Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,044)

Search Parameters:
Keywords = polymer-matrix composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6500 KiB  
Article
The Effect of Bio-Based Polyamide 10.10 and Treated Fly Ash on Glass-Fiber-Reinforced Polyamide 6 Properties
by George-Mihail Teodorescu, Zina Vuluga, Toma Fistoș, Sofia Slămnoiu-Teodorescu, Jenica Paceagiu, Cristian-Andi Nicolae, Augusta Raluca Gabor, Marius Ghiurea, Cătălina Gîfu and Rodica Mariana Ion
Polymers 2025, 17(14), 1950; https://doi.org/10.3390/polym17141950 (registering DOI) - 16 Jul 2025
Abstract
Increased concern for human health and the environment has pushed various industries to adopt new approaches towards satisfying modern regulations. Strategies to achieve these approaches include utilizing lightweight materials, repurposing waste materials, and substituting synthetic polymers with bio-based counterparts. This study investigates the [...] Read more.
Increased concern for human health and the environment has pushed various industries to adopt new approaches towards satisfying modern regulations. Strategies to achieve these approaches include utilizing lightweight materials, repurposing waste materials, and substituting synthetic polymers with bio-based counterparts. This study investigates the effects of treated fly ash (C) and bio-based polyamide 10.10 (PA10) on the thermal, morphological, and mechanical properties of glass fiber (GF)-reinforced polyamide 6 (PA6). Our main objective was to develop a composite that would allow for the partial replacement of glass fiber in reinforced polyamide 6 composites (PA6-30G) while maintaining a favorable balance of mechanical properties. Composites processed via melt processing demonstrated enhanced mechanical properties compared to PA6-30G. Notably, significant improvements were observed in impact strength and tensile strain at break. The addition of PA10 resulted in increases of 18% in impact strength and 35% in tensile strain relative to PA6-30G. Complementary, structural and morphological analyses confirmed strong interfacial interactions within the composite matrix. These findings indicate that a PA6/PA10 hybrid composite may represent a viable alternative material for potential automotive applications. Full article
Show Figures

