Purification of Human Immunoglobulin G with Bathophenanthroline–Zn2+, –Fe2+, or –Cu2+ Complexes
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Methods
2.2.1. Preparation of 200 mM Bathophenanthroline:DMSO:HCl Solution
2.2.2. Polyclonal IgG Purification—Step I: Preparation of [(Batho)x:Cationy] Complexes
2.2.3. Polyclonal IgG Purification—Step II: Impurity Capture
2.2.4. SDS-PAGE Electrophoresis
2.2.5. Binding Capacity of the [(Batho)3:Zn2+] Complex for Impurity Proteins
2.2.6. Binding Capacity of the [(Batho)3:Zn2+] Complex, Mw 1061 Daltons, for Impurity Proteins
2.2.7. Bradford Assay of Impurity Proteins
2.2.8. Scanning Electron Microscopy Imaging
2.2.9. Dynamic Light Scattering (DLS)
2.2.10. Circular Dichroism (CD) Spectroscopy
2.2.11. HIgG Purification in a Protein A HP Spin-TrapTM Column
3. Results and Discussion
3.1. Complex Precipitate Morphologies
3.2. Comparison of Process Yields for Different Divalent Cations
3.3. Binding Capacity of [(Batho)3:Zn2+] Aromatic Complexes for Protein Impurities
3.4. Optimizing pH and Buffer Concentration for the HIgG Purification Protocol
3.5. Native, Non-Aggregated State of HIgG
3.6. Comparison of Aromatic Complex Purification and Protein A Chromatography
3.7. Increasing the Reaction Volume
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jain, E.; Kumar, A. Upstream processes in antibody production: Evaluation of critical parameters. Biotechnol. Adv. 2008, 26, 46–72. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.A.; Thömmes, J. Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol. 2010, 28, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Elvin, J.G.; Couston, R.G.; van der Walle, C.F. Therapeutic antibodies: Market considerations, disease targets and bioprocessing. Int. J. Pharm. 2013, 440, 83–98. [Google Scholar] [CrossRef]
- Khanal, O.; Lenhoff, A.M. Developments and opportunities in continuous biopharmaceutical manufacturing. mAbs 2021, 13, 1903664. [Google Scholar] [CrossRef]
- Kaplon, H.; Chenoweth, A.; Crescioli, S.; Reichert, J.M. Antibodies to watch in 2022. mAbs 2022, 14, 2014296. [Google Scholar] [CrossRef]
- Ghose, S.; Hubbard, B.; Cramer, S.M. Binding capacity differences for antibodies and Fc-fusion proteins on protein A chromatographic materials. Biotechnol. Bioeng. 2007, 96, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Kelley, B. Industrialization of mAb production technology: The bioprocessing industry at a crossroads. mAbs 2009, 1, 443–452. [Google Scholar] [CrossRef]
- Li, F.; Vijayasankaran, N.; Shen, A.; Kiss, R.; Amanullah, A. Cell culture processes for monoclonal antibody production. mAbs 2010, 2, 466–479. [Google Scholar] [CrossRef]
- Huang, Y.M.; Hu, W.; Rustandi, E.; Chang, K.; Yusuf-Makagiansar, H.; Ryll, T. Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol. Prog. 2010, 26, 1400–1410. [Google Scholar] [CrossRef]
- Natarajan, V.; Zydney, A.L. Protein A chromatography at high titers. Biotechnol. Bioeng. 2013, 110, 2445–2451. [Google Scholar] [CrossRef]
- Chon, J.H.; Zarbis-Papastoitsis, G. Advances in the production and downstream processing of antibodies. New Biotechnol. 2011, 28, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.; Meneses-Acosta, A. Recent advances in technology supporting biopharmaceutical production from mammalian cells. Appl. Microbiol. Biotechnol. 2012, 96, 885–894. [Google Scholar] [CrossRef]
- Yavorsky, D.; Blanck, R.; Lambalot, C.; Brunkow, R. The clarification of bioreactor cell cultures for biopharmaceuticals. Pharm. Technol. 2003, 27, 62–76. [Google Scholar]
