Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,539)

Search Parameters:
Keywords = polymer coating material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 9437 KiB  
Review
Antibacterial Polysaccharides in Dental Implantology
by Lubica Hallmann and Mark Daniel Gerngroß
Mar. Drugs 2025, 23(8), 321; https://doi.org/10.3390/md23080321 - 4 Aug 2025
Abstract
Background: The aim of this review is to summarize and evaluate the properties of antibacterial polysaccharides for application in dental implantology to identify knowledge gaps and provide new research ideas. Methods: The electronic databases PubMed, Medline, ProQuest, and Google Scholar were used [...] Read more.
Background: The aim of this review is to summarize and evaluate the properties of antibacterial polysaccharides for application in dental implantology to identify knowledge gaps and provide new research ideas. Methods: The electronic databases PubMed, Medline, ProQuest, and Google Scholar were used to search for peer-reviewed scientific publications published between 2018 and 2025 that provide insights to answer research questions on the role of antibacterial polysaccharides in combating pathogens in dental implantology without triggering immune reactions and inflammation. Further research questions relate to the efficacy against various dental pathogens and the understanding of the antibacterial mechanism, which may enable the development of functionalized polysaccharides with long-term antibacterial activity. Results: Biomedical implants have revolutionized medicine but also increased the risk of infections. Implant infections are a major problem in implantology and lead to implant failure and replacement. An antibacterial coating could be an excellent strategy to extend the lifespan of implants and improve the quality of the patient’s life. Bacterial resistance to antibiotics poses significant challenges for researchers, forcing them to search for new ways to prevent bacterial infections in implantology. Antibacterial natural polymers have recently received considerable research attention due to their long-term antibacterial activity. Polysaccharides from marine sources, such as chitosan and alginate, or pectin, xanthan, etc., from various plants, appear to be promising biopolymers for such applications in implantology due to their antibacterial activity, biocompatibility, and osteogenic properties. The antibacterial activity of these natural biopolymers depends on their chemical and physical properties. Nanopolysaccharides exhibit higher antibacterial activity than conventional polysaccharides, but their toxicity to human cells must be considered. Their antibacterial activity is based on the disruption of bacterial DNA or RNA synthesis, increased cell wall permeability, membrane disruption, and cytoplasmic leakage. Conclusions: Polysaccharides are a class of natural polymers with a broad spectrum of biological activities. They exhibit antioxidant, immunomodulatory, anticoagulant, anticancer, anti-inflammatory, antibacterial, and antiviral activity. Furthermore, polysaccharides are non-cytotoxic and exhibit good biocompatibility with osteogenic cells. Bactericidal polysaccharides are attractive new antibacterial materials against implant infections and open up new perspectives in implantology. Full article
(This article belongs to the Special Issue Marine Biomaterials for Dental Applications)
Show Figures

Figure 1

10 pages, 1883 KiB  
Article
In Vitro Biofilm Formation Kinetics of Pseudomonas aeruginosa and Escherichia coli on Medical-Grade Polyether Ether Ketone (PEEK) and Polyamide 12 (PA12) Polymers
by Susana Carbajal-Ocaña, Kristeel Ximena Franco-Gómez, Valeria Atehortúa-Benítez, Daniela Mendoza-Lozano, Luis Vicente Prado-Cervantes, Luis J. Melgoza-Ramírez, Miguel Delgado-Rodríguez, Mariana E. Elizondo-García and Jorge Membrillo-Hernández
Hygiene 2025, 5(3), 32; https://doi.org/10.3390/hygiene5030032 - 1 Aug 2025
Viewed by 179
Abstract
Biofilms, structured communities of microorganisms encased in an extracellular matrix, are a major cause of persistent infections, particularly when formed on medical devices. This study investigated the kinetics of biofilm formation by Escherichia coli and Pseudomonas aeruginosa, two clinically significant pathogens, on [...] Read more.
Biofilms, structured communities of microorganisms encased in an extracellular matrix, are a major cause of persistent infections, particularly when formed on medical devices. This study investigated the kinetics of biofilm formation by Escherichia coli and Pseudomonas aeruginosa, two clinically significant pathogens, on two medical-grade polymers: polyether ether ketone (PEEK) and polyamide 12 (PA12). Using a modified crystal violet staining method and spectrophotometric quantification, we evaluated biofilm development over time on polymer granules and catheter segments composed of these materials. Results revealed that PEEK surfaces supported significantly more biofilm formation than PA12, with peak accumulation observed at 24 h for both pathogens. Conversely, PA12 demonstrated reduced bacterial adhesion and lower biofilm biomass, suggesting surface characteristics less conducive to microbial colonization. Additionally, the study validated a reproducible protocol for assessing biofilm formation, providing a foundation for evaluating anti-biofilm strategies. While the assays were performed under static in vitro conditions, the findings highlight the importance of material selection and early prevention strategies in the design of infection-resistant medical devices. This work contributes to the understanding of how surface properties affect microbial adhesion and underscores the critical need for innovative surface modifications or coatings to mitigate biofilm-related healthcare risks. Full article
(This article belongs to the Section Hygiene in Healthcare Facilities)
Show Figures