Figure 1

22 pages, 10564 KiB  
Article
Evaluating Polylactic Acid and Basalt Fibre Composites as a Potential Bioabsorbable Stent Material
by Seán Mulkerins, Guangming Yan, Declan Mary Colbert, Declan M. Devine, Patrick Doran, Shane Connolly and Noel Gately
Polymers 2025, 17(14), 1948; https://doi.org/10.3390/polym17141948 - 16 Jul 2025
Abstract
Bioabsorbable polymer stents (BPSs) were developed to address the long-term clinical drawbacks associated with permanent metallic stents by gradually dissolving over time before these drawbacks have time to develop. However, the polymers used in BPSs, such as polylactic acid (PLA), have lower mechanical [...] Read more.
Bioabsorbable polymer stents (BPSs) were developed to address the long-term clinical drawbacks associated with permanent metallic stents by gradually dissolving over time before these drawbacks have time to develop. However, the polymers used in BPSs, such as polylactic acid (PLA), have lower mechanical properties than metals, often requiring larger struts to provide the necessary structural support. These larger struts have been linked to delayed endothelialisation and an increased risk of stent thrombosis. To address this limitation, this study investigated the incorporation of high-strength basalt fibres into PLA to enhance its mechanical performance, with an emphasis on optimising the processing conditions to achieve notable improvements at minimal fibre loadings. In this regard, PLA/basalt fibre composites were prepared via twin-screw extrusion at screw speeds of 50, 200, and 350 RPM. The effects were assessed through ash content testing, tensile testing, SEM, and rheometry. The results showed that lower screw speeds achieved adequate fibre dispersion while minimising the molecular weight reduction, leading to the most substantial improvement in the mechanical properties. To examine whether a second extrusion run could enhance the fibre dispersion, improving the composite’s uniformity and, therefore, mechanical enhancement, all the batches underwent a second extrusion run. This run improved the dispersion, leading to increased strength and an increased modulus; however, it also reduced the fibre–matrix adhesion and resulted in a notable reduction in the molecular weight. The highest mechanical performance was observed at 10% fibre loading and 50 RPM following a second extrusion run, with the tensile strength increasing by 20.23% and the modulus by 27.52%. This study demonstrates that the processing conditions can influence the fibres’ effectiveness, impacting dispersion, adhesion, and molecular weight retention, all of which affect this composite’s mechanical performance. Full article
(This article belongs to the Section Polymer Fibers)
15 pages, 721 KiB  
Article
Effect of Superabsorbent Polymer Size on Strength and Shrinkage in Concrete Mixtures
by Wissawin Arckarapunyathorn, Pochpagee Markpiban and Raktipong Sahamitmongkol
Polymers 2025, 17(14), 1942; https://doi.org/10.3390/polym17141942 - 16 Jul 2025
Abstract
This study investigates the influence of superabsorbent polymer (SAP) particle size on the mechanical and shrinkage behavior of concrete. Five concrete mixtures were prepared using SAPs with varying size ranges: 150–300 µm, 300–600 µm, 600–1800 µm, and a blended mix combining 300–600 µm [...] Read more.
This study investigates the influence of superabsorbent polymer (SAP) particle size on the mechanical and shrinkage behavior of concrete. Five concrete mixtures were prepared using SAPs with varying size ranges: 150–300 µm, 300–600 µm, 600–1800 µm, and a blended mix combining 300–600 µm and 600–1180 µm. The primary focus was on evaluating compressive strength, elastic modulus, autogenous shrinkage, drying shrinkage, and total shrinkage. The mechanical performance and dimensional stability were measured at different curing ages, and microstructural analysis was conducted using X-ray fluorescence (XRF) at 7 days to examine changes in chemical composition. Results showed that smaller SAP sizes contributed to more homogeneous internal curing, improved hydration, and higher matrix density. In contrast, larger SAP particles were more effective in reducing shrinkage but slightly compromised strength and stiffness. This study emphasizes the importance of selecting appropriate SAP particle sizes to balance mechanical integrity and shrinkage control, contributing to the development of high-performance concrete with reduced cracking potential. Full article
(This article belongs to the Special Issue Polymer Materials for Construction)
Show Figures

Figure 1

24 pages, 5750 KiB  
Article
Effect of Irradiated Nanocellulose on Enhancing the Functionality of Polylactic Acid-Based Composite Films for Packaging Applications
by Ilaria Improta, Mariamelia Stanzione, Elena Orlo, Fabiana Tescione, Marino Lavorgna, Xavier Coqueret and Giovanna G. Buonocore
Polymers 2025, 17(14), 1939; https://doi.org/10.3390/polym17141939 - 15 Jul 2025
Viewed by 54
Abstract
This study investigates the combined use of electron beam irradiation (EBI) and nanotechnology to develop improved food packaging films. EBI, commonly applied for sterilization, can alter polymer microstructure, while irradiated cellulose nanocrystals (CNCs) offer enhanced functionality when incorporated into biopolymer matrices. Here, CNCs [...] Read more.
This study investigates the combined use of electron beam irradiation (EBI) and nanotechnology to develop improved food packaging films. EBI, commonly applied for sterilization, can alter polymer microstructure, while irradiated cellulose nanocrystals (CNCs) offer enhanced functionality when incorporated into biopolymer matrices. Here, CNCs were irradiated with doses up to 50 kGy, leading to the formation of carboxyl and aldehyde groups, confirmed by FTIR analysis, as a consequence of the initial formation of free radicals and peroxides that may subsist in that original form or be converted into various carbonyl groups. Flexible films were obtained by incorporating pristine and EB-irradiated CNCs in an internal mixer, using minute amounts of poly(ethylene oxide) (PEO) to facilitate the dispersion of the filler within the polymer matrix. The resulting PLA/PEO/CNC films were evaluated for their mechanical, thermal, barrier, and antioxidant properties. The results showed that structural modifications of CNCs led to significant enhancements in the performance of the composite films, including a 30% improvement in water barrier properties and a 50% increase in antioxidant activity. These findings underscore the potential of irradiated CNCs as effective additives in biopolymer-based active packaging, offering a sustainable approach to reduce dependence on synthetic preservatives and potentially extend the shelf life of food products. Full article
(This article belongs to the Special Issue Sustainable Polymers for Value Added and Functional Packaging)
Show Figures