- Liu, H.F.; Ma, J.; Winter, C.; Bayer, R. Recovery and purification process development for monoclonal antibody production. mAbs 2010, 2, 480–499. [Google Scholar] [CrossRef] [PubMed]
- Gavara, P.R.; Bibi, N.S.; Sanchez, M.L.; Grasselli, M.; Fernandez-Lahore, M. Chromatographic Characterization and Process Performance of Column-Packed Anion Exchange Fibrous Adsorbents for High Throughput and High Capacity Bioseparations. Processes 2015, 3, 204–221. [Google Scholar] [CrossRef]
- Yang, W.C.; Minkler, D.F.; Kshirsagar, R.; Ryll, T.; Huang, Y.M. Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity. J. Biotechnol. 2016, 217, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Buist, G.; van Dijl, J.M. Staphylococcus aureus cell wall maintenance—The multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence. FEMS Microbiol. Rev. 2022, 46, fuac025. [Google Scholar] [CrossRef]
- Vidarsson, G.; Dekkers, G.; Rispens, T. IgG subclasses and allotypes: From structure to effector functions. Front. Immunol. 2014, 5, 520. [Google Scholar] [CrossRef]
- DeLano, W.L.; Ultsch, M.H.; de, A.M.; Vos, N.; Wells, J.A. Convergent solutions to binding at a protein-protein interface. Science 2000, 287, 1279–1283. [Google Scholar] [CrossRef]
- Follman, D.K.; Fahrner, R.L. Factorial screening of antibody purification processes using three chromatography steps without protein A. J. Chromatogr. A 2004, 1024, 79–85. [Google Scholar] [CrossRef]
- Valdés, R.; Ibarra, N.; Ruibal, I.; Beldarraın, A.; Noa, E.; Herrera, N.; Alemán, R.; Padilla, S.; Garcia, J.; Pérez, M.; et al. Chromatographic removal combined with heat, acid and chaotropic inactivation of four model viruses. J. Biotechnol. 2002, 96, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Brorson, K.; Brown, J.; Hamilton, E.; Stein, K.E. Identification of protein A media performance attributes that can be monitored as surrogates for retrovirus clearance during extended re-use. J. Chromatogr. A 2003, 989, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.D.; Kluck, B.; Bentley, T. DNA spike studies for demonstrating improved clearance on chromatographic media. J. Chromatogr. A 2009, 1216, 6938–6945. [Google Scholar] [CrossRef]
- Tarrant, R.D.; Velez-Suberbie, M.L.; Tait, A.S.; Smales, C.M.; Bracewell, D.G. Host cell protein adsorption characteristics during protein A chromatography. Biotechnol. Prog. 2012, 28, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.A.; Hinckley, P. Host cell protein clearance during protein A chromatography: Development of an improved column wash step. Biotechnol. Prog. 2008, 24, 1115–1121. [Google Scholar] [CrossRef]
- Linhult, M.; Gülich, S.; Gräslund, T.; Simon, A.; Karlsson, M.; Sjöberg, A.; Nord, K.; Hober, S. Improving the tolerance of a protein a analogue to repeated alkaline exposures using a bypass mutagenesis approach. Proteins 2004, 55, 407–416. [Google Scholar] [CrossRef]
- Hari, S.B.; Lau, H.; Razinkov, V.I.; Chen, S.; Latypov, R.F. Acid-induced aggregation of human monoclonal IgG1 and IgG2: Molecular mechanism and the effect of solution composition. Biochemistry 2010, 49, 9328–9338. [Google Scholar] [CrossRef]
- Bansal, R.; Gupta, S.; Rathore, A.S. Analytical Platform for Monitoring Aggregation of Monoclonal Antibody Therapeutics. Pharm. Res. 2019, 36, 152. [Google Scholar] [CrossRef]
- Paul, A.J.; Schwab, K.; Hesse, F. Direct analysis of mAb aggregates in mammalian cell culture supernatant. BMC Biotechnol. 2014, 14, 99. [Google Scholar] [CrossRef]