Figure 1

15 pages, 1758 KiB  
Article
Optimized Si-H Content and Multivariate Engineering of PMHS Antifoamers for Superior Foam Suppression in High-Viscosity Systems
by Soyeon Kim, Changchun Liu, Junyao Huang, Xiang Feng, Hong Sun, Xiaoli Zhan, Mingkui Shi, Hongzhen Bai and Guping Tang
Coatings 2025, 15(8), 894; https://doi.org/10.3390/coatings15080894 (registering DOI) - 1 Aug 2025
Viewed by 218
Abstract
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D [...] Read more.
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D30T1), and terminal group chemistry (H- vs. M-type). These structural modifications resulted in a broad range of Si-H functionalities, which were quantitatively analyzed and correlated with defoaming performance. The PMHS matrices were integrated with high-viscosity PDMS, a nonionic surfactant, and covalently grafted fumed silica—which was chemically matched to each PMHS backbone—to construct formulation-specific defoaming systems with enhanced interfacial compatibility and colloidal stability. Comprehensive physicochemical characterization via FT-IR, 1H NMR, GPC, TGA, and surface tension analysis revealed a nonmonotonic relationship between Si-H content and defoaming efficiency. Formulations containing 0.1–0.3 wt% Si-H achieved peak performance, with suppression efficiencies up to 96.6% and surface tensions as low as 18.9 mN/m. Deviations from this optimal range impaired performance due to interfacial over-reactivity or reduced mobility. Furthermore, thermal stability and molecular weight distribution were found to be governed by repeat unit architecture and terminal group selection. Compared with conventional EO/PO-modified commercial defoamers, the PMHS-based systems exhibited markedly improved suppression durability and formulation stability in high-viscosity environments. These results establish a predictive structure–property framework for tailoring antifoaming agents and highlight PMHS-based formulations as advanced foam suppressors with improved functionality. This study provides actionable design criteria for high-performance silicone materials with strong potential for application in thermally and mechanically demanding environments such as coating, bioprocessing, and polymer manufacturing. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

