Gold Nanoparticles in Biomedical Applications: Synthesis, Functionalization, and Recent Advances
Abstract
1. Introduction
2. Materials and Methods
3. Characteristics and Properties of AuNPs
3.1. Shape and Size
3.2. Surface Characteristics
3.3. Optical Properties
4. Synthesis of Gold Nanoparticles
4.1. Top-Down vs. Bottom-Up Approaches
4.2. Conventional Methods of Synthesis
4.2.1. Chemical Methods
4.2.2. Physical Methods
4.3. Advanced Methods of Synthesis
4.3.1. Green Synthesis
4.3.2. Microfluidic Synthesis
4.3.3. Machine Learning Methods
5. Functionalization of AuNPs
5.1. Conventional Functionalization Methods
5.2. Advanced Functionalization Methods
6. Biomedical Applications of AuNPs
6.1. Conventional Biomedical Applications
6.1.1. Molecular Delivery System
6.1.2. Basic Diagnostics and Imaging
6.1.3. Biosensing Applications
6.2. Advanced Biomedical Applications
6.2.1. Hybrid AuNPs: Theranostics
6.2.2. Advanced Gene Editing
7. Future Perspectives for AuNPs
7.1. Traditional Translational Pathways for AuNPs
7.2. AI-Guided Modular AuNP Synthesis for Personalized Medicine
7.3. Self-Learning AuNP-Based Theranostic Devices
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Abbreviation | Full Term |
| 6-MP | 6-Mercaptopurine |
| 6-MPR | 6-Mercaptopurine-9-β-D-Ribofuranoside |
| AI | Artificial Intelligence |
| Au | Gold |
| AuNP(s) | Gold Nanoparticle(s) |
| AuNCs | Gold Nanocages |
| AuNR(s) | Gold Nanorod(s) |
| AuNR@S–MCM–41–DOX | Mesoporous-silica-coated gold nanorods loaded with doxorubicin |
| BBA | Biochimica et Biophysica Acta |
| Cas9 | CRISPR-Associated Protein 9 |
| CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
| CT | Computed Tomography |
| CTAB | Cetyltrimethylammonium Bromide |
| DDS | Drug Delivery System |
| DNA | Deoxyribonucleic Acid |
| DOX | Doxorubicin |
| EG | Ethylene Glycol |
| FDA | Food and Drug Administration |
| FRET | Förster Resonance Energy Transfer |
| GSH | Glutathione |
| HAuCl4 | Hydrogen Tetrachloroaurate |
| LA | Lactonic Acid |
| LiAlH4 | Lithium Aluminium Hydride |
| LSPR | Localized Surface Plasmon Resonance |
| MCF-7 | Michigan Cancer Foundation-7 (human breast cancer cell line) |
| ML | Machine Learning |
| mPEG–PCL | Methoxy Poly(ethylene glycol)–Poly(ε-caprolactone) |
| MTX | Methotrexate |
| MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide |
| NaBH4 | Sodium Borohydride |
| NaOH | Sodium Hydroxide |
| NIR | Near-Infrared |
| NP(s) | Nanoparticle(s) |
| pDNA | Plasmid Deoxyribonucleic Acid |
| PEG | Polyethylene Glycol |
| PEG–CS–LA–AuNPs | PEG–Chitosan–Lactonic Acid–Gold Nanoparticles |
| PLAL | Pulsed Laser Ablation in Liquid |
| PSS | Poly(sodium 4-styrenesulfonate) |
| PDT | Photodynamic Therapy |
| PTT | Photothermal Therapy |
| RNA | Ribonucleic Acid |
| ROS | Reactive Oxygen Species |
| SDS | Sodium Dodecyl Sulfate |
| SERS | Surface-Enhanced Raman Spectroscopy |
| SPR | Surface Plasmon Resonance |
| TNF-α | Tumor Necrosis Factor-Alpha |
| UV | Ultraviolet |
| X-CT | X-ray Computed Tomography |
References
- Kim, B.Y.S.; Rutka, J.T.; Chan, W.C.W. Nanomedicine. N. Engl. J. Med. 2010, 363, 2434–2443. [Google Scholar] [CrossRef]
- Anik, M.I.; Mahmud, N.; Al Masud, A.; Hasan, M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. Nano Select 2022, 3, 792–828. [Google Scholar] [CrossRef]