- Zhang, J.; Siva, S.; Caple, R.; Ghose, S.; Gronke, R. Maximizing the functional lifetime of Protein A resins. Biotechnol. Prog. 2017, 33, 708–715. [Google Scholar] [CrossRef]
- McDonald, P.; Victa, C.; Carter-Franklin, J.N.; Fahrner, R. Selective antibody precipitation using polyelectrolytes: A novel approach to the purification of monoclonal antibodies. Biotechnol. Bioeng. 2009, 102, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, A.M.; Rosa, P.A.; Ferreira, I.F.; Aires-Barros, M.R. Chromatography-free recovery of biopharmaceuticals through aqueous two-phase processing. Trends Biotechnol. 2009, 27, 240–247. [Google Scholar] [CrossRef]
- Mao, L.N.; Rogers, J.K.; Westoby, M.; Conley, L.; Pieracci, J. Downstream antibody purification using aqueous two-phase extraction. Biotechnol. Prog. 2010, 26, 1662–1670. [Google Scholar] [CrossRef] [PubMed]
- van Reis, R.; Zydney, A. Bioprocess membrane technology. J. Membr. Sci. 2007, 297, 16–50. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, F.; Zhao, Y.; Xiong, Y.; Zhang, X.; Shi, Z.; Qian, S.; Qin, H.; Qing, G. Enrichment of IgG and HRP glycoprotein by dipeptide-based polymeric material. Talanta 2022, 241, 123223. [Google Scholar] [CrossRef] [PubMed]
- Dhandapani, G.; Wachtel, E.; Sheves, M.; Patchornik, G. Nonionic detergent micelle aggregates: An economical alternative to protein A chromatography. New Biotechnol. 2021, 61, 90–98. [Google Scholar] [CrossRef]
- Dhandapani, G.; Wachtel, E.; Patchornik, G. Conjugated surfactant micelles: A non-denaturing purification platform for concentrated human immunoglobulin G. Nano Sel. 2023, 4, 386–394. [Google Scholar] [CrossRef]
- Withanage, T.J.; Lal, M.; Wachtel, E.; Patchornik, G. Conjugated Nonionic Detergent Micelles: An Efficient Purification Platform for Dimeric Human Immunoglobulin A. ACS Med. Chem. Lett. 2024, 15, 979–986. [Google Scholar] [CrossRef]
- Dhandapani, G.; Wachtel, E.; Das, I.; Sheves, M.; Patchornik, G. Conjugated detergent micelles as a platform for IgM purification. Biotechnol. Bioeng. 2022, 119, 1997–2003. [Google Scholar] [CrossRef]
- Dhandapani, G.; Howard, A.; Truong, T.V.; Baiju, T.V.; Kesselman, E.; Friedman, N.; Wachtel, E.; Sheves, M.; Danino, D.; Namboothiri, I.N.; et al. A general platform for antibody purification utilizing engineered-micelles. mAbs 2019, 11, 583–592. [Google Scholar] [CrossRef]
- Withanage, T.J.; Lal, M.; Salem, H.; Krichevski, O.; Wachtel, E.; Patchornik, G. The [(bathophenanthroline)3:Fe2+] complex as an aromatic non-polymeric medium for purification of human lactoferrin. J. Chromatogr. A 2024, 1732, 465218. [Google Scholar] [CrossRef] [PubMed]
- Noy-Porat, T.; Cohen, O.; Ehrlich, S.; Epstein, E.; Alcalay, R.; Mazor, O. Acetylcholinesterase-Fc Fusion Protein (AChE-Fc): A Novel Potential Organophosphate Bioscavenger with Extended Plasma Half-Life. Bioconjug. Chem. 2015, 26, 1753–1758. [Google Scholar] [CrossRef] [PubMed]
- Shafferman, A.; Ordentlich, A.; Barak, D.; Kronman, C.; Ber, R.; Bino, T.; Ariel, N.; Osman, R.; Velan, B. Electrostatic attraction by surface charge does not contribute to the catalytic efficiency of acetylcholinesterase. EMBO J. 1994, 13, 3448–3455. [Google Scholar] [CrossRef]
- Dhandapani, G.; Wachtel, E.; Das, I.; Sheves, M.; Patchornik, G. Purification of antibody fragments via interaction with detergent micellar aggregates. Sci. Rep. 2021, 11, 11697. [Google Scholar] [CrossRef]