15 pages, 1257 KiB  
Article
Waterborne Polymer Coating Material Modified with Nano-SiO2 and Siloxane for Fabricating Environmentally Friendly Coated Urea
by Songling Chen, Fuxin Liu, Wenying Zhao, Jianrong Zhao, Xinlin Li and Jianfei Wang
Sustainability 2025, 17(15), 6987; https://doi.org/10.3390/su17156987 - 1 Aug 2025
Viewed by 276
Abstract
Environmentally friendly coated urea prepared using a waterborne polymer coating material is essential for promoting green and sustainable practices in modern agriculture. However, significant efforts are still urgently needed to address the undesirable properties of waterborne polymer coatings, i.e., poor hydrophobic properties and [...] Read more.
Environmentally friendly coated urea prepared using a waterborne polymer coating material is essential for promoting green and sustainable practices in modern agriculture. However, significant efforts are still urgently needed to address the undesirable properties of waterborne polymer coatings, i.e., poor hydrophobic properties and numerous micropores. Herein, dual nano-SiO2 and siloxane-modified waterborne-polymer-coated urea was successfully developed. The characteristics of waterborne-polymer-coated urea before and after modification were compared. The results demonstrate that nano-SiO2 and siloxane modification improved the hydrophobicity (water absorption decreased from 119.86% to 46.35%) and mechanical strength (tensile strength increased from 21.09 to 31.29 MPa, and the elongation at break exhibited an increase of 22.42%) of the waterborne polymer coatings. Furthermore, the –OH number of the modified coatings was decreased, while the coating surface formed a nano-scale rough structure, prolonging the nitrogen (N)-controlled release period from 7 to 28 days. Overall, the proposed novel dual-modification technique utilizing waterborne polymer coatings highlights the significant potential of eco-friendly coated urea with renewable coatings in modern agriculture. Full article
Show Figures

Figure 1

15 pages, 3565 KiB  
Article
Controlled PolyDMAEMA Functionalization of Titanium Surfaces via Graft-To and Graft-From Strategies
by Chiara Frezza, Susanna Romano, Daniele Rocco, Giancarlo Masci, Giovanni Sotgiu, Monica Orsini and Serena De Santis
Micromachines 2025, 16(8), 899; https://doi.org/10.3390/mi16080899 (registering DOI) - 31 Jul 2025
Viewed by 137
Abstract
Titanium is widely recognized as an interesting material for electrodes due to its excellent corrosion resistance, mechanical strength, and biocompatibility. However, further functionalization is often necessary to impart advanced interfacial properties, such as selective ion transport or stimuli responsiveness. In this context, the [...] Read more.
Titanium is widely recognized as an interesting material for electrodes due to its excellent corrosion resistance, mechanical strength, and biocompatibility. However, further functionalization is often necessary to impart advanced interfacial properties, such as selective ion transport or stimuli responsiveness. In this context, the integration of smart polymers, such as poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA)—noted for its dual pH- and thermo-responsive behavior—has emerged as a promising approach to tailor surface properties for next-generation devices. This work compares two covalent immobilization strategies for PDMAEMA on titanium: the “graft-to” method, involving the attachment of pre-synthesized polymer chains, and the “graft-from” method, based on surface-initiated polymerization. The resulting materials were characterized with size exclusion chromatography (SEC) for molecular weight, Fourier-transform infrared spectroscopy (FTIR) for chemical structure, scanning electron microscopy (SEM) for surface morphology, and contact angle measurements for wettability. Electrochemical impedance spectroscopy and polarization studies were used to assess electrochemical performance. Both strategies yielded uniform and stable coatings, with the mode of grafting influencing both surface morphology and functional stability. These findings provide valuable insights into the development of adaptive, stimuli-responsive titanium-based interfaces in advanced electrochemical systems. Full article
Show Figures

