polymers-logo

Journal Browser

Journal Browser

Current and Future Trends in Thermosetting Resins

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 534

Special Issue Editor


E-Mail Website
Guest Editor
Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Gliniana 33, 20-614 Lublin, Poland
Interests: heterogeneous polymerization techniques; investigations of porous structure of polymeric materials; chemical modification of polymers; preparation of polymeric microspheres for chromatography and separation techniques; accelerated aging test of materials; synthesis of (bio)composites; degradation studies of (bio)compossites; thermal analysis of polymers; spectroscopic analysis of polymeric materials; solid-phase extraction of synthetic and natural organic compounds; chromatographic analysis of synthetic and natural organic compounds
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Year by year, there is a constantly growing interest in obtaining various materials based on thermosetting resins. The increasingly new and more unusual trends in their applications in the different areas of human life, caused by improved mechanical, chemical, thermal, and optical properties or flammability, require continuous research in this field of polymer science. Resins are mainly used to obtain advanced engineering materials; composites and laminates for the automotive, marine, aerospace, construction, or military industries; as well as paints or coatings. Resin-based materials also find application in dentistry, pharmacy, and medicine.

The aim of this Special Issue is to highlight the progress and fundamental aspects of the synthesis, characterization, fabrication, and applications of materials from various synthetic resins, such as polyester, epoxy, and acrylic. I kindly invite you to submit a manuscript for this Special Issue. Reviews, original full papers, and short communications about current and future trends in resin-based materials are all welcome.

Dr. Przemysław Pączkowski
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • thermosetting resin
  • unsaturated polyester resins
  • vinyl ester resins
  • epoxy resins
  • acrylic resins
  • biomaterials
  • nanomaterials
  • synthesis of resin-based materials
  • characterization of resin-based materials
  • application of resin-based materials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 12347 KiB  
Article
Long-Term Physical and Chemical Stability and Energy Recovery Potential Assessment of a New Chelating Resin Used in Brine Treatment for Chlor-Alkali Plants
by Liliana Lazar, Loredana-Vasilica Postolache, Valeria Danilova, Dumitru Coman, Adrian Bele, Daniela Rusu, Mirela-Fernanda Zaltariov and Gabriela Lisa
Polymers 2025, 17(11), 1575; https://doi.org/10.3390/polym17111575 - 5 Jun 2025
Viewed by 378
Abstract
Brine purification is an important process unit in chlor-alkali industrial plants for the production of sodium hydroxide, chlorine, and hydrogen. The membrane cell process requires ultrapure brine, which is obtained through mechanical filtration, chemical precipitation and fine polishing, and ion exchange using polymer [...] Read more.
Brine purification is an important process unit in chlor-alkali industrial plants for the production of sodium hydroxide, chlorine, and hydrogen. The membrane cell process requires ultrapure brine, which is obtained through mechanical filtration, chemical precipitation and fine polishing, and ion exchange using polymer resins. Temperature variations can lead to the degradation of the exchange properties of these resins, primarily causing a decrease in their exchange capacity, which negatively impacts the efficiency of the brine purification. After multiple ion exchange regeneration cycles, significant quantities of spent resins may be generated. These must be managed in accordance with resource efficiency and hazardous waste management to ensure the sustainability of the industrial process. In this paper, a comparative study is conducted to characterize the long-term stability of a new commercial chelating resin used in the industrial electrolysis process. The spectroscopic methods of physicochemical characterization included: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR). The thermal behavior of the polymer resins was evaluated using the following thermogravimetric methods: thermogravimetry (TG), derivative thermogravimetry (DTG), and differential thermal analysis (DTA), while the moisture behavior was studied using dynamic vapor sorption (DVS) analysis. To assess the energy potential, the polymer resins were analyzed to determine their calorific value and overall energy content. Full article
(This article belongs to the Special Issue Current and Future Trends in Thermosetting Resins)
Show Figures

Figure 1

Back to TopTop