Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (983)

Search Parameters:
Keywords = polylactic acid composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3116 KiB  
Article
Enhancement of Stability Towards Aging and Soil Degradation Rate of Plasticized Poly(lactic Acid) Composites Containing Ball-Milled Cellulose
by Roberta Capuano, Roberto Avolio, Rachele Castaldo, Mariacristina Cocca, Federico Olivieri, Gennaro Gentile and Maria Emanuela Errico
Polymers 2025, 17(15), 2127; https://doi.org/10.3390/polym17152127 (registering DOI) - 1 Aug 2025
Abstract
In this study, multicomponent PLA-based biocomposites were developed. In particular, both native fibrous cellulose and cellulose with modified morphology obtained through ball milling treatments were incorporated into the polyester matrix in combination with an oligomeric plasticizer, specifically a lactic acid oligomer (OLA). The [...] Read more.
In this study, multicomponent PLA-based biocomposites were developed. In particular, both native fibrous cellulose and cellulose with modified morphology obtained through ball milling treatments were incorporated into the polyester matrix in combination with an oligomeric plasticizer, specifically a lactic acid oligomer (OLA). The resulting materials were analyzed in terms of their morphology, thermal and mechanical properties over time, water vapor permeability, and degradation under soil burial conditions in comparison to neat PLA and unplasticized PLA/cellulose composites. The cellulose phase significantly affected the mechanical properties and enhanced their long-term stability, addressing a common limitation of PLA/plasticizer blends. Additionally, water vapor permeability increased in all composites. Finally, the ternary systems exhibited a significantly higher degradation rate in soil burial conditions compared to PLA, evidenced by larger weight loss and reduction in the molecular weight of the PLA phase. The degradation rate was notably influenced by the morphology of the cellulose phase. Full article
(This article belongs to the Special Issue Functional Polymer Composites: Synthesis and Application)
Show Figures

Figure 1

19 pages, 17315 KiB  
Article
Development and Mechanical Characterization of Environmentally Friendly PLA/Crop Waste Green Composites
by Karolina Ewelina Mazur, Tomasz Wacław Witko, Alicja Kośmider and Stanisław Tadeusz Kuciel
Materials 2025, 18(15), 3608; https://doi.org/10.3390/ma18153608 (registering DOI) - 31 Jul 2025
Viewed by 12
Abstract
This study presents the fabrication and characterization of sustainable polylactic acid (PLA)-based biocomposites reinforced with bio-origin fillers derived from food waste: seashells, eggshells, walnut shells, and spent coffee grounds. All fillers were introduced at 15 wt% into a commercial PLA matrix modified with [...] Read more.
This study presents the fabrication and characterization of sustainable polylactic acid (PLA)-based biocomposites reinforced with bio-origin fillers derived from food waste: seashells, eggshells, walnut shells, and spent coffee grounds. All fillers were introduced at 15 wt% into a commercial PLA matrix modified with a compatibilizer to improve interfacial adhesion. Mechanical properties (tensile, flexural, and impact strength), morphological characteristics (via SEM), and hydrolytic aging behavior were evaluated. Among the tested systems, PLA reinforced with seashells (PLA15S) and coffee grounds (PLA15C) demonstrated the most balanced mechanical performance, with PLA15S achieving a tensile strength increase of 72% compared to neat PLA. Notably, PLA15C exhibited the highest stability after 28 days of hydrothermal aging, retaining ~36% of its initial tensile strength, outperforming other systems. In contrast, walnut-shell-filled composites showed the most severe degradation, losing over 98% of their mechanical strength after aging. The results indicate that both the physicochemical nature and morphology of the biofiller play critical roles in determining mechanical reinforcement and degradation resistance. This research underlines the feasibility of valorizing agri-food residues into biodegradable, semi-structural PLA composites for potential use in sustainable packaging or non-load-bearing structural applications. Full article
Show Figures

