Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (346)

Search Parameters:
Keywords = polylactic acid films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3321 KiB  
Article
Assessing the Biodegradation Characteristics of Poly(Butylene Succinate) and Poly(Lactic Acid) Formulations Under Controlled Composting Conditions
by Pavlo Lyshtva, Viktoria Voronova, Argo Kuusik and Yaroslav Kobets
AppliedChem 2025, 5(3), 17; https://doi.org/10.3390/appliedchem5030017 - 4 Aug 2025
Viewed by 87
Abstract
Biopolymers and bio-based plastics, such as polylactic acid (PLA) and polybutylene succinate (PBS), are recognized as environmentally friendly materials and are widely used, especially in the packaging industry. The purpose of this study was to assess the degradation of PLA- and PBS-based formulations [...] Read more.
Biopolymers and bio-based plastics, such as polylactic acid (PLA) and polybutylene succinate (PBS), are recognized as environmentally friendly materials and are widely used, especially in the packaging industry. The purpose of this study was to assess the degradation of PLA- and PBS-based formulations in the forms of granules and films under controlled composting conditions at a laboratory scale. Biodegradation tests of bio-based materials were conducted under controlled aerobic conditions, following the standard EVS-EN ISO 14855-1:2012. Scanning electron microscopy (SEM) was performed using a high-resolution Zeiss Ultra 55 scanning electron microscope to analyze the samples. After the six-month laboratory-scale composting experiment, it was observed that the PLA-based materials degraded by 47.46–98.34%, while the PBS-based materials exhibited a final degradation degree of 34.15–80.36%. Additionally, the PLA-based compounds displayed a variable total organic carbon (TOC) content ranging from 38% to 56%. In contrast, the PBS-based compounds exhibited a more consistent TOC content, with a narrow range from 53% to 54%. These findings demonstrate that bioplastics can contribute to reducing plastic waste through controlled composting, but their degradation efficiency depends on the material composition and environmental conditions. Future efforts should optimize bioplastic formulations and composting systems while developing supportive policies for wider adoption. Full article
Show Figures

Figure 1

29 pages, 7510 KiB  
Article
Stretchability and Melt Strength Enhancement of Biodegradable Polymer Blends for Packaging Solutions
by Katy D. Laevsky, Achiad Zilberfarb, Amos Ophir and Ana L. Dotan
Molecules 2025, 30(15), 3211; https://doi.org/10.3390/molecules30153211 - 31 Jul 2025
Viewed by 320
Abstract
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is [...] Read more.
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is to enhance the stretchability of biodegradable blends based on 80% poly(butylene adipate-co-terephthalate) (PBAT) and 20% poly(lactic acid) (PLA) through reactive extrusion. Radical initiator (dicumyl peroxide (DCP)) and chain extenders (maleic anhydride (MA), glycidyl methacrylate (GMA)) were employed to improve the melt strength and elasticity of the extruded films. The reactive blends were initially prepared using a batch mixer and subsequently compounded in a twin-screw extruder. Films were produced via cast extrusion. 0.1% wt. DCP led to a 200% increase in elongation at break and a 44% improvement in tensile strength. Differential scanning calorimetry and scanning electron microscopy revealed enhanced miscibility between components. Shear and complex viscosity increased by 38% and 85%, compared to the neat blend, respectively. Reactive extrusion led to a better dispersion and distribution of the phases. An improved interfacial adhesion between the phases, in addition to higher molecular weight, led to enhanced melt strength and improved stretchability. Full article
Show Figures