- Ramalingam, V. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Adv. Colloid Interface Sci. 2019, 271, 101989. [Google Scholar] [CrossRef]
- Sindhwani, S.; Chan, W.C.W. Nanotechnology for modern medicine: Next step towards clinical translation. J. Intern. Med. 2021, 290, 486–498. [Google Scholar] [CrossRef]
- Ramalingam, V.; Rajaram, R.; PremKumar, C.; Santhanam, P.; Dhinesh, P.; Vinothkumar, S.; Kaleshkumar, K. Biosynthesis of silver nanoparticles from deep sea bacterium Pseudomonas aeruginosa JQ989348 for antimicrobial, antibiofilm, and cytotoxic activity. J. Basic Microbiol. 2014, 54, 928–936. [Google Scholar] [CrossRef]
- Xiao, T.; Huang, J.; Wang, D.; Meng, T.; Yang, X. Au and Au-Based nanomaterials: Synthesis and recent progress in electrochemical sensor applications. Talanta 2020, 206, 120210. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Danyliuk, N.; Shyichuk, A.; Kotsyubynsky, V.; Lapchuk, I.; Mandzyuk, V. Green synthesis of cobalt ferrite using grape extract: The impact of cation distribution and inversion degree on the catalytic activity in the decomposition of hydrogen peroxide. Emergent Mater. 2022, 5, 89–103. [Google Scholar] [CrossRef]
- Kapoor, A.; Vaishampayan, V.; Awasthi, A.; Banerjee, S. Microfluidic Synthesis of Nanoparticles. In Advances in MEMS and Microfluidic Systems; IGI Global Scientific Publishing: Hershey, PA, USA, 2023; pp. 173–197. [Google Scholar] [CrossRef]
- Tao, H.; Wu, T.; Aldeghi, M.; Wu, T.C.; Aspuru-Guzik, A.; Kumacheva, E. Nanoparticle synthesis assisted by machine learning. Nat. Rev. Mater. 2021, 6, 701–716. [Google Scholar] [CrossRef]
- Liu, Y.; Hardie, J.; Zhang, X.; Rotello, V.M. Effects of engineered nanoparticles on the innate immune system. Semin. Immunol. 2017, 34, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R.R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 2005, 21, 10644–10654. [Google Scholar] [CrossRef]
- Thomas, S.; Grohens, Y.; Ninan, N. Nanotechnology Applications for Tissue Engineering; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–315. [Google Scholar]
- Ferreira, D.; Fontinha, D.; Martins, C.; Pires, D.; Fernandes, A.R.; Baptista, P.V. Gold Nanoparticles for Vectorization of Nucleic Acids for Cancer Therapeutics. Molecules 2020, 25, 3489. [Google Scholar] [CrossRef]
- Kennedy, L.C.; Bickford, L.R.; Lewinski, N.A.; Coughlin, A.J.; Hu, Y.; Day, E.S.; West, J.L.; Drezek, R.A. A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies. Small 2011, 7, 169–183. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Ding, T.; Liu, J.; Zhao, H. Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities. Front. Bioeng. Biotechnol. 2020, 8, 990. [Google Scholar] [CrossRef]
- Luo, D.; Wang, X.; Burda, C.; Basilion, J.P. Recent Development of Gold Nanoparticles as Contrast Agents for Cancer Diagnosis. Cancers 2021, 13, 1825. [Google Scholar] [CrossRef]
- Gholipourmalekabadi, M.; Mobaraki, M.; Ghaffari, M.; Zarebkohan, A.; Omrani, V.F.; Urbanska, A.M.; Seifalian, A. Targeted Drug Delivery Based on Gold Nanoparticle Derivatives. Curr. Pharm. Des. 2017, 23, 2918–2929. [Google Scholar] [CrossRef]
- Chauhan, A.; Khan, T.; Omri, A. Design and Encapsulation of Immunomodulators onto Gold Nanoparticles in Cancer Immunotherapy. Int. J. Mol. Sci. 2021, 22, 8037. [Google Scholar] [CrossRef]