Graphical abstract

24 pages, 10976 KiB  
Article
Fabrication and Characterization of a Novel 3D-Printable Bio-Composite from Polylactic Acid (PLA) and Ruminant-Digested Corn Stover
by Siyang Wu, Lixing Ren, Jiyan Xu, Jiale Zhao, Xiaoli Hu and Mingzhuo Guo
Polymers 2025, 17(15), 2077; https://doi.org/10.3390/polym17152077 - 29 Jul 2025
Viewed by 184
Abstract
To address the growing demand for sustainable materials in advanced manufacturing, the objective of this study was to develop and characterize a novel 3D-printable biocomposite using ruminant-digested corn stover (DCS) as a reinforcement for polylactic acid (PLA). The methodology involved systematically optimizing DCS [...] Read more.
To address the growing demand for sustainable materials in advanced manufacturing, the objective of this study was to develop and characterize a novel 3D-printable biocomposite using ruminant-digested corn stover (DCS) as a reinforcement for polylactic acid (PLA). The methodology involved systematically optimizing DCS particle size (80–140 mesh) and loading concentration (5–20 wt.%), followed by fabricating composite filaments via melt extrusion and 3D printing test specimens. The resulting materials were comprehensively characterized for their morphological, physical, and mechanical properties. The optimal formulation, achieved with 120-mesh particles at 15 wt.% loading, exhibited a 15.6% increase in tensile strength to 64.17 MPa and a 21.1% enhancement in flexural modulus to 4.19 GPa compared to neat PLA. In addition to the mechanical improvements, the biocomposite offers an advantageous density reduction, enabling the fabrication of lightweight structures for resource-efficient applications. Comprehensive characterization revealed effective interfacial integration and uniform fiber dispersion, validating biological preprocessing as a viable method for unlocking the reinforcement potential of this abundant biomass. While the composite exhibits characteristic trade-offs, such as reduced impact strength, the overall performance profile makes it a promising candidate for structural applications in sustainable manufacturing. This research establishes a viable pathway for agricultural waste valorization, demonstrating that biological preprocessing can convert agricultural residues into value-added engineering materials for the circular bioeconomy. Full article
(This article belongs to the Special Issue Natural Fiber Composites: Synthesis and Applications)
Show Figures

Graphical abstract

27 pages, 36926 KiB  
Article
Comparison of Additive Manufacturing and Injection Molding of Biocomposites Reinforced with Alkali-Treated Wood Flour Derived from Recycled Wooden Pallets
by Mehmet Demir, Nilgül Çetin and Nasır Narlıoğlu
Polymers 2025, 17(15), 2004; https://doi.org/10.3390/polym17152004 - 22 Jul 2025
Viewed by 349
Abstract
Biodegradable polymer composites offer promising alternatives to petroleum-based plastics, supporting the principles of a zero waste and circular economy. This study investigates the reinforcing potential of alkali-treated wood flour derived from recycled pine (Pinus brutia Ten.) and poplar (Populus alba L.) [...] Read more.
Biodegradable polymer composites offer promising alternatives to petroleum-based plastics, supporting the principles of a zero waste and circular economy. This study investigates the reinforcing potential of alkali-treated wood flour derived from recycled pine (Pinus brutia Ten.) and poplar (Populus alba L.) waste wooden pallets in poly(lactic acid) (PLA) biocomposites. Wood flour was initially recovered through grinding and screening during recycling, followed by alkali treatment via a green chemistry approach to enhance interfacial bonding with the PLA matrix. The impact of alkali concentration and two fabrication methods—additive manufacturing (AM) and injection molding (IM)—on the properties of developed biocomposite materials was assessed through mechanical, physical, morphological, and thermal analyses. IM samples outperformed AM counterparts, with the IM PLA containing 30 wt% wood flour (alkali-treated with 10% solution) showing the highest mechanical gains: tensile (+71.35%), flexural (+64.74%), and hardness (+2.62%) compared to untreated samples. Moreover, the AM sample with 10 wt% wood flour and 10% alkali treatment showed a 49.37% decrease in water absorption compared to the untreated sample, indicating improved hydrophobicity. Scanning electron microscopy confirmed that alkali treatment reduced void content and enhanced morphological uniformity, while thermal properties remained consistent across fabrication methods. This work introduces a green composite using non-toxic materials and treatments, facilitating eco-friendly production aligned with zero waste and circular economy principles throughout the manufacturing lifecycle. Full article
(This article belongs to the Special Issue Polymer Composites: Structure, Properties and Processing, 2nd Edition)
Show Figures

