) | 7 (1) | 7.7 (0.8) |
Benzthiazide–Klucel | 516 (54) | 14 (2) | 43 (5) |
Benzthiazide–Kollidon | 1404 (178) | 21 (1) | 104 (26) |
Benzthiazide–Plasdone S630 | 535 (87) | 25 (3) | 45 (8) |
Isoxicam | 92 (9) | 11 (3) | 48 (4) |
Isoxicam–Captisol | 137 (6) | 8 (1) | 71 (3) |
Isoxicam–Cavasol | 122 (12) | 7 (1) | 64 (6) |
Isoxicam–Klucel | 195 (13) | 16 (6) | 102 (7) |
Isoxicam–Kollidon | 317 (73) | 18 (4) | 166 (38) |
Isoxicam–Plasdone S630 | 200 (18) | 19 (3) | 105 (9) |
Piroxicam | 706 (135) | 7 (1) | 34 (6) |
Piroxicam–Captisol | 831 (56) | 8 (1) | 40 (3) |
Piroxicam–Cavasol | 849 (130) | 7 (1) | 41 (6) |
Piroxicam–Klucel | 2431 (454) | 13 (2) | 117 (22) |
Piroxicam–Kollidon | 1980 (450) | 7 (1) | 95 (22) |
Piroxicam–Plasdone S630 | 3561 (576) | 10 (1) | 171 (28) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucero-Borja, D.; Ruiz, R.; Fuguet, E.; Ràfols, C. Influence of Ionization and the Addition of Cyclodextrins and Hydrophilic Excipients on the Solubility of Benzthiazide, Isoxicam, and Piroxicam. Pharmaceutics 2025, 17, 571. https://doi.org/10.3390/pharmaceutics17050571
Lucero-Borja D, Ruiz R, Fuguet E, Ràfols C. Influence of Ionization and the Addition of Cyclodextrins and Hydrophilic Excipients on the Solubility of Benzthiazide, Isoxicam, and Piroxicam. Pharmaceutics. 2025; 17(5):571. https://doi.org/10.3390/pharmaceutics17050571
Chicago/Turabian StyleLucero-Borja, Diego, Rebeca Ruiz, Elisabet Fuguet, and Clara Ràfols. 2025. "Influence of Ionization and the Addition of Cyclodextrins and Hydrophilic Excipients on the Solubility of Benzthiazide, Isoxicam, and Piroxicam" Pharmaceutics 17, no. 5: 571. https://doi.org/10.3390/pharmaceutics17050571
APA StyleLucero-Borja, D., Ruiz, R., Fuguet, E., & Ràfols, C. (2025). Influence of Ionization and the Addition of Cyclodextrins and Hydrophilic Excipients on the Solubility of Benzthiazide, Isoxicam, and Piroxicam. Pharmaceutics, 17(5), 571. https://doi.org/10.3390/pharmaceutics17050571