Rheological Behavior of Poly(Styrene-Co-Acrylonitrile)/Carbon Nanotube Sponges for Fiber Electrospinning Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Carbon Nanotube Sponges Characterization
2.2.1. X-Ray Diffraction (XRD) of Carbon Nanotube Sponges
2.2.2. Scanning Electron Microscopy (SEM) of Carbon Nanotubes Sponges
2.2.3. Rheological Characterization of Carbon Nanotube Sponges
2.3. Preparation of P(S:AN)/Carbon Nanotube Sponges Solutions
2.4. Rheological Properties of P(S:AN)/Carbon Nanotubes Sponges Solutions
2.5. Electrospinning Process
Scanning Electron Microscopy (SEM) of Fibers
3. Results and Discussion
3.1. Carbon Nanotubes Sponges Characterization Analysis
3.2. Rheological Behavior of Polymeric Composites Solutions
3.3. Fiber Morphology
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNT | Carbon nanotubes |
P(S:AN) | Poly(styrene-co-acrylonitrile) |
PCS | Polymeric composite solution |
PMC | Polymeric matrix composite |
SEM | Scanning electron microscopy |
LVER | Linear viscoelastic region |
G’ | Storage modulus |
G” | Loss modulus |
Τγ | Yield point |
DMF | N,N-dimethylformamide |
XRD | X-ray diffraction |
PP | Parallel plate |
PTFE | Polytetrafluoror |
JCPDS | Joint committee on powder diffraction standards |
References
- Alibakhshi, S.; Youssefi, M.; Hosseini, S. Significance of thermodynamics and rheological characteristics of dope solutions on the morphological evolution of polyethersulfone ultrafiltration membranes. Polym. Eng. Sci. 2021, 61, 742–753. [Google Scholar]
- Madej-Kiełbik, L.; Gzyra-Jagieła, K.; Józwik-Pruska, J.; Dziuba, R.; Bednarowicz, A. Biopolymer Composites with Sensors for Environmental and Medical Applications. Materials 2022, 15, 7493. [Google Scholar] [CrossRef]
- Wang, R.-M.; Zheng, S.-R.; Zheng, Y. Polymer Matrix Composites and Technology; Woodhead Publishing Limited.: Cambridge, UK, 2011. [Google Scholar]
- Sajan, S.; Philip Selvaraj, P. A review on polymer matrix composite materials and their applications. Mater. Today Proc. 2021, 47, 5493–5498. [Google Scholar]
- Kangishwar, S.; Radhika, N.; Sheik, A.A.; Abhinav, C.; Hariharan, S. A comprehensive review on polymer matrix composites: Material selection, fabrication, and application. Polym. Bull. 2023, 80, 47–87. [Google Scholar]
- Thomas, S.; Muller, R.; Abraham, J. Rheology and Processing of Polymer Nanocomposites; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Adib Bin, R.; Mahima, H.; Mohaimenul, I.; Rafi Uddin, L. Nanotechnology-enhanced fiber-reinforced polymer composites: Recent advancements on processing techniques and applications. Heliyon 2024, 10, e24692. [Google Scholar]
- Arun Kumar, S.; Rakesh, B.; Amit, A.; Rūta, R. Matrix materials used in composites: A comprehensive study. Mater. Today Proc. 2020, 21, 1559–1562. [Google Scholar]
- Ramkumar, Y.; Mayank, S.; Deepika, S.; Seul-Yi, L.; Soo-Jin, P. The role of fillers to enhance the mechanical, thermal, and wear characteristics of polymer composite materials: A review. Compos. Part A Appl. Sci. Manuf. 2023, 175, 107775. [Google Scholar]