- Tessaro, L.; Aquino, A.; Carvalho, A.P.A.D.; Conte-Junior, C.A. A systematic review on gold nanoparticles based-optical biosensors for Influenza virus detection. Sens. Actuators Rep. 2021, 3, 100060. [Google Scholar] [CrossRef]
- Kumalasari, M.R.; Alfanaar, R.; Andreani, A.S. Gold nanoparticles (AuNPs): A versatile material for biosensor application. Talanta Open 2024, 9, 100327. [Google Scholar] [CrossRef]
- Nehl, C.L.; Hafner, J.H. Shape-dependent plasmon resonances of gold nanoparticles. J. Mater. Chem. 2008, 18, 2415–2419. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Wang, J.-Q.; Ashby, C.R.; Zeng, L.; Fan, Y.-F.; Chen, Z.-S. Gold nanoparticles: Synthesis, physiochemical properties and therapeutic applications in cancer. Drug Discov. Today 2021, 26, 1284–1292. [Google Scholar] [CrossRef]
- Georgeous, J.; AlSawaftah, N.; Abuwatfa, W.H.; Husseini, G.A. Review of Gold Nanoparticles: Synthesis, Properties, Shapes, Cellular Uptake, Targeting, Release Mechanisms and Applications in Drug Delivery and Therapy. Pharmaceutics 2024, 16, 1332. [Google Scholar] [CrossRef] [PubMed]
- Jiji, S.G.; Gopchandran, K.G. Shape dependent catalytic activity of unsupported gold nanostructures for the fast reduction of 4-nitroaniline. Colloid Interface Sci. Commun. 2019, 29, 9–16. [Google Scholar] [CrossRef]
- Yu, L.; Andriola, A. Quantitative gold nanoparticle analysis methods: A review. Talanta 2010, 82, 869–875. [Google Scholar] [CrossRef]
- Mirkin, C.A.; Letsinger, R.L.; Mucic, R.C.; Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609. [Google Scholar] [CrossRef]
- Shafiqa, A.R.; Abdul Aziz, A.; Mehrdel, B. Nanoparticle Optical Properties: Size Dependence of a Single Gold Spherical Nanoparticle. J. Phys. Conf. Ser. 2018, 1083, 012040. [Google Scholar] [CrossRef]
- Suchomel, P.; Kvitek, L.; Prucek, R.; Panacek, A.; Halder, A.; Vajda, S.; Zboril, R. Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity. Sci. Rep. 2018, 8, 4589. [Google Scholar] [CrossRef]
- Xiao, K.; Li, Y.; Luo, J.; Lee, J.S.; Xiao, W.; Gonik, A.M.; Agarwal, R.G.; Lam, K.S. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 2011, 32, 3435–3446. [Google Scholar] [CrossRef]
- Noh, S.M.; Kim, W.-K.; Kim, S.J.; Kim, J.M.; Baek, K.-H.; Oh, Y.-K. Enhanced cellular delivery and transfection efficiency of plasmid DNA using positively charged biocompatible colloidal gold nanoparticles. Biochim. Biophys. Acta BBA Gen. Subj. 2007, 1770, 747–752. [Google Scholar] [CrossRef]
- Bozich, J.S.; Lohse, S.E.; Torelli, M.D.; Murphy, C.J.; Hamers, R.J.; Klaper, R.D. Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna. Environ. Sci. Nano 2014, 1, 260–270. [Google Scholar] [CrossRef]
- Cordeiro, M.; Carlos, F.F.; Pedrosa, P.; Lopez, A.; Baptista, P.V. Gold Nanoparticles for Diagnostics: Advances towards Points of Care. Diagnostics 2016, 6, 43. [Google Scholar] [CrossRef] [PubMed]
- Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O.M.; Iatì, M.A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter 2017, 29, 203002. [Google Scholar] [CrossRef]
