Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (433)

Search Parameters:
Keywords = polymer microfluidics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4279 KB  
Article
Development and Mechanism of the Graded Polymer Profile-Control Agent for Heterogeneous Heavy Oil Reservoirs Under Water Flooding
by Tiantian Yu, Wangang Zheng, Xueqian Guan, Aifen Li, Dechun Chen, Wei Chu and Xin Xia
Gels 2025, 11(11), 856; https://doi.org/10.3390/gels11110856 - 26 Oct 2025
Viewed by 214
Abstract
During water flooding processes, the high viscosity of heavy oil and significant reservoir heterogeneity often lead to severe water channeling and low sweep efficiency. Addressing the limitations of traditional hydrophobically associating polymer-based profile-control agents—such as significant adsorption loss, mechanical degradation during reservoir migration, [...] Read more.
During water flooding processes, the high viscosity of heavy oil and significant reservoir heterogeneity often lead to severe water channeling and low sweep efficiency. Addressing the limitations of traditional hydrophobically associating polymer-based profile-control agents—such as significant adsorption loss, mechanical degradation during reservoir migration, resulting in a limited effective radius and short functional duration—this study developed a polymeric graded profile-control agent suitable for highly heterogeneous conditions. The physicochemical properties of the system were comprehensively evaluated through systematic testing of its apparent viscosity, salt tolerance, and anti-aging performance. The microscopic oil displacement mechanisms in porous media were elucidated by combining CT scanning and microfluidic visual displacement experiments. Experimental results indicate that the agent exhibits significant hydrophobic association behavior, with a critical association concentration of 1370 mg·L−1, and demonstrates a “low viscosity at low temperature, high viscosity at high temperature” rheological characteristic. At a concentration of 3000 mg·L−1, the apparent viscosity of the solution is 348 mPa·s at 30 °C, rising significantly to 1221 mPa·s at 70 °C. It possesses a salinity tolerance of up to 50,000 mg·L−1, and a viscosity retention rate of 95.4% after 90 days of high-temperature aging, indicating good injectivity, reservoir compatibility, and thermal stability. Furthermore, within a concentration range of 500–3000 mg·L−1, the agent can effectively emulsify Gudao heavy oil, forming O/W emulsion droplets with sizes ranging from 40 to 80 μm, enabling effective plugging of pore throats of corresponding sizes. CT scanning and microfluidic displacement experiments further reveal that the agent possesses a graded control function: in the near-wellbore high-concentration zone, it primarily relies on its aqueous phase viscosity-increasing capability to control the mobility ratio; upon entering the deep reservoir low-concentration zone, it utilizes “emulsion plugging” to achieve fluid diversion, thereby expanding the sweep volume and extending the effective treatment period. This research outcome provides a new technical pathway for the efficient development of highly heterogeneous heavy oil reservoirs. Full article
(This article belongs to the Topic Polymer Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

24 pages, 2251 KB  
Review
Chitosan-Based Nanoencapsulation of Mānuka Oil for Periodontal Treatment
by Chen Chen, Warwick J. Duncan, Natalie J. Hughes-Medlicott, Ghsaq Alhamdani and Dawn E. Coates
Int. J. Mol. Sci. 2025, 26(20), 10201; https://doi.org/10.3390/ijms262010201 - 20 Oct 2025
Viewed by 242
Abstract
Periodontal diseases are local bacterial infections that cause inflammation in periodontal (gum) tissues, significantly impacting a patient’s quality of life. Current clinical treatment, such as scaling and root planing combined with antibiotics, shows drawbacks, including antibiotic resistance. The potential of plant-derived bioactives with [...] Read more.
Periodontal diseases are local bacterial infections that cause inflammation in periodontal (gum) tissues, significantly impacting a patient’s quality of life. Current clinical treatment, such as scaling and root planing combined with antibiotics, shows drawbacks, including antibiotic resistance. The potential of plant-derived bioactives with antimicrobial properties has led to growing interest in the biomedical field. Mānuka oil, an essential oil derived from the Leptospermum scoparium plant, is a potential candidate with known antibacterial and anti-inflammatory properties. Formulation of natural oils for delivery, sustained release, and substantivity in the oral environment is challenging. The integration of nanoencapsulation technology offers the potential to prolong the release time, as well as enhance biocompatibility and address the current therapeutic requirements. Microfluidics enables precise nanoparticle synthesis, while chitosan, due to its antimicrobial activity, muco-adhesion, and biocompatibility, represents a promising encapsulation polymer. This paper aims to review antimicrobial essential oils and nanoencapsulation methods, highlighting the application of microfluidics in developing mānuka oil-loaded chitosan nanoparticles for local delivery in periodontal treatment. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