Figure 1

19 pages, 2633 KiB  
Article
Influence of Mullite and Halloysite Reinforcement on the Ablation Properties of an Epoxy Composite
by Robert Szczepaniak, Michał Piątkiewicz, Dominik Gryc, Paweł Przybyłek, Grzegorz Woroniak and Joanna Piotrowska-Woroniak
Materials 2025, 18(15), 3530; https://doi.org/10.3390/ma18153530 - 28 Jul 2025
Viewed by 273
Abstract
This paper explores the impact of applying a powder additive in the form of halloysite and mullite on the thermal protection properties of a composite. The authors used CES R70 epoxy resin with CES H72 hardener, modified by varying the amount of powder [...] Read more.
This paper explores the impact of applying a powder additive in the form of halloysite and mullite on the thermal protection properties of a composite. The authors used CES R70 epoxy resin with CES H72 hardener, modified by varying the amount of powder additive. The composite samples were exposed to a mixture of combustible gases at a temperature of approximately 1000 °C. The primary parameters analyzed during this study were the temperature on the rear surface of the sample and the ablative mass loss of the tested material. The temperature increase on the rear surface of the sample, which was exposed to the hot stream of flammable gases, was measured for 120 s. Another key parameter considered in the data analysis was the ablative mass loss. The charred layer of the sample played a crucial role in this process, as it helped block oxygen diffusion from the boundary layer of the original material. This charred layer absorbed thermal energy until it reached a temperature at which it either oxidized or was mechanically removed due to the erosive effects of the heating factor. The incorporation of mullite reduced the rear surface temperature from 58.9 °C to 49.2 °C, and for halloysite, it was reduced the rear surface temperature to 49.8 °C. The ablative weight loss dropped from 57% to 18.9% for mullite and to 39.9% for halloysite. The speed of mass ablation was reduced from 77.9 mg/s to 25.2 mg/s (mullite) and 52.4 mg/s (halloysite), while the layer thickness loss decreased from 7.4 mm to 2.8 mm (mullite) and 4.4 mm (halloysite). This research is innovative in its use of halloysite and mullite as functional additives to enhance the ablative resistance of polymer composites under extreme thermal conditions. This novel approach not only contributes to a deeper understanding of composite behavior at high temperatures but also opens up new avenues for the development of advanced thermal protection systems. Potential applications of these materials include aerospace structures, fire-resistant components, and protective coatings in environments exposed to intense heat and flame. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

31 pages, 5261 KiB  
Review
Wear- and Corrosion-Resistant Coatings for Extreme Environments: Advances, Challenges, and Future Perspectives
by Subin Antony Jose, Zachary Lapierre, Tyler Williams, Colton Hope, Tryon Jardin, Roberto Rodriguez and Pradeep L. Menezes
Coatings 2025, 15(8), 878; https://doi.org/10.3390/coatings15080878 - 26 Jul 2025
Viewed by 735
Abstract
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well [...] Read more.
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well as cryogenic and space applications. A comprehensive overview of promising coating materials is provided, including ceramic-based coatings, metallic and alloy coatings, and polymer and composite systems, as well as nanostructured and multilayered architectures. These materials are deployed using advanced coating technologies such as thermal spraying (plasma spray, high-velocity oxygen fuel (HVOF), and cold spray), chemical and physical vapor deposition (CVD and PVD), electrochemical methods (electrodeposition), additive manufacturing, and in situ coating approaches. Key degradation mechanisms such as adhesive and abrasive wear, oxidation, hot corrosion, stress corrosion cracking, and tribocorrosion are examined with coating performance. The review also explores application-specific needs in aerospace, marine, energy, biomedical, and mining sectors operating in aggressive physiological environments. Emerging trends in the field are highlighted, including self-healing and smart coatings, environmentally friendly coating technologies, functionally graded and nanostructured coatings, and the integration of machine learning in coating design and optimization. Finally, the review addresses broader considerations such as scalability, cost-effectiveness, long-term durability, maintenance requirements, and environmental regulations. This comprehensive analysis aims to synthesize current knowledge while identifying future directions for innovation in protective coatings for extreme environments. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Figure 1