Figure 1

28 pages, 5774 KiB  
Article
Data-Driven Prediction of Polymer Nanocomposite Tensile Strength Through Gaussian Process Regression and Monte Carlo Simulation with Enhanced Model Reliability
by Pavan Hiremath, Subraya Krishna Bhat, Jayashree P. K., P. Krishnananda Rao, Krishnamurthy D. Ambiger, Murthy B. R. N., S. V. Udaya Kumar Shetty and Nithesh Naik
J. Compos. Sci. 2025, 9(7), 364; https://doi.org/10.3390/jcs9070364 - 14 Jul 2025
Viewed by 181
Abstract
This study presents a robust machine learning framework based on Gaussian process regression (GPR) to predict the tensile strength of polymer nanocomposites reinforced with various nanofillers and processed under diverse techniques. A comprehensive dataset comprising 25 polymer matrices, 22 surface functionalization methods, and [...] Read more.
This study presents a robust machine learning framework based on Gaussian process regression (GPR) to predict the tensile strength of polymer nanocomposites reinforced with various nanofillers and processed under diverse techniques. A comprehensive dataset comprising 25 polymer matrices, 22 surface functionalization methods, and 24 processing routes was constructed from the literature. GPR, coupled with Monte Carlo sampling across 2000 randomized iterations, was employed to capture nonlinear dependencies and uncertainty propagation within the dataset. The model achieved a mean coefficient of determination (R2) of 0.96, RMSE of 12.14 MPa, MAE of 7.56 MPa, and MAPE of 31.73% over 2000 Monte Carlo iterations, outperforming conventional models such as support vector machine (SVM), regression tree (RT), and artificial neural network (ANN). Sensitivity analysis revealed the dominant influence of Carbon Nanotubes (CNT) weight fraction, matrix tensile strength, and surface modification methods on predictive accuracy. The findings demonstrate the efficacy of the proposed GPR framework for accurate, reliable prediction of composite mechanical properties under data-scarce conditions, supporting informed material design and optimization. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

20 pages, 917 KiB  
Article
Numerical Investigation of Buckling Behavior of MWCNT-Reinforced Composite Plates
by Jitendra Singh, Ajay Kumar, Barbara Sadowska-Buraczewska, Wojciech Andrzejuk and Danuta Barnat-Hunek
Materials 2025, 18(14), 3304; https://doi.org/10.3390/ma18143304 - 14 Jul 2025
Viewed by 149
Abstract
The current study demonstrates the buckling properties of composite laminates reinforced with MWCNT fillers using a novel higher-order shear and normal deformation theory (HSNDT), which considers the effect of thickness in its mathematical formulation. The hybrid HSNDT combines polynomial and hyperbolic functions that [...] Read more.
The current study demonstrates the buckling properties of composite laminates reinforced with MWCNT fillers using a novel higher-order shear and normal deformation theory (HSNDT), which considers the effect of thickness in its mathematical formulation. The hybrid HSNDT combines polynomial and hyperbolic functions that ensure the parabolic shear stress profile and zero shear stress boundary condition at the upper and lower surface of the plate, hence removing the need for a shear correction factor. The plate is made up of carbon fiber bounded together with polymer resin matrix reinforced with MWCNT fibers. The mechanical properties are homogenized by a Halpin–Tsai scheme. The MATLAB R2019a code was developed in-house for a finite element model using C0 continuity nine-node Lagrangian isoparametric shape functions. The geometric nonlinear and linear stiffness matrices are derived using the principle of virtual work. The solution of the eigenvalue problem enables estimation of the critical buckling loads. A convergence study was carried out and model efficiency was corroborated with the existing literature. The model contains only seven degrees of freedom, which significantly reduces computation time, facilitating the comprehensive parametric studies for the buckling stability of the plate. Full article
(This article belongs to the Special Issue Mechanical Behavior of Advanced Composite Materials and Structures)
Show Figures