15 pages, 3412 KB  
Article
Wet-Spun Disulphide LCE Fibres for Continuous Production of Fibrous Artificial Muscles
by Joshua C. Ince, Alan R. Duffy and Nisa V. Salim
Polymers 2025, 17(20), 2789; https://doi.org/10.3390/polym17202789 - 18 Oct 2025
Viewed by 320
Abstract
Liquid Crystalline Elastomers (LCEs) are a class of shape-changing polymers with exceptional mechanical properties and potential as artificial muscles/polymer actuators. Much work has been dedicated to expanding the methods available for processing LCEs into various forms using different manufacturing techniques such as 3D [...] Read more.
Liquid Crystalline Elastomers (LCEs) are a class of shape-changing polymers with exceptional mechanical properties and potential as artificial muscles/polymer actuators. Much work has been dedicated to expanding the methods available for processing LCEs into various forms using different manufacturing techniques such as 3D printing, film casting, and microfluidic processing. Recently, several works have reported processing LCEs into long fibres and have highlighted the advantages that fibrous LCEs boast over LCE films. However, the development of alternative methods to produce fibrous LCEs is warranted to fully expedite this field of research. In this study, a method for continuous production of disulphide crosslinked LCE fibres via the technique of wet spinning is explored and reported on. Furthermore, the results show that the mechanical properties, actuation force, and actuation strain can be tuned by adjusting how much crosslinker is incorporated into the wet-spinning dope solution. Depending on the given formulation, the reported fibres could repeatedly actuate in response to thermal energy with actuation forces ranging from 0.002 to 0.02 N per fibre and actuation strains ranging from 9.7 to 33%. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Graphical abstract

36 pages, 4341 KB  
Review
Physiological Barriers to Nucleic Acid Therapeutics and Engineering Strategies for Lipid Nanoparticle Design, Optimization, and Clinical Translation
by Yerim Kim, Jisu Park, Jaewon Choi, Minse Kim, Gyeongsu Seo, Jeongeun Kim, Jeong-Ann Park, Kwang Suk Lim, Suk-Jin Ha and Hyun-Ouk Kim
Pharmaceutics 2025, 17(10), 1309; https://doi.org/10.3390/pharmaceutics17101309 - 8 Oct 2025
Viewed by 913
Abstract
Lipid nanoparticles are a clinically validated platform for delivering nucleic acids, but performance is constrained by multiscale physiological barriers spanning circulation, vascular interfaces, extracellular matrices, cellular uptake, and intracellular trafficking. This review links composition–structure–function relationships for ionizable lipids, helper phospholipids, cholesterol, and PEG-lipids [...] Read more.
Lipid nanoparticles are a clinically validated platform for delivering nucleic acids, but performance is constrained by multiscale physiological barriers spanning circulation, vascular interfaces, extracellular matrices, cellular uptake, and intracellular trafficking. This review links composition–structure–function relationships for ionizable lipids, helper phospholipids, cholesterol, and PEG-lipids to systemic fate, endothelial access, endosomal escape, cytoplasmic stability, and nuclear transport. We outline strategies for tissue and cell targeting, including hepatocyte ligands, immune and tumor selectivity, and selective organ targeting through compositional tuning, together with approaches that modulate escape using pH-responsive chemistries or fusion-active peptides and polymers. We further examine immunomodulatory co-formulation, route and schedule effects on biodistribution and immune programming, and manufacturing and stability levers from microfluidic mixing to lyophilization. Across these themes, we weigh trade-offs between stealth and engagement, potency and tolerability, and potency and manufacturability, noting that only a small fraction of endosomes supports productive release and that protein corona variability and repeat dosing can reshape tropism and clearance. Convergence of standardized assays for true cytosolic delivery, biomarker-guided patient selection, and robust process controls will be required to extend LNP therapeutics beyond the liver while sustaining safety, access, and scale. Full article
Show Figures