- Hua, Z.; Yu, T.; Liu, D.; Xianyu, Y. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosens. Bioelectron. 2021, 179, 113076. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Cho, H.-Y.; Choi, H.K.; Lee, J.-Y.; Choi, J.-W. Application of Gold Nanoparticle to Plasmonic Biosensors. Int. J. Mol. Sci. 2018, 19, 2021. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Liu, J.; Lin, C.; Liu, J.; Wang, J. The Integration of Gold Nanoparticles with Polymerase Chain Reaction for Constructing Colorimetric Sensing Platforms for Detection of Health-Related DNA and Proteins. Biosensors 2022, 12, 421. [Google Scholar] [CrossRef]
- Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008, 23, 217–228. [Google Scholar] [CrossRef]
- Vines, J.B.; Yoon, J.-H.; Ryu, N.-E.; Lim, D.-J.; Park, H. Gold Nanoparticles for Photothermal Cancer Therapy. Front. Chem. 2019, 7, 167. [Google Scholar] [CrossRef]
- Faid, A.H.; Shouman, S.A.; Badr, Y.A.; Sharaky, M. Enhanced photothermal heating and combination therapy of gold nanoparticles on a breast cell model. BMC Chem. 2022, 16, 66. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.X.; Shameli, K.; Yew, Y.P.; Teow, S.-Y.; Jahangirian, H.; Rafiee-Moghaddam, R.; Webster, T.J. Recent Developments in the Facile Bio-Synthesis of Gold Nanoparticles (AuNPs) and Their Biomedical Applications. Int. J. Nanomed. 2020, 15, 275–300. [Google Scholar] [CrossRef] [PubMed]
- Arcos Rosero, W.A.; Bueno Barbezan, A.; Daruich de Souza, C.; Chuery Martins Rostelato, M.E. Review of Advances in Coating and Functionalization of Gold Nanoparticles: From Theory to Biomedical Application. Pharmaceutics 2024, 16, 255. [Google Scholar] [CrossRef]
- Khanna, P.; Kaur, A.; Goyal, D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. J. Microbiol. Methods 2019, 163, 105656. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, L.; Huang, H.; He, W.; Ming, W. Progress in Laser Ablation and Biological Synthesis Processes: “Top-Down” and “Bottom-Up” Approaches for the Green Synthesis of Au/Ag Nanoparticles. Int. J. Mol. Sci. 2022, 23, 14658. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Amina, S.J.; Guo, B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Int. J. Nanomed. 2020, 15, 9823. [Google Scholar] [CrossRef]
- Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. J. Chem. Soc. Chem. Commun. 1994, 7, 801–802. [Google Scholar] [CrossRef]
- Sau, T.K.; Murphy, C.J. Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution. J. Am. Chem. Soc. 2004, 126, 8648–8649. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, H.; Al-Amiery, A.; Al-Baghdadi, S. The using of nanomaterials as catalysts for photodegradations. J. Phys. Conf. Ser. 2021, 1853, 012052. [Google Scholar] [CrossRef]
- Vinod, M.; Jayasree, R.S.; Gopchandran, K.G. Synthesis of pure and biocompatible gold nanoparticles using laser ablation method for SERS and photothermal applications. Curr. Appl. Phys. 2017, 17, 1430–1438. [Google Scholar] [CrossRef]
- Riedel, R.; Mahr, N.; Yao, C.; Wu, A.; Yang, F.; Hampp, N. Synthesis of gold–silica core–shell nanoparticles by pulsed laser ablation in liquid and their physico-chemical properties towards photothermal cancer therapy. Nanoscale 2020, 12, 3007–3018. [Google Scholar] [CrossRef]
- Nie, W.J.; Zhang, Y.X.; Yu, H.H.; Li, R.; He, R.Y.; Dong, N.N.; Wang, J.; Hübner, R.; Böttger, R.; Zhou, S.Q.; et al. Plasmonic nanoparticles embedded in single crystals synthesized by gold ion implantation for enhanced optical nonlinearity and efficient Q-switched lasing. Nanoscale 2018, 10, 4228–4236. [Google Scholar] [CrossRef] [PubMed]