16 pages, 2322 KiB  
Article
Reducing Marine Ecotoxicity and Carbon Burden: A Life Cycle Assessment Study of Antifouling Systems
by Trent Kelly, Emily M. Hunt, Changxue Xu and George Tan
Processes 2025, 13(8), 2356; https://doi.org/10.3390/pr13082356 - 24 Jul 2025
Viewed by 293
Abstract
Marine biofouling significantly impacts the performance and longevity of polymer-based marine structures, particularly those designed for hydrodynamic applications such as Vortex-Induced Vibration suppression systems. Traditional antifouling solutions rely on copper-based multilayer coatings, which present challenges including mechanical vulnerability (e.g., chipping and scratching), high [...] Read more.
Marine biofouling significantly impacts the performance and longevity of polymer-based marine structures, particularly those designed for hydrodynamic applications such as Vortex-Induced Vibration suppression systems. Traditional antifouling solutions rely on copper-based multilayer coatings, which present challenges including mechanical vulnerability (e.g., chipping and scratching), high material and labor demands, and environmental concerns such as volatile organic compound emissions and copper leaching. Recent developments in material science have introduced an alternative system involving the direct incorporation of copper oxide (Cu2O) into high-density polyethylene (HDPE) during the molding process. This study conducts a comparative life cycle assessment (LCA) of two antifouling integration methods—System 1 (traditional coating-based) and System 2 (Cu2O-impregnated HDPE)—evaluating their environmental impact across production, application, use, and end-of-life stages. The functional unit used for this study was 1 square meter for a time period of five years. Using ISO 14040-compliant methodology and data from Ecoinvent and OpenLCA, three impact categories were assessed: global warming potential (GWP), cumulative energy demand (CED), and marine aquatic ecotoxicity Potential (MAETP). The results indicate that System 2 outperforms System 1 in GWP (4.42 vs. 5.65 kg CO2-eq), CED (75.3 vs. 91.0 MJ-eq), and MAETP (327,002 vs. 469,929 kg 1,4-DCB-eq) per functional unit over a five-year lifespan, indicating a 21.8%, 17.3%, and 30.4% reduction in the key impact factors, respectively. These results suggest that direct Cu2O incorporation offers a more environmentally sustainable and mechanically resilient antifouling strategy, supporting the potential of embedded antifouling systems to shift industry practices toward more sustainable marine infrastructure. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Figure 1

16 pages, 2948 KiB  
Article
Antifouling Polymer-Coated Anthocyanin-Loaded Cellulose Nanocrystals Demonstrate Reduced Bacterial Detection Capabilities
by Catherine Doyle, Diego Combita, Matthew J. Dunlop and Marya Ahmed
Polymers 2025, 17(15), 2007; https://doi.org/10.3390/polym17152007 - 22 Jul 2025
Viewed by 356
Abstract
Microbial contamination is a global concern with impacts on a variety of industries ranging from marine to biomedical applications. Recent research on hydrophilic polymer-based coatings is focused on combining antifouling polymers with nanomaterials to enhance mechanical, optical, and stimuli-responsive properties, yielding colour changing, [...] Read more.
Microbial contamination is a global concern with impacts on a variety of industries ranging from marine to biomedical applications. Recent research on hydrophilic polymer-based coatings is focused on combining antifouling polymers with nanomaterials to enhance mechanical, optical, and stimuli-responsive properties, yielding colour changing, self-healing, and super hydrophilic materials. This study combines the hydrophilic and antifouling properties of vitamin B5 analogous methacrylamide (B5AMA)-based polymers with stimuli-responsive anthocyanin-dye-loaded cellulose nanocrystals (CNCs) to develop antifouling materials with colour changing capabilities upon bacterial contamination. Poly(B5AMA)-grafted CNCs were prepared through surface-initiated photoiniferter reversible addition fragmentation chain transfer (SP-RAFT) polymerization and characterized through proton nuclear magnetic resonance (1H-NMR), transmission electron microscopy (SEM/TEM), and X-ray photon spectroscopy (XPS) to confirm the formation of surface-grafted polymer chains. The bare CNCs and poly(B5AMA)-grafted CNCs were loaded with anthocyanin dye and evaluated for pH-dependent colour changing capabilities. Interestingly, anthocyanin-loaded CNCs demonstrated vibrant colour changes in both solution and dried film form upon bacterial contamination; however, limited colour changing capabilities of the composites, specifically in dried film form, were attributed to the enhanced dispersibility and antifouling capabilities of the polymer-coated CNCs. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