Figure 1

14 pages, 2847 KiB  
Article
The Influence of h-BN Distribution Behavior on the Electrothermal Properties of Bismaleimide Resin
by Weizhuo Li, Xuan Wang, Mingzhe Qu, Xiaoming Wang and Jiahao Shi
Polymers 2025, 17(14), 1929; https://doi.org/10.3390/polym17141929 - 14 Jul 2025
Viewed by 204
Abstract
Thermal conductive composite materials have excellent electrical insulation properties, low cost, and are lightweight, making them a promising alternative to traditional electronic packaging materials and enhancing the heat dissipation of integrated circuits. Due to the differences in specific surface area and volume, thermal [...] Read more.
Thermal conductive composite materials have excellent electrical insulation properties, low cost, and are lightweight, making them a promising alternative to traditional electronic packaging materials and enhancing the heat dissipation of integrated circuits. Due to the differences in specific surface area and volume, thermal conductive fillers have poor interface connections between the polymer and/or thermal conductive filler, thereby increasing phonon scattering and affecting thermal conductivity. This article uses bismaleimide resin as the matrix and h-BN as the thermal conductive filler. The evolution laws of thermal conductivity and dielectric properties of thermal conductive composite materials were systematically characterized through multi-scale filler control and gradient filling design. Among them, h-BN with a diameter of 10 μm has the most significant improvement in thermal conductivity. When the filling amount is 40 wt%, the thermal conductivity reaches 1.31 W/(m·K). Full article
(This article belongs to the Special Issue Electrical Properties of Polymer Composites)
Show Figures

Figure 1

17 pages, 3986 KiB  
Article
Titanate-Coupled Aluminum as an Interfacial Modifier for Enhanced Thermal and Mechanical Performance in Hybrid Epoxy Composites
by Hai-Long Cheng, Seul-Yi Lee, Na Chu, Se-Yeol Lee, Fan-Long Jin and Soo-Jin Park
Polymers 2025, 17(14), 1922; https://doi.org/10.3390/polym17141922 - 11 Jul 2025
Viewed by 313
Abstract
Thermally conductive polymer composites are essential for effective heat dissipation in electronic packaging, where both thermal management and mechanical reliability are critical. Although diglycidyl ether of bisphenol-A (DGEBA)-based epoxies exhibit favorable properties, their intrinsically low thermal conductivity limits broader applications. Incorporating conductive fillers, [...] Read more.
Thermally conductive polymer composites are essential for effective heat dissipation in electronic packaging, where both thermal management and mechanical reliability are critical. Although diglycidyl ether of bisphenol-A (DGEBA)-based epoxies exhibit favorable properties, their intrinsically low thermal conductivity limits broader applications. Incorporating conductive fillers, such as expanded graphite (EG) and metal powders, enhances heat transport but often compromises mechanical strength due to poor filler–matrix compatibility. In this study, we address this trade-off by employing a titanate coupling agent to surface-modify aluminum (Al) fillers, thereby improving interfacial adhesion and dispersion within the DGEBA matrix. Our results show that incorporating 10 wt% untreated Al increases thermal conductivity from 7.35 to 9.60 W/m·K; however, this gain comes at the cost of flexural strength, which drops to 18.29 MPa. In contrast, titanate-modified Al (Ti@Al) not only preserves high thermal conductivity but also restores mechanical performance, achieving a flexural strength of 35.31 MPa (at 5 wt% Ti@Al) and increasing impact strength from 0.60 to 1.01 kJ/m2. These findings demonstrate that interfacial engineering via titanate coupling offers a compelling strategy to overcome the thermal–mechanical trade-off in hybrid composites, enabling the development of high-performance materials for advanced thermal interface and structural applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