- Yadav, V.; Pal, D.; Poonia, A.K. Exploring Nanofillers: Enhancing Properties in Biopolymer Food Packaging Materials—A Comprehensive Review. Environ. Pollut. Manag. 2025; in press. [Google Scholar] [CrossRef]
- Marcel, K.; Timo, P.; Lukas, F.; Anna, F.L.; Irina, S.; Antje, P.; Eero, K. Surface-Vinylated Cellulose Nanocrystals as Cross-Linkers for Hydrogel Composites. Biomacromolecules 2025, 26, 2282–2292. [Google Scholar]
- Angeline, J.; Suresh, M.; Raghu, B.P. Polymer and nanocomposite fillers as advanced materials in biomedical applications. Nano Trends 2025, 9, 100087. [Google Scholar]
- Alshammari, B.A.; Wilkinson, A.N.; Alotaibi, B.M.; Alotibi, M.F. Influence of Carbon Micro- and Nano-Fillers on the Viscoelastic Properties of Polyethylene Terephthalate. Polymers 2022, 14, 2440. [Google Scholar] [CrossRef]
- Rossella, A.; Giulio, M. Rheological Behavior of Polymer/Carbon Nanotube Composites: An Overview. Materials 2020, 13, 2771. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Liu, L.; Qi, X.; Kuang, J.; Wei, Y.; Zhu, H.; Zhang, Z. Three-dimensional Sponges with Super Mechanical Stability: Harnessing True Elasticity of Individual Carbon Nanotubes in Macroscopic Architectures. Sci. Rep. 2016, 6, 18930. [Google Scholar]
- Yaqoob, S.; Ali, Z.; Ali, S.; D’Amore, A. Polystyrene–Carbon Nanotube Composites: Interaction Mechanisms, Preparation Methods, Structure, and Rheological Properties—A Review. Physchem 2025, 5, 14. [Google Scholar]
- Zhao, W.; Gao, Z.; Zhang, Y.; Yang, B.; Wang, Y.; Cai, Y.; Ding, S.; Su, Q.; Xu, B.; Du, G. High mass loading pitch-derived porous carbon embedded in carbon nanotube sponge for lithium ion capacitor cathodes. Carbon 2025, 235, 120059. [Google Scholar]
- Orea-Calderón, B.I.; Castillo-Martin del Campo, C.G.; Varela-Caselis, J.L.; Martínez-Guerra, E.; Silva-Vidaurri, L.G.; Fajardo-Díaz, J.L.; Lopéz-Urías, F.; Endo, M.; Muñoz-Sandoval, E. Enhanced synthesis of sponge-type multiwalled carbon nanotubes using SiO2-Fe2O3 catalysts via aerosol-assisted chemical vapor deposition: Electrochemical and absorption capacity studies. Diam. Relat. Mater. 2024, 147, 111342. [Google Scholar]
- Rao, K.K.; Vani, T.S.; Lakshmi, B.A.; Hemalatha, D.; Rao, K.M. Surface Modified Carbon Nanotubes for Bone Tissue Engineering. In Surface Modified Carbon Nanotubes Volume 2: Industrial Applications; American Chemical Society: Washington, DC, USA, 2024; Chapter 11; Volume 1425. [Google Scholar]
- Amin, R.; Ramesh-Kumar, P.; Belharouak, I. Carbon Nanotubes-Redefining the World of Electronics, 1st ed.; Rushi, A., Datta, K., Ghosh, P., Eds.; Intech Open: London, UK, 2021; p. 182. [Google Scholar]
- Anzar, N.; Hasan, R.; Tyagi, M.; Yadav, N.; Narang, J. Carbon nanotube—A review on Synthesis, Properties and plethora of applications in the field of biomedical science. Sens. Int. 2020, 1, 100003. [Google Scholar]
- Deng, H.; Fu, Q.; Bilotti, E.; Peijs, T. The use of polymer-carbon nanotube composites in fibres. In Polymer-Carbon Nanotube Composites: Preparation, Properties and Applications; Woodhead Publishing Series; Woodhead Publishing Limited.: Cambridge, UK, 2011; pp. 657–675. [Google Scholar]
- Peng-Cheng, M.; Jang-Kyo, K. Carbon Nanotubes for Polymer Reinforcement; CRC Press: Boca Raton, FL, USA, 2011; p. 224. [Google Scholar]