- Ogoe, M. Green Synthesis of Gold Nanoparticles; Materials Research Forum: Lancaster, PA, USA, 2024; pp. 365–397. [Google Scholar] [CrossRef]
- Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—An updated report. Saudi Pharm. J. 2016, 24, 473–484. [Google Scholar] [CrossRef]
- Farihah, N.I.; Taufikurohmah, T. Green Synthesis Gold Nanoparticles using Bioreductant Red Shoot Leaf Extract (Syzygium myrtifolium Walp.) and Activity as Antioxidant. J. Pijar MIPA 2024, 19, 746–752. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; El-Sawah, A.A.; Elmansy, M.F.; Elmessiry, O.T.; El-Saidy, M.E.; El-Sherbeny, M.K.; Sarhan, M.T.; Elhefnawy, A.A.; Dalal, S.R. Process optimization for gold nanoparticles biosynthesis by Streptomyces albogriseolus using artificial neural network, characterization and antitumor activities. Sci. Rep. 2024, 14, 4581. [Google Scholar] [CrossRef]
- Islam, N.U.; Jalil, K.; Shahid, M.; Rauf, A.; Muhammad, N.; Khan, A.; Shah, M.R.; Khan, M.A. Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab. J. Chem. 2019, 12, 2914–2925. [Google Scholar] [CrossRef]
- Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016, 7, 17–28. [Google Scholar] [CrossRef]
- Yang, Z.; Yin, Q.; He, M.; Chong, S.W.; Xu, Z.; Liu, X.; Vega-Sánchez, C.; Jaiswal, A.; Vigolo, D.; Yong, K.T. Synthesis of Anisotropic Gold Microparticles via L-Glutathione-Mediated Pathways in Droplet Microfluidics. Part. Part. Syst. Charact. 2024, 41, 2400056. [Google Scholar] [CrossRef]
- Abou-Hassan, A.; Sandre, O.; Cabuil, V. Microfluidics in Inorganic Chemistry. Angew. Chem. Int. Ed. 2010, 49, 6268–6286. [Google Scholar] [CrossRef] [PubMed]
- Bilgi, E.; Winkler, D.A.; Oksel Karakus, C. Identifying factors controlling cellular uptake of gold nanoparticles by machine learning. J. Drug Target. 2024, 32, 66–73. [Google Scholar] [CrossRef]
- Wu, T.; Kheiri, S.; Hickman, R.J.; Tao, H.; Wu, T.C.; Yang, Z.-B.; Ge, X.; Zhang, W.; Abolhasani, M.; Liu, K.; et al. Self-driving lab for the photochemical synthesis of plasmonic nanoparticles with targeted structural and optical properties. Nat. Commun. 2025, 16, 1473. [Google Scholar] [CrossRef] [PubMed]
- Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779. [Google Scholar] [CrossRef]
- Podsiadlo, P.; Sinani, V.A.; Bahng, J.H.; Kam, N.W.S.; Lee, J.; Kotov, N.A. Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent. Langmuir 2008, 24, 568–574. [Google Scholar] [CrossRef]
- Zhao, M.; Uzunoff, A.; Green, M.; Rakovich, A. The Role of Stabilizing Copolymer in Determining the Physicochemical Properties of Conjugated Polymer Nanoparticles and Their Nanomedical Applications. Nanomaterials 2023, 13, 1543. [Google Scholar] [CrossRef]
- Zenze, M.; Singh, M. Receptor Targeting Using Copolymer-Modified Gold Nanoparticles for pCMV-Luc Gene Delivery to Liver Cancer Cells In Vitro. Int. J. Mol. Sci. 2024, 25, 5016. [Google Scholar] [CrossRef] [PubMed]
- Joshi, H.M.; Bhumkar, D.R.; Joshi, K.; Pokharkar, V.; Sastry, M. Gold nanoparticles as carriers for efficient transmucosal insulin delivery. Langmuir 2006, 22, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, Y.O.; Maalej, N.; Masood Pirzada, B.; Younis Raja, A.; Anjum, D.H.; Jan, N.; Behouch, A.; Ul Haq Qurashi, A. Gold nanoparticles spectral CT imaging and limit of detectability in a new materials contrast-detail phantom. Phys. Med. 2024, 120, 103326. [Google Scholar] [CrossRef]