Graphical abstract

30 pages, 2013 KiB  
Review
Biopolymers in Biotechnology and Tissue Engineering: A Comprehensive Review
by Maciej Grabowski, Dominika Gmyrek, Maria Żurawska and Anna Trusek
Macromol 2025, 5(3), 34; https://doi.org/10.3390/macromol5030034 - 21 Jul 2025
Viewed by 730
Abstract
Since the mid-19th century, researchers have explored the potential of bio-based polymeric materials for diverse applications, with particular promise in medicine. This review provides a focused and detailed examination of natural and synthetic biopolymers relevant to tissue engineering and biomedical applications. It emphasizes [...] Read more.
Since the mid-19th century, researchers have explored the potential of bio-based polymeric materials for diverse applications, with particular promise in medicine. This review provides a focused and detailed examination of natural and synthetic biopolymers relevant to tissue engineering and biomedical applications. It emphasizes the structural diversity, functional characteristics, and processing strategies of major classes of biopolymers, including polysaccharides (e.g., hyaluronic acid, alginate, chitosan, bacterial cellulose) and proteins (e.g., collagen, silk fibroin, albumin), as well as synthetic biodegradable polymers such as polycaprolactone, polylactic acid, and polyhydroxybutyrate. The central aim of this manuscript is to elucidate how intrinsic properties—such as molecular weight, crystallinity, water retention, and bioactivity—affect the performance of biopolymers in biomedical contexts, particularly in drug delivery, wound healing, and scaffold-based tissue regeneration. This review also highlights recent advancements in polymer functionalization, composite formation, and fabrication techniques (e.g., electrospinning, bioprinting), which have expanded the application potential of these materials. By offering a comparative analysis of structure–property–function relationships across a diverse range of biopolymers, this review provides a comprehensive reference for selecting and engineering materials tailored to specific biomedical challenges. It also identifies key limitations, such as production scalability and mechanical performance, and suggests future directions for developing clinically viable and environmentally sustainable biomaterial platforms. Full article
Show Figures

Figure 1

20 pages, 3201 KiB  
Article
Effect of Screw Configuration on the Recyclability of Natural Fiber-Based Composites
by Vlasta Chyzna, Steven Rowe, James Finnerty, Trevor Howard, Christopher Doran, Shane Connolly, Noel Gately, Alexandre Portela, Alan Murphy, Declan M. Devine and Declan Mary Colbert
Fibers 2025, 13(7), 98; https://doi.org/10.3390/fib13070098 - 18 Jul 2025
Viewed by 369
Abstract
The burgeoning crisis of plastic waste accumulation necessitates innovative approaches towards sustainable packaging solutions. Polylactic acid (PLA), a leading biopolymer, emerges as a promising candidate in this realm, especially for environmentally friendly packaging. PLA is renowned for its compostable properties, offering a strategic [...] Read more.
The burgeoning crisis of plastic waste accumulation necessitates innovative approaches towards sustainable packaging solutions. Polylactic acid (PLA), a leading biopolymer, emerges as a promising candidate in this realm, especially for environmentally friendly packaging. PLA is renowned for its compostable properties, offering a strategic avenue to mitigate plastic waste. However, its dependency on specific industrial composting conditions, characterized by elevated temperatures, humidity, and thermophilic microbes, limits its utility for household composting. This study aims to bridge the research gap in PLA’s recyclability and explore its feasibility in mechanical recycling processes. The research focuses on assessing the mechanical characteristics of PLA and PLA-based composites post-recycling. Specifically, we examined the effects of two extrusion methods—conical and parallel—on PLA and its composites containing 20 wt.% basalt fibers (BF). The recycling process encompassed repeated cycles of hot melt extrusion (HME), followed by mechanical grinding to produce granules. These granules were then subjected to injection moulding (IM) after 1, 3 and 5 recycling cycles. The tensile properties of the resulting IM-produced bars provided insights into the material’s durability and stability. The findings reveal that both PLA and PLA/BF composites retain their mechanical integrity through up to 5 cycles of mechanical recycling. This resilience underscores PLA’s potential for integration into existing recycling streams, addressing the dual challenges of environmental sustainability and waste management. The study contributes to the broader understanding of PLA’s lifecycle and opens new possibilities for its application in eco-friendly packaging, beyond the limits of composting. The implications of these findings extend towards enhancing the circularity of biopolymers and reducing the environmental footprint of plastic packaging. Full article
Show Figures