Graphical abstract

9 pages, 2795 KB  
Article
A Polydimethylsiloxane (PDMS) Transparent Fresnel Zone Lens Antenna at Ku-Band for Satellite Communication
by Massimo Donelli, Sreedevi Menon, Viviana Mulloni, Giada Marchi and Irene Dal Chiele
Electronics 2025, 14(19), 3766; https://doi.org/10.3390/electronics14193766 - 24 Sep 2025
Viewed by 315
Abstract
This work presents the design of a transparent Fresnel-zone lens antenna fabricated from Polydimethylsiloxane, also known as PDMS or dimethicone, a polymer widely used for manufacturing and prototyping microfluidic chips. The antenna operates in the Ku band at 15 GHz. Specifically, a [...] Read more.
This work presents the design of a transparent Fresnel-zone lens antenna fabricated from Polydimethylsiloxane, also known as PDMS or dimethicone, a polymer widely used for manufacturing and prototyping microfluidic chips. The antenna operates in the Ku band at 15 GHz. Specifically, a 3D-printed polylactic acid (PLA) mold is created and filled with PDMS to obtain the lens structure. The PLA mold can be used multiple times to produce different lens prototypes. An antenna prototype has been designed, fabricated, and assessed numerically and experimentally, demonstrating the capabilities and potential of the proposed design and production methodology. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

30 pages, 3062 KB  
Review
Separation and Detection of Microplastics in Human Exposure Pathways: Challenges, Analytical Techniques, and Emerging Solutions
by Asim Laeeq Khan and Asad A. Zaidi
J. Xenobiot. 2025, 15(5), 154; https://doi.org/10.3390/jox15050154 - 23 Sep 2025
Viewed by 1420
Abstract
Microplastics (MPs) are increasingly recognized as widespread environmental contaminants, with confirmed presence in human tissues and biological fluids through ingestion, inhalation, and direct systemic exposure. Their potential impacts on human health have become an important subject of scientific investigation. The detection and quantification [...] Read more.
Microplastics (MPs) are increasingly recognized as widespread environmental contaminants, with confirmed presence in human tissues and biological fluids through ingestion, inhalation, and direct systemic exposure. Their potential impacts on human health have become an important subject of scientific investigation. The detection and quantification of MPs, particularly nanoplastics, in complex biological matrices remain challenging because of their low concentrations, diverse physicochemical properties, and interference from organic and inorganic matter. This review presents a critical assessment of current methods for the separation and detection of MPs from human-relevant samples. It examines pre-treatment, separation, and analytical approaches including physical filtration, density-based separation, chemical and enzymatic digestion, vibrational spectroscopy, thermal analysis, and electron microscopy, highlighting their principles, advantages, and limitations. Key challenges such as low sample throughput, absence of standardized procedures, and the difficulty of nanoplastic detection are identified as major barriers to accurate exposure assessment and risk evaluation. Recent advances, including functionalized adsorbents, improved anti-fouling membranes, integrated microfluidic systems, and artificial intelligence-assisted spectral analysis, are discussed for their potential to provide sensitive, scalable, and standardized analytical workflows. By integrating current challenges with recent innovations, this review aims to guide multidisciplinary research toward the development of reliable and reproducible detection strategies that can support MPs exposure assessment and inform evidence-based health policies. Full article
Show Figures