Figure 1

23 pages, 5750 KiB  
Article
Effect of Irradiated Nanocellulose on Enhancing the Functionality of Polylactic Acid-Based Composite Films for Packaging Applications
by Ilaria Improta, Mariamelia Stanzione, Elena Orlo, Fabiana Tescione, Marino Lavorgna, Xavier Coqueret and Giovanna G. Buonocore
Polymers 2025, 17(14), 1939; https://doi.org/10.3390/polym17141939 - 15 Jul 2025
Viewed by 293
Abstract
This study investigates the combined use of electron beam irradiation (EBI) and nanotechnology to develop improved food packaging films. EBI, commonly applied for sterilization, can alter polymer microstructure, while irradiated cellulose nanocrystals (CNCs) offer enhanced functionality when incorporated into biopolymer matrices. Here, CNCs [...] Read more.
This study investigates the combined use of electron beam irradiation (EBI) and nanotechnology to develop improved food packaging films. EBI, commonly applied for sterilization, can alter polymer microstructure, while irradiated cellulose nanocrystals (CNCs) offer enhanced functionality when incorporated into biopolymer matrices. Here, CNCs were irradiated with doses up to 50 kGy, leading to the formation of carboxyl and aldehyde groups, confirmed by FTIR analysis, as a consequence of the initial formation of free radicals and peroxides that may subsist in that original form or be converted into various carbonyl groups. Flexible films were obtained by incorporating pristine and EB-irradiated CNCs in an internal mixer, using minute amounts of poly(ethylene oxide) (PEO) to facilitate the dispersion of the filler within the polymer matrix. The resulting PLA/PEO/CNC films were evaluated for their mechanical, thermal, barrier, and antioxidant properties. The results showed that structural modifications of CNCs led to significant enhancements in the performance of the composite films, including a 30% improvement in water barrier properties and a 50% increase in antioxidant activity. These findings underscore the potential of irradiated CNCs as effective additives in biopolymer-based active packaging, offering a sustainable approach to reduce dependence on synthetic preservatives and potentially extend the shelf life of food products. Full article
(This article belongs to the Special Issue Sustainable Polymers for Value Added and Functional Packaging)
Show Figures

Figure 1

16 pages, 2657 KiB  
Article
Degradation of Biodegradable Mulch-Derived Microplastics and Their Effects on Bacterial Communities and Radish Growth in Three Vegetable-Cultivated Purple Soils
by Ruixue Ao, Zexian Liu, Yue Mu, Jiaxin Chen and Xiulan Zhao
Agriculture 2025, 15(14), 1512; https://doi.org/10.3390/agriculture15141512 - 13 Jul 2025
Viewed by 409
Abstract
Biodegradable mulch films (BDMs) are considered a promising solution for mitigating plastic residue pollution in agroecosystems. However, the degradation behavior and ecological impacts of their residues on soil–plant systems remain unclear. Here, a pot experiment was conducted using an acidic purple soil (AS), [...] Read more.
Biodegradable mulch films (BDMs) are considered a promising solution for mitigating plastic residue pollution in agroecosystems. However, the degradation behavior and ecological impacts of their residues on soil–plant systems remain unclear. Here, a pot experiment was conducted using an acidic purple soil (AS), a neutral purple soil (NS), and a calcareous purple soil (CS) to investigate the degradation of 1% (w/w) microplastics derived from polyethylene mulch film (PE-MPs) and polybutylene adipate terephthalate/polylactic acid (PBAT/PLA) mulch film (Bio-MPs), as well as their effects on soil properties, bacterial communities, and radish growth. PE-MPs degraded slightly, while the degradation of Bio-MPs followed the order of NS > CS > AS. PE-MPs and Bio-MPs enhanced the nitrification and radish growth in AS but had no significant effects on soil properties and radish growth in CS. Bio-MPs notably increased the relative abundance of PBAT/PLA degradation-related bacteria, such as Ramlibacter, Bradyrhizobium, and Microbacterium, across the three soils. In NS, Bio-MPs raised soil pH and enriched nitrogen-fixing and denitrifying bacteria, leading to a decrease in NO3-N content and radish biomass. Overall, the effects of Bio-MPs on soil–plant systems varied with soil properties, which are closely related to their degradation rates. These findings highlight the need to assess the ecological risks of BDM residues before their large-scale use in agriculture. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Graphical abstract

15 pages, 2767 KiB  
Article
Solid-to-Solid Manufacturing Processes for High-Performance Li-Ion Solid-State Batteries
by David Orisekeh, Byeong-Min Roh and Xinyi Xiao
Polymers 2025, 17(13), 1788; https://doi.org/10.3390/polym17131788 - 27 Jun 2025
Viewed by 629
Abstract
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are [...] Read more.
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are mostly manufactured by either traditional processes or 3D printing technologies. These processes involve making a slurry of plastic, active and conductive material and usually adding a plasticizer when making thin films or filaments for 3D printing. This study investigates the additive manufacturing of solid-state electrolytes (SSEs) by employing fused deposition modeling (FDM) with recyclable, bio-derived polylactic acid (PLA) filaments. Precise control of macro-porosity is achieved by systematically varying key process parameters, including raster orientation, infill percentage, and interlayer adhesion conditions, thereby enabling the formation of tunable, interconnected pore networks within the polymer matrix. Following 3D printing, these engineered porous frameworks are infiltrated with lithium hexafluorophosphate (LiPF6), which functions as the active ionic conductor. A tailored thermal sintering protocol is then applied to promote solid-phase fusion of the embedded salt throughout the macro-porous PLA scaffold, resulting in a mechanically robust and ionically conductive composite separator. The electrochemical ionic conductivity and structural integrity of the sintered SSEs are characterized through electrochemical impedance spectroscopy (EIS) and standardized mechanical testing to assess their suitability for integration into advanced solid-state battery architectures. The solid-state separator achieved an average ionic conductivity of 2.529 × 10−5 S·cm−1. The integrated FDM-sintering process enhances ion exchange at the electrode–electrolyte interface, minimizes material waste, and supports cost-efficient, fully recyclable component fabrication. Full article
Show Figures