Figure 1

22 pages, 3480 KiB  
Article
Comprehensive DEM Calibration Using Face Central Composite Design and Response Surface Methodology for Rice–PLA Interactions in Enhanced Bucket Elevator Performance
by Pirapat Arunyanart, Nithitorn Kongkaew and Supattarachai Sudsawat
AgriEngineering 2025, 7(7), 240; https://doi.org/10.3390/agriengineering7070240 - 17 Jul 2025
Viewed by 342
Abstract
This research presents a comprehensive methodology for calibrating Discrete Element Method (DEM) parameters governing rice grain interactions with biodegradable Polylactic Acid (PLA) components in agricultural bucket elevator systems. Rice grains, a critical global food staple requiring efficient post-harvest handling, were modeled as three-sphere [...] Read more.
This research presents a comprehensive methodology for calibrating Discrete Element Method (DEM) parameters governing rice grain interactions with biodegradable Polylactic Acid (PLA) components in agricultural bucket elevator systems. Rice grains, a critical global food staple requiring efficient post-harvest handling, were modeled as three-sphere clusters to accurately represent their physical dimensions (6.5 mm length), while the Hertz–Mindlin contact model provided the theoretical framework for particle interactions. The calibration process employed a multi-phase experimental design integrating Plackett–Burmann screening, steepest ascent method, and Face Central Composite Design to systematically identify and optimize critical micro-mechanical parameters for agricultural material handling. Statistical analysis revealed the coefficient of static friction between rice and PLA as the dominant factor, contributing 96.49% to system performance—significantly higher than previously recognized in conventional agricultural processing designs. Response Surface Methodology generated predictive models achieving over 90% correlation with experimental results from 3D-printed PLA shear box tests. Validation through comparative velocity profile analysis during bucket elevator discharge operations confirmed excellent agreement between simulated and experimental behavior despite a 20% discharge velocity variance that warrants further investigation into agricultural material-specific phenomena. The established parameter set enables accurate virtual prototyping of sustainable agricultural handling equipment, offering post-harvest processing engineers a powerful tool for optimizing bulk material handling systems with reduced environmental impact. This integrated approach bridges fundamental agricultural material properties with sustainable engineering design principles, providing a scalable framework applicable across multiple agricultural processing operations using biodegradable components. Full article
Show Figures

Graphical abstract

16 pages, 3058 KiB  
Article
A Study on Microplastic Emission from Disposable Straws and Its Dietary Relevance
by Bangyuan Peng and Shengwang Yu
Microplastics 2025, 4(3), 42; https://doi.org/10.3390/microplastics4030042 - 17 Jul 2025
Viewed by 362
Abstract
This study systematically investigates microplastic (MP) release from polypropylene (PP) and polylactic acid (PLA) straws across beverage matrices (deionized water, cola, and skim milk) under thermal variations. A laboratory simulation system was developed to quantify MP release at ambient temperature (25 °C) and [...] Read more.
This study systematically investigates microplastic (MP) release from polypropylene (PP) and polylactic acid (PLA) straws across beverage matrices (deionized water, cola, and skim milk) under thermal variations. A laboratory simulation system was developed to quantify MP release at ambient temperature (25 °C) and characterize size reduction across thermal gradients (25 °C, 45 °C, and 65 °C). The integrated analytical approaches combining Fourier-transform infrared spectroscopy (FTIR), micro-FTIR, scanning electron microscopy (SEM), and optical microscopy were employed to systematically quantify and characterize MPs in terms of abundance, morphological features, and polymer composition. The findings reveal that PP straws released significantly higher MP quantities (26–28 particles/straw) than PLA counterparts (18–26 particles/straw) at 25 °C, with a pronounced burst release phase occurring within the initial 5 min of usage of straws. Thermal escalation experiments demonstrated progressive MP size reduction for both PP and PLA groups, with elevated temperatures inducing particles into smaller particles. Full article
Show Figures