Figure 1

36 pages, 2691 KB  
Review
Advanced Electrochemical Sensors for Rapid and Sensitive Monitoring of Tryptophan and Tryptamine in Clinical Diagnostics
by Janani Sridev, Arif R. Deen, Md Younus Ali, Wei-Ting Ting, M. Jamal Deen and Matiar M. R. Howlader
Biosensors 2025, 15(9), 626; https://doi.org/10.3390/bios15090626 - 19 Sep 2025
Viewed by 1219
Abstract
Tryptophan (Trp) and tryptamine (Tryp), critical biomarkers in mood regulation, immune function, and metabolic homeostasis, are increasingly recognized for their roles in both oral and systemic pathologies, including neurodegenerative disorders, cancers, and inflammatory conditions. Their rapid, sensitive detection in biofluids such as saliva—a [...] Read more.
Tryptophan (Trp) and tryptamine (Tryp), critical biomarkers in mood regulation, immune function, and metabolic homeostasis, are increasingly recognized for their roles in both oral and systemic pathologies, including neurodegenerative disorders, cancers, and inflammatory conditions. Their rapid, sensitive detection in biofluids such as saliva—a non-invasive, real-time diagnostic medium—offers transformative potential for early disease identification and personalized health monitoring. This review synthesizes advancements in electrochemical sensor technologies tailored for Trp and Tryp quantification, emphasizing their clinical relevance in diagnosing conditions like oral squamous cell carcinoma (OSCC), Alzheimer’s disease (AD), and breast cancer, where dysregulated Trp metabolism reflects immune dysfunction or tumor progression. Electrochemical platforms have overcome the limitations of conventional techniques (e.g., enzyme-linked immunosorbent assays (ELISA) and mass spectrometry) by integrating innovative nanomaterials and smart engineering strategies. Carbon-based architectures, such as graphene (Gr) and carbon nanotubes (CNTs) functionalized with metal nanoparticles (Ni and Co) or nitrogen dopants, amplify electron transfer kinetics and catalytic activity, achieving sub-nanomolar detection limits. Synergies between doping and advanced functionalization—via aptamers (Apt), molecularly imprinted polymers (MIPs), or metal-oxide hybrids—impart exceptional selectivity, enabling the precise discrimination of Trp and Tryp in complex matrices like saliva. Mechanistically, redox reactions at the indole ring are optimized through tailored electrode interfaces, which enhance reaction kinetics and stability over repeated cycles. Translational strides include 3D-printed microfluidics and wearable sensors for continuous intraoral health surveillance, demonstrating clinical utility in detecting elevated Trp levels in OSCC and breast cancer. These platforms align with point-of-care (POC) needs through rapid response times, minimal fouling, and compatibility with scalable fabrication. However, challenges persist in standardizing saliva collection, mitigating matrix interference, and validating biomarkers across diverse populations. Emerging solutions, such as AI-driven analytics and antifouling coatings, coupled with interdisciplinary efforts to refine device integration and manufacturing, are critical to bridging these gaps. By harmonizing material innovation with clinical insights, electrochemical sensors promise to revolutionize precision medicine, offering cost-effective, real-time diagnostics for both localized oral pathologies and systemic diseases. As the field advances, addressing stability and scalability barriers will unlock the full potential of these technologies, transforming them into indispensable tools for early intervention and tailored therapeutic monitoring in global healthcare. Full article
(This article belongs to the Special Issue Nanomaterial-Based Biosensors for Point-of-Care Testing)
Show Figures

Figure 1

15 pages, 514 KB  
Review
Population-Level Dynamics and Community-Mediated Resistance to Antimicrobial Peptides
by Theresia Mekdessi, Aracely Devora and Sattar Taheri-Araghi
Biomolecules 2025, 15(9), 1319; https://doi.org/10.3390/biom15091319 - 15 Sep 2025
Viewed by 654
Abstract
Antimicrobial peptides (AMPs) are crucial components of innate immunity and promising leads for new anti-infective therapies, prized for their broad-spectrum activity and membrane-disruptive mechanisms. However, traditional models of antimicrobial action and resistance often focus on single-cell responses or genetically encoded resistance, overlooking the [...] Read more.
Antimicrobial peptides (AMPs) are crucial components of innate immunity and promising leads for new anti-infective therapies, prized for their broad-spectrum activity and membrane-disruptive mechanisms. However, traditional models of antimicrobial action and resistance often focus on single-cell responses or genetically encoded resistance, overlooking the complex collective behaviors of bacteria at the population level. A growing body of evidence indicates that bacterial communities can profoundly influence AMP efficacy through emergent, community-level resistance mechanisms. In this review, we examine how population-level dynamics and interactions enable bacteria to withstand AMPs beyond what is predicted by cell-autonomous models. We first describe the mechanisms of peptide sequestration by bacterial debris, dead cells, outer membrane vesicles, and biofilm matrix polymers, which diminish the concentration of active peptide available to kill neighboring cells. We then analyze how population-level traits—including inoculum effects, phenotypic heterogeneity, and persister subpopulations—shape survival outcomes and promote regrowth after treatment. Cooperative processes such as protease secretion further enhance communal defenses by coordinating or amplifying protective responses. Beyond cataloging these mechanisms, we highlight recent advances in microfluidic tools, single-cell imaging, and biophysical modeling that reveal the spatial and temporal dynamics of AMP action in structured populations. Collectively, these insights show how bacterial communities absorb, neutralize, or delay AMP activity without genetic resistance, with important implications for therapeutic design and the evaluation of AMP efficacy. Full article
Show Figures