Figure 1

17 pages, 4709 KiB  
Article
Preparation of Particle-Reinforced Resin Using Highly Functional ZnO Particle Filler Driven by Supramolecular Interactions
by Haruka Nakagawa and Kohei Iritani
Materials 2025, 18(13), 2986; https://doi.org/10.3390/ma18132986 - 24 Jun 2025
Viewed by 356
Abstract
The surface modification of zinc oxide nanoparticles (ZnONPs) with organic compounds has been shown to improve their dispersibility. In this study, to develop a highly functional material, ZnONP modified with 6-amino-1-hexanol bearing both amino and hydroxyl functional groups was synthesized. Scanning electron microscopy–energy [...] Read more.
The surface modification of zinc oxide nanoparticles (ZnONPs) with organic compounds has been shown to improve their dispersibility. In this study, to develop a highly functional material, ZnONP modified with 6-amino-1-hexanol bearing both amino and hydroxyl functional groups was synthesized. Scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS) analyses confirmed that functionalized ZnONP was successfully obtained by a hydrothermal synthetic method. The mechanical properties of composite films of polylactic acid (PLA) reinforced with the functionalized ZnONP were then evaluated. The composite containing functionalized ZnONP exhibited a higher maximum stress than that containing unmodified ZnONP. These ZnONP/polymer composites therefore show promise as novel high-performance materials. Full article
Show Figures

Figure 1

14 pages, 2714 KiB  
Article
5-Fluorouracil Encapsulation in PLA Films: The Role of Chitosan Particles in Modulating Drug Release and Film Properties
by Sofia Milenkova and Maria Marudova
Processes 2025, 13(7), 1961; https://doi.org/10.3390/pr13071961 - 21 Jun 2025
Viewed by 1785
Abstract
The development of effective drug delivery systems, in terms of their application route and release profile, is crucial for improving the therapeutic outcomes of all bioactive compounds. In this study, we explored the encapsulation of 5-fluorouracil, a commonly used chemotherapeutic agent, in poly(lactic [...] Read more.
The development of effective drug delivery systems, in terms of their application route and release profile, is crucial for improving the therapeutic outcomes of all bioactive compounds. In this study, we explored the encapsulation of 5-fluorouracil, a commonly used chemotherapeutic agent, in poly(lactic acid) films for the first time and the role of chitosan particles in the structure, as no previous studies have examined their potential for this purpose. The objective is to enhance the sustained release of 5-FU and minimise the burst release step while leveraging the biocompatibility and biodegradability of these polymers. PLA films were fabricated using a solvent casting method, and 5-FU was encapsulated either directly within the PLA matrix or loaded into chitosan particles, which were then incorporated into the film. The physicochemical properties of the films, including morphology, wettability, phase state of the drug, thermal stability, drug loading efficiency, and release kinetics, were evaluated along with their barrier and mechanical properties. The results indicate a change in morphology after the addition of the drug and/or particles compared to the empty film. Additionally, the strain value at break decreased from nearly 400% to below 15%. Young’s modulus also changes from 292 MPa to above 500 MPa. The addition of chitosan particles lowered the permeability and vapour transmission rate slightly, while dissolving 5-FU increased them to 241 g/m2·24 h and 1.56 × 10−13 g·mm/m2·24 h·kPa, respectively. Contact angle and surface energy values went from 71° and 34 mJ/m2 for pure PLA to below 53° and around 58 mJ/m2 for the composite structures, respectively. Drug release tests, conducted for 8 h, indicated a nearly 2-fold decrease in the amount of drug released from the film with particles within this period, from around 45% for bare particles and PLA film to 25% for the combined structure, indicating the potential of this system for sustained release of 5-FU. Full article
(This article belongs to the Special Issue Development and Characterization of Advanced Polymer Nanocomposites)
Show Figures