Figure 1

22 pages, 15577 KiB  
Article
Evaluating Polylactic Acid and Basalt Fibre Composites as a Potential Bioabsorbable Stent Material
by Seán Mulkerins, Guangming Yan, Declan Mary Colbert, Declan M. Devine, Patrick Doran, Shane Connolly and Noel Gately
Polymers 2025, 17(14), 1948; https://doi.org/10.3390/polym17141948 - 16 Jul 2025
Viewed by 239
Abstract
Bioabsorbable polymer stents (BPSs) were developed to address the long-term clinical drawbacks associated with permanent metallic stents by gradually dissolving over time before these drawbacks have time to develop. However, the polymers used in BPSs, such as polylactic acid (PLA), have lower mechanical [...] Read more.
Bioabsorbable polymer stents (BPSs) were developed to address the long-term clinical drawbacks associated with permanent metallic stents by gradually dissolving over time before these drawbacks have time to develop. However, the polymers used in BPSs, such as polylactic acid (PLA), have lower mechanical properties than metals, often requiring larger struts to provide the necessary structural support. These larger struts have been linked to delayed endothelialisation and an increased risk of stent thrombosis. To address this limitation, this study investigated the incorporation of high-strength basalt fibres into PLA to enhance its mechanical performance, with an emphasis on optimising the processing conditions to achieve notable improvements at minimal fibre loadings. In this regard, PLA/basalt fibre composites were prepared via twin-screw extrusion at screw speeds of 50, 200, and 350 RPM. The effects were assessed through ash content testing, tensile testing, SEM, and rheometry. The results showed that lower screw speeds achieved adequate fibre dispersion while minimising the molecular weight reduction, leading to the most substantial improvement in the mechanical properties. To examine whether a second extrusion run could enhance the fibre dispersion, improving the composite’s uniformity and, therefore, mechanical enhancement, all the batches underwent a second extrusion run. This run improved the dispersion, leading to increased strength and an increased modulus; however, it also reduced the fibre–matrix adhesion and resulted in a notable reduction in the molecular weight. The highest mechanical performance was observed at 10% fibre loading and 50 RPM following a second extrusion run, with the tensile strength increasing by 20.23% and the modulus by 27.52%. This study demonstrates that the processing conditions can influence the fibres’ effectiveness, impacting dispersion, adhesion, and molecular weight retention, all of which affect this composite’s mechanical performance. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

17 pages, 900 KiB  
Review
Cellulose Nanofibril-Based Biodegradable Polymers from Maize Husk: A Review of Extraction, Properties, and Applications
by Nthabiseng Motshabi, Gaofetoge Gobodiwang Lenetha, Moipone Alice Malimabe and Thandi Patricia Gumede
Polymers 2025, 17(14), 1947; https://doi.org/10.3390/polym17141947 - 16 Jul 2025
Viewed by 346
Abstract
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with [...] Read more.
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with cellulose nanofibrils (CNFs) has shown promise, yet most research focuses on conventional sources like wood pulp and cotton, neglecting agricultural residues. This review addresses the potential of maize husk, a lignocellulosic waste abundant in South Africa, as a source of CNFs. It evaluates the literature on the structure, extraction, characterisation, and integration of maize husk-derived CNFs into biodegradable polymers. The review examines the chemical composition, extraction methods, and key physicochemical properties that affect performance when blended with PLA, PBS, or PCL. However, high lignin content and heterogeneity pose extraction and dispersion challenges. Optimised maize husk CNFs can enhance the mechanical strength, barrier properties, and thermal resistance of biopolymer systems. This review highlights potential applications in packaging, biomedical, and agricultural sectors, aligning with South African bioeconomic goals. It concludes by identifying research priorities for improving compatibility and processing at an industrial scale, paving the way for maize husk CNFs as effective, locally sourced reinforcements in green material innovation. Full article
Show Figures