Figure 1

17 pages, 10657 KB  
Article
Ultrashort Pulsed Laser Fabrication of High-Performance Polymer-Film-Based Moulds for Rapid Prototyping of Microfluidic Devices
by Pieter Daniël Haasbroek, Mischa Wälty, Michael Grob and Per Magnus Kristiansen
J. Manuf. Mater. Process. 2025, 9(9), 313; https://doi.org/10.3390/jmmp9090313 - 12 Sep 2025
Viewed by 2751
Abstract
Microfluidic device prototyping demands rapid, cost-effective, and high-precision mould fabrication, yet ultrashort pulsed laser structuring of polymer inserts remains underexplored. This study presents a novel method for fabricating microfluidic mould inserts using femtosecond (fs) laser ablation of polyimide (PI) films, achieving high precision [...] Read more.
Microfluidic device prototyping demands rapid, cost-effective, and high-precision mould fabrication, yet ultrashort pulsed laser structuring of polymer inserts remains underexplored. This study presents a novel method for fabricating microfluidic mould inserts using femtosecond (fs) laser ablation of polyimide (PI) films, achieving high precision from design to prototype. PI films (250 µm) were structured using a 355 nm fs laser (300 fs, 500 kHz, 0.95 J/cm2) in a photochemically dominated ablation regime and bonded to reusable steel plates. Injection moulding trials with cyclic olefin copolymer (COC) and polymethyl methacrylate (PMMA) were conducted with diverse designs, including concentration gradient generators (CGG), organ-on-chip (OOC) with 20 µm bridges, and double emulsion droplet generators (DEDG) with 100–500 µm channels, ensuring robustness across complex geometries. The method achieved near 1:1 replication (errors < 2%, microchannel height tolerances < 1%, Sa = 0.02 µm in channels, 0.26 µm in laser-structured areas), machining times under 2 h, and mould durability over 100 cycles without significant deterioration. The PI’s heat-retarding effect mimicked variothermal moulding, ensuring complete micro-penetration without specialised equipment. By reducing material costs using PI films and reusable steel plates, enabling rapid iterations within hours, and supporting industry-compatible prototyping, this approach lowers barriers for small-scale labs. It enables rapid prototyping of diagnostic lab-on-chip devices and supports decentralised manufacturing for biomedical, chemical, and environmental applications, offering a versatile, cost-effective tool for early-stage development. Full article
Show Figures