28 pages, 5525 KiB  
Article
Synthesis and Evaluation of a Photocatalytic TiO2-Ag Coating on Polymer Composite Materials
by Juan José Valenzuela Expósito, Elena Picazo Camilo and Francisco Antonio Corpas Iglesias
J. Compos. Sci. 2025, 9(8), 383; https://doi.org/10.3390/jcs9080383 - 22 Jul 2025
Viewed by 395
Abstract
This study explores the development and optimization of TiO2-based photoactive coatings enhanced with silver (Ag)—to boost photocatalytic performance—for application on glass-fiber-reinforced polyester (GFRP) and epoxy (GFRE) composites. The influence of Ag content on the structural, physicochemical, and functional properties of the [...] Read more.
This study explores the development and optimization of TiO2-based photoactive coatings enhanced with silver (Ag)—to boost photocatalytic performance—for application on glass-fiber-reinforced polyester (GFRP) and epoxy (GFRE) composites. The influence of Ag content on the structural, physicochemical, and functional properties of the coatings was evaluated. The TiO2-Ag coating showed the best performance and was tested under UV-A irradiation and visible light (Vis), with high efficiency in VOC degradation, self-cleaning, and microbial activity. The tests were repeated in multiple runs, showing high reproducibility in the results obtained. In GFRP, pollutant and microorganism removal ratios of more than 90% were observed. In contrast, GFRE showed a lower adhesion and stability of the coating. This result is attributed to incompatibility problems with the epoxy matrix, which significantly limited its functional performance. The results highlight the feasibility of using the TiO2-Ag coating on GFRP substrates, even under visible light. Under real-world conditions for 351 days, the coating on GFRP maintained its stability. This type of material has high potential for application in modular building systems using sandwich panels, as well as in facades and automotive components, where self-cleaning and contaminant-control properties are essential. Full article
Show Figures

Figure 1

25 pages, 2929 KiB  
Article
Modified Water-Dispersion Compositions Based on Synthesized Dispersions and Hollow Glass Microspheres with Improved Protective Characteristics
by Meiram M. Begentayev, Erzhan I. Kuldeyev, Ruslan E. Nurlybayev, Zaure N. Altayeva, Yelzhan S. Orynbekov, Axaya S. Yestemessova, Aktota A. Murzagulova, Alinur A. Iskakov, Aidos A. Joldassov and Zhanar O. Zhumadilova
Coatings 2025, 15(7), 840; https://doi.org/10.3390/coatings15070840 - 18 Jul 2025
Viewed by 381
Abstract
During the operation of structures, the components and materials from which they are made are exposed to various environmental, technological, and operational impacts. In this context, the use of a modified water-dispersion composition containing finely dispersed fillers with enhanced protective and performance characteristics [...] Read more.
During the operation of structures, the components and materials from which they are made are exposed to various environmental, technological, and operational impacts. In this context, the use of a modified water-dispersion composition containing finely dispersed fillers with enhanced protective and performance characteristics proves to be effective. This article examines the development of a paint-and-coating composition using hollow glass microspheres and modified diatomite as finely dispersed fillers. The influence of technological factors on the properties of coating materials based on a synthesized acrylic dispersion and fillers—such as modified diatomite and hollow glass microspheres ranging from 20 to 100 μm in size with a bulk density of 0.107–0.252 g/cm3—is analyzed. The optimal formulation of the coating materials was determined to ensure the required coating quality. Experimental results demonstrate the improved strength and hardness of the coating due to the use of acrylic dispersion obtained through an emulsifier-free method and modifiers in the form of finely dispersed fillers. It has been established that the resulting samples also exhibit high adhesion to mineral and metallic substrates, along with excellent corrosion resistance. Moreover, the incorporation of acrylic dispersion contributes to increased elasticity of the coating, resulting in improved resistance to washing and abrasion. The developed protective material can be applied to a variety of surfaces, including walls, ceilings, and roofs of buildings and structures, pipelines, and many other applications. Thus, modified water-dispersion compositions based on synthesized acrylic dispersion showed the following results: resistance to sticking—5, which is the best; chemical resistance and gloss level with standard single-phase acrylic dispersion—no destruction or change in gloss. The adhesion of coatings cured under natural conditions and under the influence of UV radiation was 1 point. The developed formulations for obtaining water-dispersion paint and varnish compositions based on synthesized polymer dispersions, activated diatomite, and hollow glass microspheres, meet all the regulatory requirements for paint and varnish materials in terms of performance, and in terms of economic indicators, the cost of 1 kg of paint is 30% lower than the standard. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