27 pages, 5856 KiB  
Article
Buckypapers in Polymer-Based Nanocomposites: A Pathway to Superior Thermal Stability
by Johannes Bibinger, Sebastian Eibl, Hans-Joachim Gudladt and Philipp Höfer
Nanomaterials 2025, 15(14), 1081; https://doi.org/10.3390/nano15141081 - 11 Jul 2025
Viewed by 149
Abstract
The thermal stability of carbon fiber-reinforced plastic (CFRP) materials is constrained by the low thermal conductivity of its polymer matrix, resulting in inefficient heat dissipation, local overheating, and accelerated degradation during thermal loads. To overcome these limitations, composite materials can be modified with [...] Read more.
The thermal stability of carbon fiber-reinforced plastic (CFRP) materials is constrained by the low thermal conductivity of its polymer matrix, resulting in inefficient heat dissipation, local overheating, and accelerated degradation during thermal loads. To overcome these limitations, composite materials can be modified with buckypapers—thin, densely interconnected layers of carbon nanotubes (CNTs). In this study, sixteen 8552/IM7 prepreg plies were processed with up to nine buckypapers and strategically placed at various positions. The resulting nanocomposites were evaluated for manufacturability, material properties, and thermal resistance. The findings reveal that prepreg plies provide only limited matrix material for buckypaper infiltration. Nonetheless, up to five buckypapers, corresponding to 8 wt.% CNTs, can be incorporated into the material without inducing matrix depletion defects. This integration significantly enhances the material’s thermal properties while maintaining its mechanical integrity. The nanotubes embedded in the matrix achieve an effective thermal conductivity of up to 7 W/(m·K) based on theoretical modeling. As a result, under one-sided thermal irradiation at 50 kW/m2, thermo-induced damage and strength loss can be delayed by up to 20%. Therefore, thermal resistance is primarily determined by the nanotube concentration, whereas the arrangement of the buckypapers affects the material quality. Since this innovative approach enables the targeted integration of high particle fractions, it offers substantial potential for improving the safety and reliability of CFRP under thermal stress. Full article
(This article belongs to the Special Issue Advances in Nano-Enhanced Thermal Functional Materials)
Show Figures

Figure 1

21 pages, 3238 KiB  
Article
Fingerprinting Agro-Industrial Waste: Using Polysaccharides from Cell Walls to Biomaterials
by Débora Pagliuso, Adriana Grandis, Amanda de Castro Juraski, Adriano Rodrigues Azzoni, Maria de Lourdes Teixeira de Morais Polizeli, Helio Henrique Villanueva, Guenther Carlos Krieger Filho and Marcos Silveira Buckeridge
Sustainability 2025, 17(14), 6362; https://doi.org/10.3390/su17146362 - 11 Jul 2025
Viewed by 142
Abstract
Climate change resulting from human development necessitates increased land use, food, and energy consumption, underscoring the need for sustainable development. Incorporating various feedstocks into value-added liquid fuels and bioproducts is essential for achieving sustainability. Most biomass consists of cell walls, which serve as [...] Read more.
Climate change resulting from human development necessitates increased land use, food, and energy consumption, underscoring the need for sustainable development. Incorporating various feedstocks into value-added liquid fuels and bioproducts is essential for achieving sustainability. Most biomass consists of cell walls, which serve as a primary carbon source for bioenergy and biorefinery processes. This structure contains a cellulose core, where lignin and hemicelluloses are crosslinked and embedded in a pectin matrix, forming diverse polysaccharide architectures across different species and tissues. Nineteen agro-industrial waste products were analyzed for their potential use in a circular economy. The analysis included cell wall composition, saccharification, and calorific potential. Thermal capacity and degradation were similar among the evaluated wastes. The feedstocks of corn cob, corn straw, soybean husk, and industry paper residue exhibited a higher saccharification capacity despite having lower lignin and uronic acid contents, with cell walls comprising 30% glucose and 60% xylose. Therefore, corn, soybeans, industrial paper residue, and sugarcane are more promising for bioethanol production. Additionally, duckweed, barley, sorghum, wheat, rice, bean, and coffee residues could serve as feedstocks for other by-products in green chemistry, generating valuable products. Our findings show that agro-industrial residues display a variety of polymers that are functional for various applications in different industry sectors. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