Figure 1

27 pages, 4027 KB  
Article
Fast-Disintegrating Oral Films Containing Nisin-Loaded Niosomes
by Ali A. Amer, Yasir Karkar, Lewis Bingle, Amal Ali Elkordy and Cheng Shu Chaw
Molecules 2025, 30(18), 3715; https://doi.org/10.3390/molecules30183715 - 12 Sep 2025
Viewed by 785
Abstract
Nisin, a food preservative lantibiotic produced by Lactococcus lactis, exhibits potent antimicrobial activity against a wide range of Gram-positive pathogens, including antibiotic-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA). This study explores the development of a novel nano drug delivery platform comprising [...] Read more.
Nisin, a food preservative lantibiotic produced by Lactococcus lactis, exhibits potent antimicrobial activity against a wide range of Gram-positive pathogens, including antibiotic-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA). This study explores the development of a novel nano drug delivery platform comprising nisin-loaded niosomes, formulated via microfluidic mixing, and integrated into fast-dissolving oral films for targeted buccal administration. Microfluidic synthesis enabled the precise control of critical parameters including the flow rate ratio, surfactant composition, and lipid concentration, resulting in uniform niosomal vesicles with optimal size distribution (100–200 nm), low polydispersity index, and high encapsulation efficiency. Span 40 and Span 60 were employed as non-ionic surfactants, stabilized with cholesterol to improve bilayer rigidity and drug retention. The encapsulated nisin demonstrated improved physicochemical stability over time and protection against proteolytic degradation, thus preserving its antimicrobial potency. The niosomal suspensions were subsequently incorporated into polymer-based oral films as a final dosage form composed of polyvinyl alcohol (PVA) as the primary film-forming polymer, polyethylene glycol 400 (PEG400) as a plasticizer, and sucralose and mint as a sweetener and flavoring agent, respectively. A disintegrant was added to accelerate film dissolution in the oral cavity, facilitating the rapid release of niosomal nisin. The films were cast and evaluated for thickness uniformity, mechanical properties, disintegration time, surface morphology, and drug content uniformity. The dried films exhibited desirable flexibility, rapid disintegration (<30 s), and consistent distribution of nisin-loaded vesicles. In vitro antimicrobial assays confirmed that the bioactivity of nisin was retained post-formulation, showing effective inhibition zones (16 mm) against Bacillus subtilis. This delivery system offers a promising platform for localized antimicrobial therapy in the oral cavity, potentially aiding in the treatment of dental plaque, oral infections, and periodontal diseases. Overall, the integration of microfluidic-synthesized nisin niosomes into oral films presents a novel, non-invasive strategy for enhancing the stability and therapeutic efficacy of peptide-based drugs in mucosal environments. Physicochemical characterization of the niosomes and niosome films was performed using Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) to evaluate thermal stability and scanning electron microscopy (SEM) to assess surface morphology. In vitro peptide release studies demonstrated sustained release from both niosomal suspensions and film matrices, and the resulting data were further fitted to established kinetic models to elucidate the underlying drug release mechanisms. This delivery system offers a promising platform for localized antimicrobial therapy in the oral cavity, potentially aiding in the treatment of dental plaque, oral infections, and periodontal diseases. Overall, the integration of microfluidic-synthesized nisin niosomes into oral films presents a novel, non-invasive strategy for enhancing the stability and therapeutic efficacy of peptide-based drugs in mucosal environments. Full article
Show Figures

Figure 1

38 pages, 14618 KB  
Review
Nanostructure-Engineered Optical and Electrochemical Biosensing Toward Food Safety Assurance
by Xinxin Wu, Zhecong Yuan, Shujie Gao, Xinai Zhang, Hany S. El-Mesery, Wenjie Lu, Xiaoli Dai and Rongjin Xu
Foods 2025, 14(17), 3021; https://doi.org/10.3390/foods14173021 - 28 Aug 2025
Viewed by 1573
Abstract
Considering the necessity of food safety testing, various biosensors have been developed based on biological elements (e.g., antibodies, aptamers), chemical elements (e.g., molecularly imprinted polymers), physical elements (e.g., nanopores) as recognition substances. According to the sensing patterns of signal transduction, the biosensors could [...] Read more.
Considering the necessity of food safety testing, various biosensors have been developed based on biological elements (e.g., antibodies, aptamers), chemical elements (e.g., molecularly imprinted polymers), physical elements (e.g., nanopores) as recognition substances. According to the sensing patterns of signal transduction, the biosensors could be classified into optical and electrochemical biosensing, including fluorescence sensing, Raman sensing, colorimetric sensing, electrochemical sensing, etc. To enhance the sensing sensitivity, kinds of nanomaterials have been applied for signal amplification. With merits of high selectivity, sensitivity, and accuracy, the sensing strategies have been widely applied for food safety testing. This review highlights their signal output behavior, (e.g., fluorescence intensity shifts, Raman peak alterations, colorimetric changes, electrochemical current/voltage/impedance variations), nanostructure-mediated amplification mechanisms, and the fundamental recognition principles. Future efforts should prioritize multiplexed assay platforms, integration with microfluidics and smart devices, novel biorecognition elements, and sustainable manufacturing. Emerging synergies between biosensors and AI-driven data analytics promise intelligent monitoring systems for predictive food safety management, addressing challenges in food matrix compatibility and real-time hazard identification. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