- Liu, M.; Song, Y.; Liu, M.; Deng, D.; Zhang, W.; Wang, T.; Luo, L. The Application of Functional Nanomaterials-Based Electrochemical Biosensors in Detecting Cancer Biomarkers: A Review. Molecules 2025, 30, 2708. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deinavizadeh, M.; Kiasat, A.R.; Shafiei, M.; Sabaeian, M.; Mirzajani, R.; Zahraei, S.M.; Khalili, F.; Shao, M.; Wu, A.; Makvandi, P.; et al. Synergistic chemo-photothermal therapy using gold nanorods supported on thiol-functionalized mesoporous silica for lung cancer treatment. Sci. Rep. 2024, 14, 4373. [Google Scholar] [CrossRef]
- Konstantinidou, S.; Lindstaedt, A.; Schmidt, T.J.N.; Nocilla, F.; Maltinti, G.; Rocco, M.A.; Landi, E.; Carli, A.D.; Crucitta, S.; Lai, M.; et al. A Transfection-Free Approach of Gene Editing via a gold-based nanoformulation of the Cas9 protein. bioRxiv 2024. [Google Scholar] [CrossRef]
- Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer. Int. J. Mol. Sci. 2018, 19, 1979. [Google Scholar] [CrossRef]
- Martinho, N.; Damgé, C.; Reis, C.P. Recent Advances in Drug Delivery Systems. J. Biomater. Nanobiotechnol. 2011, 2, 510–526. [Google Scholar] [CrossRef]
- Duncan, B.; Kim, C.; Rotello, V.M. Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J. Control. Release 2010, 148, 122–127. [Google Scholar] [CrossRef]
- Huang, H.; Liu, R.; Yang, J.; Dai, J.; Fan, S.; Pi, J.; Wei, Y.; Guo, X. Gold Nanoparticles: Construction for Drug Delivery and Application in Cancer Immunotherapy. Pharmaceutics 2023, 15, 1868. [Google Scholar] [CrossRef] [PubMed]
- Klębowski, B.; Depciuch, J.; Parlińska-Wojtan, M.; Baran, J. Applications of Noble Metal-Based Nanoparticles in Medicine. Int. J. Mol. Sci. 2018, 19, 4031. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Jiang, Z.; Saha, K.; Kim, C.S.; Kim, S.T.; Landis, R.F.; Rotello, V.M. Gold nanoparticles for nucleic acid delivery. Mol. Ther. 2014, 22, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Rahman, W.N.; Corde, S.; Yagi, N.; Abdul Aziz, S.A.; Annabell, N.; Geso, M. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams. Int. J. Nanomed. 2014, 9, 2459–2467. [Google Scholar] [CrossRef]
- Sztandera, K.; Gorzkiewicz, M.; Klajnert-Maculewicz, B. Gold Nanoparticles in Cancer Treatment. Mol. Pharm. 2019, 16, 1–23. [Google Scholar] [CrossRef]
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef]
- Hooshyar, V.A.; Mohammadi, A.; Ghorbani, Y.; Ebrahimi, H.A.; Danafar, H.; Nosrati, H.; Rajabi, O. Methotrexate conjugated polymeric prodrug encapsulating gold nanoparticles for combined chemo/radiation therapies. Appl. Organomet. Chem. 2024, 38, e7468. [Google Scholar] [CrossRef]
- Guo, J.; Rahme, K.; He, Y.; Li, L.-L.; Holmes, J.D.; O’Driscoll, C.M. Gold nanoparticles enlighten the future of cancer theranostics. Int. J. Nanomed. 2017, 12, 6131–6152. [Google Scholar] [CrossRef]
- Li, J.; Gupta, S.; Li, C. Research perspectives: Gold nanoparticles in cancer theranostics. Quant. Imaging Med. Surg. 2013, 3, 284–291. [Google Scholar] [CrossRef]