- Charles, L.B.; João, V.S.; Rodrigo, V.G.; Mauro, A.L.; Jeanine, G.; Elizabeth, I.F. A Review on Carbon Nanotubes Family of Nanomaterials and Their Health Field. ACS Omega 2024, 9, 8687–8708. [Google Scholar]
- Anil-Kumar, M.R.R.; Ali, D.; Mogalahalli, V.R.; Karim, Z. Review on Advancements in Carbon Nanotubes: Synthesis, Purification, and Multifaceted Applications. Batteries 2025, 11, 71. [Google Scholar] [CrossRef]
- Deepak, K.; Aruna, R.; Vanish, K.; Sherif, A.Y.; Ming, Z.; Sang-Soo, L.; Daniel, C.W.; Tsang, H.; Ki-Hyun, K. Recent advances in carbon nanotube sponge–based sorption technologies for mitigation of marine oil spills. J. Colloid Interface Sci. 2020, 570, 411–422. [Google Scholar]
- Wang, F.; Zhao, S.; Jiang, Q.; Li, R.; Zhao, Y.; Huang, Y.; Wu, X.; Wang, B.; Zhang, R. Advanced functional carbon nanotube fibers from preparation to application. Cell Rep. Phys. Sci. 2022, 3, 100989. [Google Scholar]
- Nazar, S.; Yang, J.; Thomas, B.; Azim, I.; Ur Rehman, S. Rheological properties of cementitious composites with and without nano-materials: A comprehensive review. J. Clean. Prod. 2020, 272, 122701. [Google Scholar]
- Luo, D.; Wu, H.; Li, H.; Zhang, W.; Zhang, L.; Gao, Y. Effect of shape and size of nanofillers on the viscoelasticity of polymer nanocomposites. Polymer 2022, 246, 124750. [Google Scholar]
- Mohammadi, M.; Yousefi, A.; Ehsani, M. Thermorheological analysis of blend of high- and low-density polyethylenes. J. Polym. Res. 2012, 19, 9798. [Google Scholar]
- Whala, F.; Lamnawar, K.; Maazouz, A.; Jaziri, M. Rheological, Morphological and Mechanical Studies of Sustainably Sourced Polymer Blends Based on Poly(Lactic Acid) and Polyamide 11. Polymers 2016, 8, 61. [Google Scholar] [CrossRef]
- Tadashi, Y.; Shogo, N.; Masayuki, Y. Rheological properties of polymer composites with flexible fine fibers. J. Rheol. 2011, 55, 1205–1218. [Google Scholar]
- Caro-Briones, R.; García-Pérez, B.E.; Báez-Medina, H.; Martín-Martínez, E.S.; Martínez-Mejía, G.; Jiménez-Juárez, R.; Martínez-Gutiérrez, H.; Corea, M. Influence of monomeric concentration on mechanical and electrical properties of poly(styrene-co-acrylonitrile) and poly(styrene-co-acrylonitrile/acrylic acid) yarns electrospun. J. Appl. Polym. Sci. 2020, 137, 49166. [Google Scholar]
- Muñoz-Sandoval, E.; Cortes-López, A.J.; Flores-Gómez, B.; Fajardo-Díaz, J.; Sánchez-Salas, R.; López-Urías, F. Carbon sponge-type nanostructures based on coaxial nitrogen-doped multiwalled carbon nanotubes grown by CVD using benzylamine as precursor. Carbon 2017, 115, 409–421. [Google Scholar]
- Münstedt, H. Rheological Measurements and Structural Analysis of Polymeric Materials. Polymers 2021, 13, 1123. [Google Scholar] [CrossRef]
- Hairunnisa, R.; Nurul Fatahah, A.Z.; Hess, M.; Chin, H.C. Basic principle and good practices of rheology for polymers for teachers and beginners. Chem. Teach. Int. 2022, 4, 307–326. [Google Scholar]
- Soleimani, H.; Baig, M.K.; Yahya, N.; Khodapanah, L.; Sabet, M.; Demiral, B.M.; Burda, M. Impact of carbon nanotubes based nanofluid on oil recovery efficiency using core flooding. Results Phys. 2018, 9, 39–48. [Google Scholar]