Graphical abstract

48 pages, 7715 KiB  
Review
Next-Generation Bioplastics for Food Packaging: Sustainable Materials and Applications
by Xiaokun Shi, Lijuan Cui, Chao Xu and Shuping Wu
Materials 2025, 18(12), 2919; https://doi.org/10.3390/ma18122919 - 19 Jun 2025
Viewed by 1644
Abstract
As the global plastic pollution problem intensifies and the environmental hazards of traditional petroleum-based plastics become increasingly significant, the development of sustainable alternative materials has become an urgent need. This paper systematically reviews the research progress, application status and future trends of new [...] Read more.
As the global plastic pollution problem intensifies and the environmental hazards of traditional petroleum-based plastics become increasingly significant, the development of sustainable alternative materials has become an urgent need. This paper systematically reviews the research progress, application status and future trends of new generation bioplastics in the field of food packaging. Bioplastics are categorized into three main groups according to their sources and degradability: biobased biodegradable materials (e.g., polylactic acid PLA, polyhydroxy fatty acid ester PHA, chitosan, and cellulose-based materials); biobased non-biodegradable materials (e.g., Bio-PE, Bio-PET); and non-biobased biodegradable materials (e.g., PBAT, PCL, PBS). Different processing technologies, such as thermoforming, injection molding, extrusion molding and coating technologies, can optimize the mechanical properties, barrier properties and freshness retention of bioplastics and promote their application in scenarios such as food containers, films and smart packaging. Although bioplastics still face challenges in terms of cost, degradation conditions and industrial support, promising future directions are found in the development of the large-scale utilization of non-food raw materials (e.g., agricultural waste, algae), nano-composite technology to enhance the performance, and the development of intelligent packaging functions. Through technological innovation and industry chain integration, bioplastics are expected to transform from an environmentally friendly alternative to a mainstream packaging material, helping to realize the goal of global carbon neutrality. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

18 pages, 4161 KiB  
Article
Development of Poly(L-lactic acid) Films Containing Curcuma lunga L. Extract for Active Cheese Packaging
by Aleksandra Bužarovska, Darko Dimitrovski and Anka Trajkovska Petkoska
Processes 2025, 13(6), 1881; https://doi.org/10.3390/pr13061881 - 13 Jun 2025
Viewed by 593
Abstract
Biobased packaging solutions with active functions for different food categories are a very attractive topic nowadays. This packaging provides suitable preservation of the food quality and extends the shelf life of packed items. In addition, this is a promising pathway to overcome global [...] Read more.
Biobased packaging solutions with active functions for different food categories are a very attractive topic nowadays. This packaging provides suitable preservation of the food quality and extends the shelf life of packed items. In addition, this is a promising pathway to overcome global pollution, to protect human health, as well as to provide a better planetary wellbeing. In this work, a packaging composition based on poly(lactic acid) (PLA) with the addition of Curcuma longa L. (C) extract prepared by the solution casting method is promoted as a potential packaging option for the active food packaging of cheese. The dopant levels of the extract were performed at 0.5%, 1%, 2%, 5%, and 10%, while the neat PLA film was used as a control. The obtained results are promising. By a thermal analysis, it is shown that C-extract has a plasticizing and nucleating effect on PLA molecules, as well as improving the barrier and other film properties. Moreover, this packaging was proven as a potential antimicrobial packaging for white cheese—it enables extending the shelf life by direct contact. This is a simple way of manufacturing biobased packaging doped with natural antimicrobials that could be used for other food categories that are prone to microbiological attack. Full article
(This article belongs to the Special Issue Antimicrobial Food Packaging: Materials and Technologies)
Show Figures