14 pages, 1678 KB  
Article
Encapsulation of Therapeutic, Low-Molecular-Weight Chemokines Using a Single Emulsion, Microfluidic, Continuous Manufacturing Process
by Julie A. Kobyra, Michael Pezzillo, Elizabeth R. Bentley, Stephen C. Balmert, Charles Sfeir and Steven R. Little
Pharmaceutics 2025, 17(8), 1056; https://doi.org/10.3390/pharmaceutics17081056 - 14 Aug 2025
Viewed by 632
Abstract
Background/Objectives: Controlled release systems, such as polymeric microparticles (MPs), have emerged as a promising solution to extend the bioavailability and reduce dosing frequency for biologic drugs; however, the formulation of these systems to encapsulate highly sensitive, hydrophilic biologic drugs within hydrophobic polymers remains [...] Read more.
Background/Objectives: Controlled release systems, such as polymeric microparticles (MPs), have emerged as a promising solution to extend the bioavailability and reduce dosing frequency for biologic drugs; however, the formulation of these systems to encapsulate highly sensitive, hydrophilic biologic drugs within hydrophobic polymers remains a nontrivial task. Although scalable manufacturing and FDA approval of single emulsion processes encapsulating small molecules has been achieved, scaling more complex double emulsion processes to encapsulate hydrophilic biologics remains more challenging. Methods: Here, we demonstrate that two hydrophilic, low-molecular-weight, recombinant chemokines, CCL22 and CCL2, can be encapsulated in poly(lactic-co-glycolic acid) (PLGA) MPs using a single emulsion method where the proteins are dissolved in an organic solvent during formulation. Results: As expected, we observed some differences in release kinetics from single emulsion MPs compared to double emulsion MPs, which traditionally have been used to encapsulate proteins. Single emulsion MPs exhibited a substantially reduced initial burst. Importantly, protein released from single emulsion CCL22-MPs also retained biological activity, as determined by a cell-based functional assay. Decreasing particle size or changing the polymer end group from PLGA-COOH to PLGA-OH increased the initial burst from single emulsion MPs, demonstrating tunability of release kinetics for protein-loaded, single emulsion MPs. Finally, to improve scalability and enable more precise control over MP formulations, the single emulsion process was adapted to a microfluidic, continuous manufacturing system, and the resulting MPs were evaluated similarly. Conclusions: Altogether, this study demonstrates the feasibility of using a single emulsion encapsulation method for at least some protein biologics. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

22 pages, 2630 KB  
Review
Transfection Technologies for Next-Generation Therapies
by Dinesh Simkhada, Su Hui Catherine Teo, Nandu Deorkar and Mohan C. Vemuri
J. Clin. Med. 2025, 14(15), 5515; https://doi.org/10.3390/jcm14155515 - 5 Aug 2025
Viewed by 2890
Abstract
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency [...] Read more.
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency and therapeutic outcomes. Methods: This review synthesizes the current literature and recent advancements in non-viral transfection technologies. It focuses on the mechanisms, advantages, and limitations of various delivery systems, including lipid nanoparticles, biodegradable polymers, electroporation, peptide-based carriers, and microfluidic platforms. Comparative analysis was conducted to evaluate their performance in terms of transfection efficiency, cellular uptake, biocompatibility, and potential for clinical translation. Several academic search engines and online resources were utilized for data collection, including Science Direct, PubMed, Google Scholar Scopus, the National Cancer Institute’s online portal, and other reputable online databases. Results: Non-viral systems demonstrated superior performance in delivering mRNA, siRNA, and antisense oligonucleotides, particularly in clinical applications. Biodegradable polymers and peptide-based systems showed promise in enhancing biocompatibility and targeted delivery. Electroporation and microfluidic systems offered precise control over transfection parameters, improving reproducibility and scalability. Collectively, these innovations address key challenges in gene delivery, such as stability, immune response, and cell-type specificity. Conclusions: The continuous evolution of transfection technologies is pivotal for advancing gene and cell-based therapies. Non-viral delivery systems, particularly LNPs and emerging platforms like microfluidics and biodegradable polymers, offer safer and more adaptable alternatives to viral vectors. These innovations are critical for optimizing therapeutic efficacy and enabling personalized medicine, immunotherapy, and regenerative treatments. Future research should focus on integrating these technologies to develop next-generation transfection platforms with enhanced precision and clinical applicability. Full article
Show Figures