- Zhuang, L.; Lian, Y.; Zhu, T. Multifunctional gold nanoparticles: Bridging detection, diagnosis, and targeted therapy in cancer. Mol. Cancer 2025, 24, 228. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, R.; Sghia-Hughes, G.; Reid, J.L.; Kubek, S.; Haworth, K.G.; Humbert, O.; Kiem, H.-P.; Adair, J.E. Targeted homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations. Nat. Mater. 2019, 18, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-H.; Tee, L.Y.; Wang, X.-G.; Huang, Q.-S.; Yang, S.-H. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering. Mol. Ther. Nucleic Acids 2015, 4, e264. [Google Scholar] [CrossRef]
- Tycko, J.; Myer, V.E.; Hsu, P.D. Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity. Mol. Cell 2016, 63, 355–370. [Google Scholar] [CrossRef] [PubMed]




| Method | Description | Key Features |
|---|---|---|
| Turkevich Method | Classical chemical reduction using trisodium citrate as reducing and stabilising agent for Au3+ ions. | Produces hydrophilic spherical AuNPs (10–100 nm) with good monodispersity. |
| Brust–Schiffrin Method | Two-phase organic reduction employing tetraoctylammonium bromide and sodium borohydride. | Generates small (1.5–5.2 nm), stable AuNPs transferable to organic media. |
| Seed-Mediated Growth | Growth of small gold seeds to form nanorods and other anisotropic structures. | Allows precise control of shape and aspect ratio. |
| Green Synthesis | Uses plant or microbial extracts as natural reducing and stabilising agents. | Eco-friendly, biocompatible route suitable for biomedical use. |
| Microfluidic Synthesis | Employs continuous-flow microreactor systems for controlled nucleation and growth. | Produces uniform particles with reproducible size. |
| Machine-Learning-Assisted Synthesis | Optimises reaction parameters such as temperature and concentration through data-driven algorithms. | Provides reproducibility and morphology control. |
| Application | Example | Mechanism | Type of Study | Reference |
|---|---|---|---|---|
| Drug Delivery | GSH-stabilised AuNPs modified with doxorubicin (DOX) through electrostatic interaction between the amine group (−NH2) of DOX and the negatively charged PSS–AuNR surface. | These AuNR–DOX conjugates showed enhanced biological stability and higher therapeutic efficacy compared with free DOX. | Polymer-functionalised AuNR–DOX conjugates. | Venkatesan et al. (2013) [62] |
| Gene Therapy | PEG–CS–LA–AuNPs used for the delivery of plasmid DNA (pCMV-Luc) to hepatocytes. | The PEG–CS–LA–AuNPs achieved a five-fold increase in gene expression. | PEG–CS–LA–AuNP/pDNA complexes. | Zenze et al. (2024) [66] |
| Protein Delivery | Insulin conjugated to AuNPs via covalent binding. | The insulin–AuNP conjugates provided improved stability and sustained release. | Insulin-bound AuNPs. | Joshi et al. (2006) [67] |
| Imaging/ Diagnostics | Au nanocages (30–40 nm) used as X-ray contrast agents. | The Au nanocages produced higher attenuation and clear tumour delineation. | Au nanocages (30–40 nm). | Ibrahim et al. (2024) [68] |
| Biosensing | AuNP-based immunosensors applied for the detection of specific biomarkers. | AuNPs enhance detection through optical and electrochemical signals. | AuNP-based immunosensors. | Liu et al. (2025) [69] |