Figure 1

17 pages, 4513 KiB  
Article
Physicochemical Investigations on Samples Composed of a Mixture of Plant Extracts and Biopolymers in the Broad Context of Further Pharmaceutical Development
by Andreea Roxana Ungureanu, Adina Magdalena Musuc, Emma Adriana Ozon, Mihai Anastasescu, Irina Atkinson, Raul-Augustin Mitran, Adriana Rusu, Emanuela-Alice Luță, Carmen Lidia Chițescu and Cerasela Elena Gîrd
Polymers 2025, 17(11), 1499; https://doi.org/10.3390/polym17111499 - 28 May 2025
Viewed by 475
Abstract
Vegetal sources are a continuous research field and different types of extracts have been obtained over time. The most challenging part is compounding them in a pharmaceutical product. This study aimed to integrate a mixture (EX) of four extracts (SE-Sophorae flos, [...] Read more.
Vegetal sources are a continuous research field and different types of extracts have been obtained over time. The most challenging part is compounding them in a pharmaceutical product. This study aimed to integrate a mixture (EX) of four extracts (SE-Sophorae flos, GE-Ginkgo bilobae folium, ME-Meliloti herba, CE-Calendulae flos) in formulations with polymers (polyhydroxybutyrate, polylactic-co-glycolic acid) and their physicochemical profiling. The resulting samples consist of particle suspensions, which were subjected to Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy analysis. When compared to single-extract formulations spectra, they revealed band changes, depending on the complex interactions. Using X-ray Diffractometry, the partially crystalline phase was highlighted for EX-PLGA, while the others were amorphous. Moreover, Atomic Force Microscopy pointed out the nanoscale particles and the topography of the samples, and the outstanding roughness belonging to EX-PHB-PLGA. A 30 min period of immersion was enough for the formulations to spread on the surface of the compression stockings material (CS) and after drying, it became a polymeric film. TGA analysis was performed, which evaluated the impregnated content: 5.9% CS-EX-PHB, 6.4% CS-EX-PLGA, and 7.5% CS-EX-PHB-PLGA. In conclusion, the extract’s phytochemicals and the interactions established with the polymers or with the other extracts from the mixture have a significant impact on the physicochemical properties of the obtained formulations, which are particularly important in pharmaceutical product development. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

20 pages, 3941 KiB  
Article
Ecological Packaging: Reuse and Recycling of Rosehip Waste to Obtain Biobased Multilayer Starch-Based Material and PLA for Food Trays
by Yuliana Monroy, Florencia Versino, Maria Alejandra García and Sandra Rivero
Foods 2025, 14(11), 1843; https://doi.org/10.3390/foods14111843 - 22 May 2025
Viewed by 693
Abstract
This study investigates the valorization of agri-food residues by repurposing industrial rosehip oil waste for sustainable food packaging development. Market demands for environmentally friendly alternatives to conventional packaging materials prompted the development of laminated multilayer materials for trays through thermo-compression, using modified cassava [...] Read more.
This study investigates the valorization of agri-food residues by repurposing industrial rosehip oil waste for sustainable food packaging development. Market demands for environmentally friendly alternatives to conventional packaging materials prompted the development of laminated multilayer materials for trays through thermo-compression, using modified cassava starch with citric acid as a compatibilizer. Physicochemical characterization revealed appropriate surface roughness (Rz of 31–64 μm) and controlled water absorption capacities of the composite materials (contact angle of 85–95°), properties critical for food quality preservation and safety. The incorporation of polylactic acid (PLA) films in the laminates significantly enhanced the mechanical performance, increasing the stress resistance by 5 to 10 times, and improved moisture resistance, showing a 78–82% reduction in the materials’ water absorption capacity and an almost 50% decrease in water content and solubility, depending on the processing method. Results indicated that these biocomposite laminates represent a viable alternative to conventional polystyrene foam trays for food packaging. Two distinct multilayer manufacturing processes were comparatively evaluated to optimize production efficiency by reducing the energy consumption and processing time. This research contributes to circular economy principles by transforming agricultural waste into value-added laminated materials with commercial potential. Full article
Show Figures