19 pages, 5321 KiB  
Article
Influence of Polymers on the Performance and Protective Effect of Cement-Based Coating Materials
by Yihao Yin and Yingjun Mei
Materials 2025, 18(14), 3321; https://doi.org/10.3390/ma18143321 - 15 Jul 2025
Viewed by 240
Abstract
Traditional cementitious coating materials struggle to meet the performance criteria for protective coatings in complex environments. This study developed a polymer-modified cement-based coating material with polymer, silica fume (SF), and quartz sand (QS) as the principal admixtures. It also investigated the influence of [...] Read more.
Traditional cementitious coating materials struggle to meet the performance criteria for protective coatings in complex environments. This study developed a polymer-modified cement-based coating material with polymer, silica fume (SF), and quartz sand (QS) as the principal admixtures. It also investigated the influence of material composition on the coating’s mechanical properties, durability, interfacial bond characteristics with concrete, and the durability enhancement of coated concrete. The results demonstrated that compared with ordinary cementitious coating material (OCCM), the interfacial bonding performance between 3% Styrene Butadiene Rubber Powder (SBR) coating material and concrete was improved by 42%; the frost resistance and sulfate erosion resistance of concrete protected by 6% polyurethane (PU) coating material were improved by 31.5% and 69.6%. The inclusion of polymers reduces the mechanical properties. The re-addition of silica fume can lower the porosity while increasing durability and strength. The coating material, mixed with 12% SF and 6% PU, exhibits mechanical properties not lower than those of OCCM. Meanwhile, the interfacial bonding performance and durability of the coated concrete have been improved by 45% and 48%, respectively. The grey relational analysis indicated that the coating material with the best comprehensive performance is the one mixed with 12% SF + 6% PU, and the grey correlation degree is 0.84. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

13 pages, 3561 KiB  
Article
Preparing Surface-Functionalized Polymer Films with Hierarchically Ordered Structure by a Combination of Nanoimprinting and Controlled Graft Polymerization
by Masahiko Minoda, Daichi Shimizu, Tatsuya Nohara and Jin Motoyanagi
Surfaces 2025, 8(3), 48; https://doi.org/10.3390/surfaces8030048 - 11 Jul 2025
Viewed by 285
Abstract
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared [...] Read more.
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared by combining both nanoimprinting using anodically oxidized porous alumina (AAO) as a template and surface-initiated atom transfer radical polymerization (SI-ATRP). To prepare such polymer films, we designed a new copolymer (poly{[2-(4-methyl-2-oxo-2H-chromen-7-yloxy)ethyl methacrylate]-co-[2-(2-bromo-2-methylpropionyloxy)ethyl methacrylate]}; poly(MCMA-co-HEMABr)) with coumarin moieties and α-haloester moieties in the pendants. The MCMA repeating units function to fix the pillar structure by photodimerization, and the HEMABr ones act as the polymerization initiation sites for SI-ATRP on the pillar surfaces. Surface structures consisting of vertically oriented multiple pillars were fabricated on the spin-coated poly(MCMA-co-HEMABr) thin films by nanoimprinting using an AAO template. Then, the coumarin moieties inside each pillar were crosslinked by UV light irradiation to fix the pillar structure. SEM observation confirmed that the internally crosslinked pillar structures were maintained even when immersed in organic solvents such as 1,2-dichloroethane and anisole, which are employed as solvents under SI-ATRP conditions. Finally, poly(2,2,2-trifluoroethyl methacrylate) and poly(N-isopropylacrylamide) chains were grafted onto the thin film by SI-ATRP, respectively, to prepare the hierarchically ordered surface structure. Furthermore, in this study, the surface properties as well as the thermoresponsive hydrophilic/hydrophobic switching of the obtained polymer films were investigated. The surface morphology and chemistry of the films with and without pillar structures were compared, especially the interfacial properties expressed as wettability. Grafting poly(TFEMA) increased the static contact angle for both flat and pillar films, and the con-tact angle of the pillar film surface increased from 104° for the flat film sample to 112°, suggesting the contribution of the pillar structure. Meanwhile, the pillar film surface grafted with poly(NIPAM) brought about a significant change in wettability when changing the temperature between 22 °C and 38 °C. Full article
(This article belongs to the Special Issue Surface Science: Polymer Thin Films, Coatings and Adhesives)
Show Figures