15 pages, 4106 KiB  
Article
Effect of Alumina Microparticle-Infused Polymer Matrix on Mechanical Performance of Carbon Fiber Reinforced Polymer (CFRP) Composite
by Ganesh Radhakrishnan, Teodora Odett Breaz, Abdul Hamed Hamed Al Hinai, Fisal Hamed Al Busaidi, Laqman Malik Al Sheriqi, Mohammed Ali Al Hattali, Mohammed Ibrahim Al Rawahi, Mohammed Nasser Al Rabaani and Kadhavoor R. Karthikeyan
J. Compos. Sci. 2025, 9(7), 360; https://doi.org/10.3390/jcs9070360 - 10 Jul 2025
Viewed by 189
Abstract
In recent times, fiber reinforced polymer composite materials have become more popular due to their remarkable features such as high specific strength, high stiffness and durability. Particularly, Carbon Fiber Reinforced Polymer (CFRP) composites are one of the most prominent materials used in the [...] Read more.
In recent times, fiber reinforced polymer composite materials have become more popular due to their remarkable features such as high specific strength, high stiffness and durability. Particularly, Carbon Fiber Reinforced Polymer (CFRP) composites are one of the most prominent materials used in the field of transportation and building engineering, replacing conventional materials due to their attractive properties as mentioned. In this work, a CFRP laminate is fabricated with carbon fiber mats and epoxy by a hand layup technique. Alumina (Al2O3) micro particles are used as a filler material, mixed with epoxy at different weight fractions of 0% to 4% during the fabrication of CFRP laminates. The important objective of the study is to investigate the influence of alumina micro particles on the mechanical performance of the laminates through characterization for various physical and mechanical properties. It is revealed from the results of study that the mass density of the laminates steadily increased with the quantity of alumina micro particles added and subsequently, the porosity of the laminates is reduced significantly. The SEM micrograph confirmed the constituents of the laminate and uniform distribution of Al2O3 micro particles with no significant agglomeration. The hardness of the CFRP laminates increased significantly for about 60% with an increase in weight % of Al2O3 from 0% to 4%, whereas the water gain % gradually drops from 0 to 2%, after which a substantial rise is observed for 3 to 4%. The improved interlocking due to the addition of filler material reduced the voids in the interfaces and thereby resist the absorption of water and in turn reduced the plasticity of the resin too. Tensile, flexural and inter-laminar shear strengths of the CFRP laminate were improved appreciably with the addition of alumina particles through extended grain boundary and enhanced interfacial bonding between the fibers, epoxy and alumina particles, except at 1 and 3 wt.% of Al2O3, which may be due to the pooling of alumina particles within the matrix. Inclusion of hard alumina particles resulted in a significant drop in impact strength due to appreciable reduction in softness of the core region of the laminates. Full article
Show Figures