Figure 1

23 pages, 6820 KiB  
Article
Anti-Erosion Mechanism of Biological Crusts and Eco-Protection Technology Using Composite Biofilms for Traditional Rammed Earth Dwellings in Songyang County
by Jiahui Yang, Ning Wang, Zebiao Huang, Yue Huang, Weilu Lv and Shuai Yang
Coatings 2025, 15(5), 608; https://doi.org/10.3390/coatings15050608 - 20 May 2025
Viewed by 612
Abstract
A typical county for traditional village conservation in China is Songyang County. It is renowned for its ancient rammed earth dwellings, which exhibit a unique microclimate and possess significant historical value. However, high precipitation and acid rain under the subtropical monsoon climate have [...] Read more.
A typical county for traditional village conservation in China is Songyang County. It is renowned for its ancient rammed earth dwellings, which exhibit a unique microclimate and possess significant historical value. However, high precipitation and acid rain under the subtropical monsoon climate have caused severe surface erosion, including cracking and spalling. This study focuses on traditional rammed earth dwellings in Chenjiapeng Village, Songyang County, combining field surveys, experimental analysis, and microscopic characterization to systematically investigate erosion mechanisms and protection strategies. Techniques, such as drone aerial photography, X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and microbial diversity detection, were employed to elucidate the anti-erosion mechanisms of gray–green biological crusts on rammed earth surfaces. The results indicate that algal crusts enhance surface compressive strength and shear resistance through macroscopic coverage (reducing raindrop kinetic energy and moisture retention) and microscopic extracellular polysaccharide-cemented soil particles forming a three-dimensional network. However, acidic environments induce metabolic acid release from algae, dissolving cementing materials and creating a “surface protection-internal damage” paradox. To address this, a “transparent film-biofiber-acid inhibition layer” composite biofilm design is proposed, integrating a biodegradable polylactic acid (PLA) mesh, algal attachment substrates, and calcium carbonate microparticles to dynamically neutralize acidic substances, achieving synergistic ecological protection and cultural heritage authenticity. This study provides innovative solutions for the anti-erosion protection of traditional rammed earth structures, emphasizing environmental compatibility and sustainability. Full article
Show Figures

Graphical abstract

19 pages, 5041 KiB  
Article
Biocompatible, Biodegradable, and Antimicrobial Food Packaging Film from Polylactic Acid and Biogenic Vaterite CaCO3-Ag Hybrid
by Mohammad Hossein Azarian, Kitti Yuwawech, Waraporn Tanthanuch, Tiraporn Junyusen, Jatuphorn Wootthikanokkhan and Wimonlak Sutapun
Polymers 2025, 17(10), 1345; https://doi.org/10.3390/polym17101345 - 15 May 2025
Viewed by 733
Abstract
Developing biocompatible and biodegradable materials for food packaging is crucial for addressing environmental concerns and ensuring food safety. In this study, we present a novel food packaging film composed of poly(lactic acid) (PLA) and biogenic vaterite CaCO3-Ag hybrid microspheres. A non-solution [...] Read more.
Developing biocompatible and biodegradable materials for food packaging is crucial for addressing environmental concerns and ensuring food safety. In this study, we present a novel food packaging film composed of poly(lactic acid) (PLA) and biogenic vaterite CaCO3-Ag hybrid microspheres. A non-solution technique was employed to prepare these films, ensuring the sustainability and simplicity of the production process. X-ray diffraction and infrared spectroscopy analyses confirmed the stability and compatibility of the vaterite CaCO3-Ag microspheres within the PLA matrix. Cytotoxicity tests using human dermal fibroblast cells demonstrated complete biocompatibility of the films, even at high concentrations. Antimicrobial efficacy was assessed through minimum inhibitory concentration (MIC) testing, which demonstrated that PLA film containing 7 wt% vaterite CaCO3-Ag hybrids effectively inhibited both gram-positive and gram-negative bacteria at concentrations as low as ≤0.067 g/mL. Mechanical testing showed that the modulus and strength of PLA film increased significantly with the embedding of 5 wt% of vaterite CaCO3-Ag hybrid, reaching a maximum of 5.63 ± 1.51 GPa and 48.07 ± 13.81 MPa, respectively. Thermal analysis indicated improved thermal stability with the addition of the microspheres. Synchrotron X-ray absorption spectroscopy confirmed the stability of the vaterite structure and the presence of both Ag0 and Ag+ species after embedding in PLA matrix. The composite films exhibited improved oxygen and water vapor barrier properties, making them suitable for packaging applications. These findings highlight the potential of PLA-vaterite CaCO3-Ag hybrid films as sustainable and effective food packaging materials. Full article
(This article belongs to the Special Issue Sustainable Polymers for Value Added and Functional Packaging)
Show Figures