Graphical abstract

20 pages, 3251 KiB  
Review
Chemical Functionalization of Camelina, Hemp, and Rapeseed Oils for Sustainable Resin Applications: Strategies for Tailoring Structure and Performance
by Elham Nadim, Pavan Paraskar, Emma J. Murphy, Mohammadnabi Hesabi and Ian Major
Compounds 2025, 5(3), 26; https://doi.org/10.3390/compounds5030026 - 10 Jul 2025
Viewed by 309
Abstract
This review examines the chemical functionalization of Camelina, hemp, and rapeseed oils for the development of sustainable bio-based resins. Key strategies, including epoxidation, acrylation, and click chemistry, are discussed in the context of tailoring molecular structure to enhance reactivity, compatibility, and material performance. [...] Read more.
This review examines the chemical functionalization of Camelina, hemp, and rapeseed oils for the development of sustainable bio-based resins. Key strategies, including epoxidation, acrylation, and click chemistry, are discussed in the context of tailoring molecular structure to enhance reactivity, compatibility, and material performance. Particular emphasis is placed on overcoming the inherent limitations of vegetable oil structures to enable their integration into high-performance polymer systems. The agricultural sustainability and environmental advantages of these feedstocks are also highlighted alongside the technical challenges associated with their chemical modification. Functionalized oils derived from Camelina, hemp, and rapeseed have been successfully applied in various resin systems, including protective coatings, pressure-sensitive adhesives, UV-curable oligomers, and polyurethane foams. These advances demonstrate their growing potential as renewable alternatives to petroleum-based polymers and underline the critical role of structure–property relationships in designing next-generation sustainable materials. Ultimately, the objective of this review is to distill the most effective functionalization pathways and design principles, thereby illustrating how Camelina, hemp, and rapeseed oils could serve as viable substitutes for petrochemical resins in future industrial applications. Full article
(This article belongs to the Special Issue Compounds–Derived from Nature)
Show Figures

Figure 1

44 pages, 7563 KiB  
Review
Green Batteries: A Sustainable Approach Towards Next-Generation Batteries
by Annu, Bairi Sri Harisha, Manesh Yewale, Bhargav Akkinepally and Dong Kil Shin
Batteries 2025, 11(7), 258; https://doi.org/10.3390/batteries11070258 - 10 Jul 2025
Viewed by 1017
Abstract
The rising demand for sustainable energy storage has fueled the development of green batteries as alternatives to conventional systems. However, a major research gap lies in the unified integration of environmentally friendly materials and processes across all battery components—electrodes, electrolytes, and separators—without compromising [...] Read more.
The rising demand for sustainable energy storage has fueled the development of green batteries as alternatives to conventional systems. However, a major research gap lies in the unified integration of environmentally friendly materials and processes across all battery components—electrodes, electrolytes, and separators—without compromising performance or scalability. This review addresses this gap by highlighting recent advances in eco-conscious battery technologies, focusing on green electrode fabrication using water-based methods, electrophoretic deposition, solvent-free dry-press coating, 3D printing, and biomass-derived materials. It also examines the shift toward safer electrolytes, including ionic liquids, deep eutectic solvents, water-based systems, and solid biopolymer matrices, which improve both environmental compatibility and safety. Additionally, biodegradable separators made from natural polymers such as cellulose and chitosan offer enhanced thermal stability and ecological benefits. The review emphasizes the importance of lifecycle considerations like recyclability and biodegradability, aligning battery design with circular economy principles. While significant progress has been made, challenges such as standardization, long-term stability, and industrial scalability remain. By identifying key strategies and future directions, this article contributes to the foundation for next-generation green batteries, promoting their adoption in environmentally sensitive applications ranging from wearable electronics to grid storage. Full article
Show Figures

Figure 1

Back to TopTop