Figure 1

21 pages, 4000 KiB  
Article
Structure-Properties Correlations of PVA-Cellulose Based Nanocomposite Films for Food Packaging Applications
by Konstantinos Papapetros, Georgios N. Mathioudakis, Dionysios Vroulias, Nikolaos Koutroumanis, George A. Voyiatzis and Konstantinos S. Andrikopoulos
Polymers 2025, 17(14), 1911; https://doi.org/10.3390/polym17141911 - 10 Jul 2025
Viewed by 216
Abstract
Bio-nanocomposites based on poly (vinyl alcohol) (PVA) and cellulosic nanostructures are favorable for active food packaging applications. The current study systematically investigates the mechanical properties, gas permeation, and swelling parameters of PVA composites with cellulose nanocrystals (CNC) or nano lignocellulose (NLC) fibers. Alterations [...] Read more.
Bio-nanocomposites based on poly (vinyl alcohol) (PVA) and cellulosic nanostructures are favorable for active food packaging applications. The current study systematically investigates the mechanical properties, gas permeation, and swelling parameters of PVA composites with cellulose nanocrystals (CNC) or nano lignocellulose (NLC) fibers. Alterations in these macroscopic properties, which are critical for food packaging applications, are correlated with structural information at the molecular level. Strong interactions between the fillers and polymer host matrix were observed, while the PVA crystallinity exhibited a maximum at ~1% loading. Finally, the orientation of the PVA nanocrystals in the uniaxially stretched samples was found to depend non-monotonically on the CNC loading and draw ratio. Concerning the macroscopic properties of the composites, the swelling properties were reduced for the D1 food simulant, while for water, a considerable decrease was observed only when high NLC loadings were involved. Furthermore, although the water vapor transmission rates are roughly similar for all samples, the CO2, N2, and O2 gas permeabilities are low, exhibiting further decrease in the 1% and 1–5% loading for CNC and NLC composites, respectively. The mechanical properties were considerably altered as a consequence of the good dispersion of the filler, increased crystallinity of the polymer matrix, and morphology of the filler. Thus, up to ~50%/~170% enhancement of the Young’s modulus and up to ~20%/~50% enhancement of the tensile strength are observed for the CNC/NLC composites. Interestingly, the elongation at break is also increased by ~20% for CNC composites, while it is reduced by ~40% for the NLC composites, signifying the favorable/unfavorable interactions of cellulose/lignin with the matrix. Full article
(This article belongs to the Special Issue Cellulose and Its Composites: Preparation and Applications)
Show Figures

Figure 1

28 pages, 5791 KiB  
Article
Radiation-Sensitive Nano-, Micro-, and Macro-Gels and Polymer Capsules for Use in Radiotherapy Dosimetry
by Michał Piotrowski, Aleksandra Pawlaczyk, Małgorzata I. Szynkowska-Jóźwik, Piotr Maras and Marek Kozicki
Int. J. Mol. Sci. 2025, 26(14), 6603; https://doi.org/10.3390/ijms26146603 - 10 Jul 2025
Viewed by 168
Abstract
This work introduces an original approach to the manufacturing of ionizing radiation-sensitive systems for radiotherapy applications—dosimetry. They are based on the Fricke dosimetric solution and the formation of macro-gels and capsules, and nano- and micro-gels. The reaction of ionic polymers, such as sodium [...] Read more.
This work introduces an original approach to the manufacturing of ionizing radiation-sensitive systems for radiotherapy applications—dosimetry. They are based on the Fricke dosimetric solution and the formation of macro-gels and capsules, and nano- and micro-gels. The reaction of ionic polymers, such as sodium alginate, with Fe and Ca metal ions is employed. Critical polymer concentration (c*) is taken as the criterion. Reaction of ionic polymers with metal ions leads to products related to c*. Well below c*, nano- and micro-gels may form. Above c*, macro-gels and capsules can be prepared. Nano- and micro-gels containing Fe in the composition can be used for infusion of a physical gel matrix to prepare 2D or 3D dosimeters. In turn, macro-gels can be formed with Fe ions crosslinking polymer chains to obtain radiation-sensitive hydrogels, so-called from wall-to-wall, serving as 3D dosimeters. The encapsulation process can lead to capsules with Fe ions serving as 1D dosimeters. This work presents the concept of manufacturing various gel structures, their main features and manufacturing challenges. It proposes new directions of research towards novel dosimeters. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