- Saleh, T.A.; Elsharif, A.M.; Asiri, S.; Mohammed, A.R.; Dafalla, H. Synthesis of carbon grafted with copolymer of Acrylic Acid and Acrylamide for Phenol removal. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100302. [Google Scholar]
- Gui, X.; Wei, J.; Wang, K.; Cao, A.; Zhu, H.; Jia, Y.; Shu, Q.; Wu, D. Carbon Nanotube Sponges. Adv. Mater. 2010, 22, 617–621. [Google Scholar] [PubMed]
- Kádár, R.; Gaska, K.; Gkourmpis, T. Nonlinear “oddities” at the percolation of 3D hierarchical graphene polymer nanocomposites. Rheol. Acta 2020, 59, 333–347. [Google Scholar]
- Lu, M.; Liao, J.; Gulgunje, P.V.; Chang, H.; Arias-Monje, P.J.; Ramachandran, J.; Breedveld, V.; Kumar, S. Rheological behavior and fiber spinning of polyacrylonitrile (PAN)/Carbon nanotube (CNT) dispersions at high CNT loading. Polymer 2021, 215, 123369. [Google Scholar]
- Lu, M.; Gulgunje, P.V.; Arias-Monje, P.J.; Luo, J.; Ramachandran, J.; Sahoo, Y.; Agarwal, S.; Kumar, S. Structure, properties, and applications of polyacrylonitrile/carbon nanotube (CNT) fibers at low CNT loading. Polym. Eng. Sci. 2020, 9, 2143–2451. [Google Scholar]
- Sharu, B.K.; George, P.S.; Wenlong, C.; Johann, Z.; Kapil, J.; Dharmesh, G.; Arup, R.B. Effect of Incorporation of Multiwalled Carbon Nanotubes on the Microstructure and Flow Behavior of Highly Concentrated Emulsions. ACS Omega 2018, 3, 13584–13597. [Google Scholar]
CNT-Sponges 0.1 wt.% | CNT-Sponges 0.3 wt.% | CNT-Sponges 0.5 wt.% | |||
---|---|---|---|---|---|
Code | P(S:AN) 1 | Code | P(S:AN) 1 | Code | P(S:AN) 1 |
SAN1.1 | 0:100 | SAN3.1 | 0:100 | SAN5.1 | 0:100 |
SAN1.2 | 20:80 | SAN3.2 | 20:80 | SAN5.2 | 20:80 |
SAN1.3 | 40:60 | SAN3.3 | 40:60 | SAN5.3 | 40:60 |
SAN1.4 | 50:50 | SAN3.4 | 50:50 | SAN5.4 | 50:50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caro-Briones, R.; Pérez-Castillo, M.A.; Martínez-Gutiérrez, H.; Muñoz-Sandoval, E.; Martínez-Mejía, G.; Ruiz-Virgen, L.; Corea, M. Rheological Behavior of Poly(Styrene-Co-Acrylonitrile)/Carbon Nanotube Sponges for Fiber Electrospinning Applications. Nanomaterials 2025, 15, 1060. https://doi.org/10.3390/nano15141060
Caro-Briones R, Pérez-Castillo MA, Martínez-Gutiérrez H, Muñoz-Sandoval E, Martínez-Mejía G, Ruiz-Virgen L, Corea M. Rheological Behavior of Poly(Styrene-Co-Acrylonitrile)/Carbon Nanotube Sponges for Fiber Electrospinning Applications. Nanomaterials. 2025; 15(14):1060. https://doi.org/10.3390/nano15141060
Chicago/Turabian StyleCaro-Briones, Rubén, Marco Antonio Pérez-Castillo, Hugo Martínez-Gutiérrez, Emilio Muñoz-Sandoval, Gabriela Martínez-Mejía, Lazaro Ruiz-Virgen, and Mónica Corea. 2025. "Rheological Behavior of Poly(Styrene-Co-Acrylonitrile)/Carbon Nanotube Sponges for Fiber Electrospinning Applications" Nanomaterials 15, no. 14: 1060. https://doi.org/10.3390/nano15141060
APA StyleCaro-Briones, R., Pérez-Castillo, M. A., Martínez-Gutiérrez, H., Muñoz-Sandoval, E., Martínez-Mejía, G., Ruiz-Virgen, L., & Corea, M. (2025). Rheological Behavior of Poly(Styrene-Co-Acrylonitrile)/Carbon Nanotube Sponges for Fiber Electrospinning Applications. Nanomaterials, 15(14), 1060. https://doi.org/10.3390/nano15141060