| Theranostics/Photothermal Therapy | mPEG–PCL–MTX@Au and AuNR@S–MCM–41–DOX systems responsive to pH and NIR irradiation. | These systems demonstrated pH/NIR-responsive drug release and enhanced cytotoxicity. | mPEG–PCL–MTX@Au and AuNR@S–MCM–41–DOX hybrids. | Deinavizadeh et al. (2024) [70] |
| Gene Editing | Cas9–AuNP conjugates used for delivering CRISPR components into target cells. | These conjugates provided efficient and precise genome modification with low toxicity. | Cas9–AuNP conjugates. | Konstantinidou et al. (2024) [71] |
| Property | Description | Applications |
|---|---|---|
| Surface Plasmon Resonance (SPR) | Unique optical property that enhances light absorption and scattering. | Biosensing and imaging. |
| Tunable Size and Shape | Ability to control shape and size for specific biomedical functions. | Molecular imaging, targeted therapy, and CRISPR/Cas9-assisted therapies. |
| Functionalization Potential | Enables attachment of ligands, polymers, and biomolecules for targeted delivery. | Targeted drug delivery, gene therapy, and immune modulation. |
| Biocompatibility | Low cytotoxicity and compatibility with biological systems. | Theranostics and basic drug delivery systems. |
| Photothermal Conversion | Efficient conversion of light energy into heat for therapeutic use. | Cancer therapy and photothermal ablation. |
| Aspect | Conventional Approaches | Advanced Approaches |
|---|---|---|
| Synthesis Methods | Chemical and physical methods are considered essential and the base for AuNP production, including reduction of gold ions using different reducing and stabilizing agents. | Green eco-friendly systems using plant or microbial extracts, microfluidic synthesis that provides controlled size and morphology, and machine-learning (ML) integrated synthesis for precision and reproducibility. |
| Functionalization Techniques | Ligand functionalization through thiol and amine groups for the direct attachment of drugs, proteins, or nucleic acids to the surface of AuNPs. | Polymer and hybrid functionalization using PEGylation or smart polymer coatings that improve biocompatibility, stability, and controlled release for targeted delivery. |
| Applications | Conventional uses include CT and X-ray imaging where AuNPs act as contrast agents, and basic molecular or drug-delivery systems for chemotherapy. | Advanced biomedical applications involve photothermal and photodynamic cancer therapy, hybrid AuNP-based theranostic systems, and CRISPR/Cas9-assisted gene editing for precision medicine. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zahdeh, M.; Karaman, R. Gold Nanoparticles in Biomedical Applications: Synthesis, Functionalization, and Recent Advances. Molecules 2026, 31, 17. https://doi.org/10.3390/molecules31010017
Zahdeh M, Karaman R. Gold Nanoparticles in Biomedical Applications: Synthesis, Functionalization, and Recent Advances. Molecules. 2026; 31(1):17. https://doi.org/10.3390/molecules31010017
Chicago/Turabian StyleZahdeh, Massa, and Rafik Karaman. 2026. "Gold Nanoparticles in Biomedical Applications: Synthesis, Functionalization, and Recent Advances" Molecules 31, no. 1: 17. https://doi.org/10.3390/molecules31010017
APA StyleZahdeh, M., & Karaman, R. (2026). Gold Nanoparticles in Biomedical Applications: Synthesis, Functionalization, and Recent Advances. Molecules, 31(1), 17. https://doi.org/10.3390/molecules31010017