16 pages, 31664 KiB  
Article
Rheological Behavior of Poly(Styrene-Co-Acrylonitrile)/Carbon Nanotube Sponges for Fiber Electrospinning Applications
by Rubén Caro-Briones, Marco Antonio Pérez-Castillo, Hugo Martínez-Gutiérrez, Emilio Muñoz-Sandoval, Gabriela Martínez-Mejía, Lazaro Ruiz-Virgen and Mónica Corea
Nanomaterials 2025, 15(14), 1060; https://doi.org/10.3390/nano15141060 - 9 Jul 2025
Viewed by 197
Abstract
Polymeric composite solutions (PCSs) reinforced with carbon nanotubes sponges (CNT-sponges) have attracted interest in material science and engineering due to their physicochemical properties. Understanding the influence of CNT-sponges content (0.1 wt.%, 0.3 wt.% and 0.5 wt.%) on rheological behavior of poly(styrene-co-acrylonitrile) P(S:AN) (0:100, [...] Read more.
Polymeric composite solutions (PCSs) reinforced with carbon nanotubes sponges (CNT-sponges) have attracted interest in material science and engineering due to their physicochemical properties. Understanding the influence of CNT-sponges content (0.1 wt.%, 0.3 wt.% and 0.5 wt.%) on rheological behavior of poly(styrene-co-acrylonitrile) P(S:AN) (0:100, 20:80, 40:60 and 50:50, wt.%:wt.%) solutions synthesized by emulsion polymerization can predict the viscoelastic parameters for their possible application in electrospinning processes. The obtained nanofibers can be used as sensors, textiles, purifying agents or artificial muscles and tissues. For this, amplitude and frequency sweeps were performed to measure the viscosity (η), storage (G’) and loss (G”) moduli and loss factor (tan δ). Most PCSs showed a shear thinning behavior over the viscosity range of 0.8 < η/Pa·s < 20. At low CNT-sponges concentration in the polymer matrix, the obtained loss factor indicated a liquid-like behavior, while as CNT-sponges content increases, the solid-like behavior predominated. Then, the polymeric solutions were successfully electrospun; however, some agglomerations were formed in materials containing 0.5 wt.% of CNT-sponges attributed to the interaction forces generated within the structure. Finally, the rheological analysis indicates that the PCS with a low percentage of CNT-sponges are highly suitable to be electrospun. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Fibers and Textiles)
Show Figures

Graphical abstract

17 pages, 946 KiB  
Article
Analysis of Fatigue and Residual Strength Estimation of Polymer Matrix Composites Using the Theory of the Markov Chain Method
by Rafał Chatys, Mariusz Kłonica and Ilmars Blumbergs
Materials 2025, 18(14), 3229; https://doi.org/10.3390/ma18143229 - 8 Jul 2025
Viewed by 246
Abstract
This paper deals with an important issue, which is the influence of failure caused by the quality of matrix post-curing on the strength of complex and difficult materials of the “new generation” such as fibre composites, particularly with a polymer matrix. In recent [...] Read more.
This paper deals with an important issue, which is the influence of failure caused by the quality of matrix post-curing on the strength of complex and difficult materials of the “new generation” such as fibre composites, particularly with a polymer matrix. In recent years, significant advances in the field of adhesive materials chemistry have led to the constant development of bonding technology. The effectiveness of bonding depends, to a large extent, on the suitable selection of the adhesive and the use of appropriate surface treatment technology. It is difficult to imagine virtually any modern industry without adhesive joints, be it the aircraft, aerospace or automotive industries, which simultaneously highlights the great importance of adhesives and adhesive materials for the present-day economy. In modern technology, it is extremely important to obtain the right combination of modern construction materials. The statistical analysis of the components showed the complexity of the layered composite structure. The proposed model of the weakest micro-volume developed in this study indirectly reflects the experimentally based curing variables that affect the stresses of the components in the composite (laminate) structure. The strength of fibrous composite structures based on the Markov chain theory considers technological aspects during hardening. The model proposed in the paper was validated on the basis of examples from the literature and experimental data obtained in the research project. The numerical results are in good agreement with the literature database and measurement data. The presented model could be a novel method, which allows better insight into the curing process of epoxy resins. Full article
Show Figures

Figure 1

Back to TopTop