Figure 1

34 pages, 2648 KB  
Review
Microfluidic Sensors for Micropollutant Detection in Environmental Matrices: Recent Advances and Prospects
by Mohamed A. A. Abdelhamid, Mi-Ran Ki, Hyo Jik Yoon and Seung Pil Pack
Biosensors 2025, 15(8), 474; https://doi.org/10.3390/bios15080474 - 22 Jul 2025
Cited by 1 | Viewed by 2277
Abstract
The widespread and persistent occurrence of micropollutants—such as pesticides, pharmaceuticals, heavy metals, personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS)—has emerged as a critical environmental and public health concern, necessitating the development of highly sensitive, selective, and field-deployable detection technologies. Microfluidic [...] Read more.
The widespread and persistent occurrence of micropollutants—such as pesticides, pharmaceuticals, heavy metals, personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS)—has emerged as a critical environmental and public health concern, necessitating the development of highly sensitive, selective, and field-deployable detection technologies. Microfluidic sensors, including biosensors, have gained prominence as versatile and transformative tools for real-time environmental monitoring, enabling precise and rapid detection of trace-level contaminants in complex environmental matrices. Their miniaturized design, low reagent consumption, and compatibility with portable and smartphone-assisted platforms make them particularly suited for on-site applications. Recent breakthroughs in nanomaterials, synthetic recognition elements (e.g., aptamers and molecularly imprinted polymers), and enzyme-free detection strategies have significantly enhanced the performance of these biosensors in terms of sensitivity, specificity, and multiplexing capabilities. Moreover, the integration of artificial intelligence (AI) and machine learning algorithms into microfluidic platforms has opened new frontiers in data analysis, enabling automated signal processing, anomaly detection, and adaptive calibration for improved diagnostic accuracy and reliability. This review presents a comprehensive overview of cutting-edge microfluidic sensor technologies for micropollutant detection, emphasizing fabrication strategies, sensing mechanisms, and their application across diverse pollutant categories. We also address current challenges, such as device robustness, scalability, and potential signal interference, while highlighting emerging solutions including biodegradable substrates, modular integration, and AI-driven interpretive frameworks. Collectively, these innovations underscore the potential of microfluidic sensors to redefine environmental diagnostics and advance sustainable pollution monitoring and management strategies. Full article
(This article belongs to the Special Issue Biosensors Based on Microfluidic Devices—2nd Edition)
Show Figures

Figure 1

17 pages, 2519 KB  
Article
Gel Electrophoresis of an Oil Drop
by Hiroyuki Ohshima
Gels 2025, 11(7), 555; https://doi.org/10.3390/gels11070555 - 18 Jul 2025
Cited by 1 | Viewed by 582
Abstract
We present a theoretical model for the electrophoresis of a weakly charged oil drop migrating through an uncharged polymer gel medium saturated with an aqueous electrolyte solution. The surface charge of the drop arises from the specific adsorption of ions onto its interface. [...] Read more.
We present a theoretical model for the electrophoresis of a weakly charged oil drop migrating through an uncharged polymer gel medium saturated with an aqueous electrolyte solution. The surface charge of the drop arises from the specific adsorption of ions onto its interface. Unlike solid particles, liquid drops exhibit internal fluidity and interfacial dynamics, leading to distinct electrokinetic behavior. In this study, the drop motion is driven by long-range hydrodynamic effects from the surrounding gel, which are treated using the Debye–Bueche–Brinkman continuum framework. A simplified version of the Baygents–Saville theory is adopted, assuming that no ions are present inside the drop and that the surface charge distribution results from linear ion adsorption. An approximate analytical expression is derived for the electrophoretic mobility of the drop under the condition of low zeta potential. Importantly, the derived expression explicitly includes the Marangoni effect, which arises from spatial variations in interfacial tension due to non-uniform ion adsorption. This model provides a physically consistent and mathematically tractable basis for understanding the electrophoretic transport of oil drops in soft porous media such as hydrogels, with potential applications in microfluidics, separation processes, and biomimetic systems. These results also show that the theory could be applied to more complicated or biologically important soft materials. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

Back to TopTop