Graphical abstract

20 pages, 5459 KiB  
Article
Next-Generation Eco-Friendly Hybrid Air Purifier: Ag/TiO2/PLA Biofilm for Enhanced Bioaerosols Removal
by Rotruedee Chotigawin, Bhuvaneswari Kandasamy, Paradee Asa, Tistaya Semangoen, Pravech Ajawatanawong, Sarun Phibanchon, Taddao Pahasup-anan, Surachai Wongcharee and Kowit Suwannahong
Int. J. Mol. Sci. 2025, 26(10), 4584; https://doi.org/10.3390/ijms26104584 - 10 May 2025
Cited by 1 | Viewed by 833
Abstract
Indoor air pollution poses a significant public health risk, particularly in urban areas, where PM2.5 and airborne contaminants contribute to respiratory diseases. In Thailand, including Chonburi Province, PM2.5 levels frequently exceed safety thresholds, underscoring the urgent need for effective mitigation strategies. To address [...] Read more.
Indoor air pollution poses a significant public health risk, particularly in urban areas, where PM2.5 and airborne contaminants contribute to respiratory diseases. In Thailand, including Chonburi Province, PM2.5 levels frequently exceed safety thresholds, underscoring the urgent need for effective mitigation strategies. To address this challenge, we developed a hybrid air purification system incorporating a bioplastic-based photocatalytic film of polylactic acid (PLA) embedded with titanium dioxide (TiO2) nanoparticles. For optimization, PLA films were functionalized with varying TiO2 concentrations and characterized using SEM, FTIR, TGDTA, and UV–Vis. spectroscopy. A 5 wt% TiO2 loading was identified as optimal and further enhanced with silver (Ag) nanoparticles to boost photocatalytic efficiency. The Ag/TiO2/PLA biofilm was fabricated via a compound pellet formulation process followed by blown film extrusion. Various compositions, with and without Ag, were systematically evaluated for photocatalytic performance. The novel customized hybrid air purifier developed in this study is designed to enhance indoor air purification efficiency by integrating Ag/TiO2/PLA biofilms into a controlled oxidation system. The air purification efficacy of the developed biofilm was evaluated through a controlled study on Staphylococcus aureus (S. aureus) removal under different treatment conditions: control, adsorption, photolysis, and photocatalytic oxidation. The impact of light intensity on photocatalytic efficiency was also examined. The photocatalytic oxidation of S. aureus was subjected to the first-order kinetic evaluation through mathematical modeling. Results demonstrated that the Ag/TiO2/PLA biofilm significantly enhances indoor air purification, providing a sustainable, scalable, and energy-efficient solution for microbial decontamination and pollutant removal. This innovative approach outperforms conventional adsorption, adsorption and photocatalytic oxidation systems, offering a promising pathway for improved indoor air quality. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

13 pages, 1034 KiB  
Article
Diffusion Coefficients and Activation Energies of Diffusion of Organic Molecules in Poly(lactic acid) Films
by Johann Ewender, Rafael Auras, Uruchaya Sonchaeng and Frank Welle
Molecules 2025, 30(9), 2064; https://doi.org/10.3390/molecules30092064 - 6 May 2025
Viewed by 540
Abstract
Poly(lactic acid) (PLA) is one of the most important bio-based and industrial compostable materials in food packaging. Its barrier properties towards oxygen and moisture are well documented. However, data on barrier properties of PLA towards organic molecules are scarce in the literature. This [...] Read more.
Poly(lactic acid) (PLA) is one of the most important bio-based and industrial compostable materials in food packaging. Its barrier properties towards oxygen and moisture are well documented. However, data on barrier properties of PLA towards organic molecules are scarce in the literature. This study investigated the diffusion of various organic molecules, including n-alkanes, 1-alcohols, 2-ketones, ethers, esters, amines, and aromatics, in two commercial PLA films with thicknesses of 20 µm and 30 µm. The diffusion coefficient (DP) values were determined from lag time in permeation tests conducted at temperatures ranging from 20 °C to 90 °C. The films were also characterized in terms of crystallinity, rigid and mobile amorphous fractions, and molecular weight. Activation energies (EA) were calculated based on the temperature dependence of the DP using the Arrhenius approach. In total, 290 DP values for 55 individual substances were determined, and 38 EA values were derived from these data. The EA correlated well with the molecular volume of the investigated substances. Moreover, the pre-exponential factor D0 showed a correlation with EA. These correlations enabled the establishment of diffusion modeling parameters for PLA, allowing the prediction of DP for untested substances. The diffusion behavior of PLA was further compared with the literature data for polyethylene terephthalate and polyethylene naphthalate, providing insights into the relative performance of these materials. Full article
Show Figures

Figure 1

Back to TopTop