- Perry, R.D.; Clemente, C.L.S. Determination of iron with bathophenanthroline following an improved procedure for reduction of iron(III) ions. Analyst 1977, 102, 114–119. [Google Scholar] [CrossRef]
- O’Laughlin, J.W. Separation of cationic metal chelates of 1,10-phenanthroline by liquid chromatography. Anal. Chem. 1982, 54, 178–181. [Google Scholar] [CrossRef]
- Ng, N.S.; Wu, M.J.; Jones, C.E.; Aldrich-Wright, J.R. The antimicrobial efficacy and DNA binding activity of the copper(II) complexes of 3,4,7,8-tetramethyl-1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline and 1,2-diaminocyclohexane. J. Inorg. Biochem. 2016, 162, 62–72. [Google Scholar] [CrossRef]
- Zhang, J.H.; Shan, L.L.; Liang, F.; Du, C.Y.; Li, J.J. Strategies and Considerations for Improving Recombinant Antibody Production and Quality in Chinese Hamster Ovary Cells. Front. Bioeng. Biotechnol. 2022, 10, 856049. [Google Scholar] [CrossRef]
- Kelley, B. Developing therapeutic monoclonal antibodies at pandemic pace. Nat. Biotechnol. 2020, 38, 540–545. [Google Scholar] [CrossRef]
- Rashid, M.H. Full-length recombinant antibodies from Escherichia coli: Production, characterization, effector function (Fc) engineering, and clinical evaluation. mAbs 2022, 14, 2111748. [Google Scholar] [CrossRef]
- Cain, P.; Huang, L.; Tang, Y.; Anguiano, V.; Feng, Y. Impact of IgG subclass on monoclonal antibody developability. mAbs 2023, 15, 2191302. [Google Scholar] [CrossRef] [PubMed]
- Dhandapani, G.; Nair, D.K.; Kale, R.R.; Wachtel, E.; Namboothiri, I.N.; Patchornik, G. Role of amphiphilic [metal:chelator] complexes in a non-chromatographic antibody purification platform. J. Chromatogr. B 2019, 1133, 121830. [Google Scholar] [CrossRef] [PubMed]
- Bruque, M.G.; Rodger, A.; Hoffmann, S.V.; Jones, N.C.; Aucamp, J.; Dafforn, T.R.; Thomas, O.R. Analysis of the Structure of 14 Therapeutic Antibodies Using Circular Dichroism Spectroscopy. Anal. Chem. 2024, 96, 15151–15159. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876–2890. [Google Scholar] [CrossRef]
- Buyel, J.F.; Twyman, R.M.; Fischer, R. Very-large-scale production of antibodies in plants: The biologization of manufacturing. Biotechnol. Adv. 2017, 35, 458–465. [Google Scholar] [CrossRef]
Reaction Volume | 0.1 mL | 1 mL | 2.5 mL | 5 mL | 10 mL |
---|---|---|---|---|---|
Yield (%) | 93 ± 4 | 93 ± 4 | 92 ± 4 | 90 ± 4 | 94 ± 4 |
Purity (%) | 95 | 94 | 95 | 95 | 94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Withanage, T.J.; Alcalay, R.; Krichevsky, O.; Wachtel, E.; Mazor, O.; Patchornik, G. Purification of Human Immunoglobulin G with Bathophenanthroline–Zn2+, –Fe2+, or –Cu2+ Complexes. Antibodies 2025, 14, 40. https://doi.org/10.3390/antib14020040
Withanage TJ, Alcalay R, Krichevsky O, Wachtel E, Mazor O, Patchornik G. Purification of Human Immunoglobulin G with Bathophenanthroline–Zn2+, –Fe2+, or –Cu2+ Complexes. Antibodies. 2025; 14(2):40. https://doi.org/10.3390/antib14020040
Chicago/Turabian StyleWithanage, Thisara Jayawickrama, Ron Alcalay, Olga Krichevsky, Ellen Wachtel, Ohad Mazor, and Guy Patchornik. 2025. "Purification of Human Immunoglobulin G with Bathophenanthroline–Zn2+, –Fe2+, or –Cu2+ Complexes" Antibodies 14, no. 2: 40. https://doi.org/10.3390/antib14020040
APA StyleWithanage, T. J., Alcalay, R., Krichevsky, O., Wachtel, E., Mazor, O., & Patchornik, G. (2025). Purification of Human Immunoglobulin G with Bathophenanthroline–Zn2+, –Fe2+, or –Cu2+ Complexes. Antibodies, 14(2), 40. https://doi.org/10.3390/antib14020040