Figure 1

15 pages, 3660 KiB  
Article
Microencapsulation of Analgesics as an Analog Form of Medicine
by Aidana Nakipekova, Bates Kudaibergenova, Arkady S. Abdurashitov and Gleb B. Sukhorukov
Pharmaceutics 2025, 17(7), 916; https://doi.org/10.3390/pharmaceutics17070916 - 15 Jul 2025
Viewed by 471
Abstract
Objectives: This research focuses on the development of fabrication approaches for microparticles intended for controlled drug delivery. The primary objective is to identify the most suitable polymer type, particle size, and morphology for encapsulating a water-soluble crystalline drug. Optimizing these parameters may enhance [...] Read more.
Objectives: This research focuses on the development of fabrication approaches for microparticles intended for controlled drug delivery. The primary objective is to identify the most suitable polymer type, particle size, and morphology for encapsulating a water-soluble crystalline drug. Optimizing these parameters may enhance structural stability and prolong the release of this active substance. Methods: The microparticles were fabricated through the encapsulation of a drug substance within a polymer carrier and employing polymer casting on prepatterned surfaces, followed by the loading of drug precipitates and the application of a sealing layer. The crystalline powder 1-allyl-2,5-dimethylpiperidol-4 hydrochloride served as the core cargo material, while the walls of these particles were composed of polylactic acid (PLA) and a poly (α-caprolactone) (PCL) in a 70:30 composition ratio. Results: The size and volume of the microparticles were found to be dependent on the geometric parameters of the template and the concentration of the polymer solutions. The study demonstrates the formation, physical dimensions, and particle count at varied polymer compositions and concentrations. The formation of the PLA and PCL mixture occurred solely through physical interactions. Scanning electron microscopy (SEM) and optical microscopy were employed to observe the appearance and physical dimensions of the microparticles. The obtained data confirm that tailored polymer compositions can yield consistent particle morphology and a suitable drug elution rate. Conclusions: The results indicate that microparticles sealed with an optimal polymer composition exhibit enhanced release properties. This finding highlights the feasibility of microencapsulation at precise ratios and concentrations of polymers to achieve the long-lasting effects of water-soluble drugs. Full article
(This article belongs to the Special Issue Multifunctional Nanomaterials in Drug Delivery)
Show Figures

Figure 1

23 pages, 5750 KiB  
Article
Effect of Irradiated Nanocellulose on Enhancing the Functionality of Polylactic Acid-Based Composite Films for Packaging Applications
by Ilaria Improta, Mariamelia Stanzione, Elena Orlo, Fabiana Tescione, Marino Lavorgna, Xavier Coqueret and Giovanna G. Buonocore
Polymers 2025, 17(14), 1939; https://doi.org/10.3390/polym17141939 - 15 Jul 2025
Viewed by 281
Abstract
This study investigates the combined use of electron beam irradiation (EBI) and nanotechnology to develop improved food packaging films. EBI, commonly applied for sterilization, can alter polymer microstructure, while irradiated cellulose nanocrystals (CNCs) offer enhanced functionality when incorporated into biopolymer matrices. Here, CNCs [...] Read more.
This study investigates the combined use of electron beam irradiation (EBI) and nanotechnology to develop improved food packaging films. EBI, commonly applied for sterilization, can alter polymer microstructure, while irradiated cellulose nanocrystals (CNCs) offer enhanced functionality when incorporated into biopolymer matrices. Here, CNCs were irradiated with doses up to 50 kGy, leading to the formation of carboxyl and aldehyde groups, confirmed by FTIR analysis, as a consequence of the initial formation of free radicals and peroxides that may subsist in that original form or be converted into various carbonyl groups. Flexible films were obtained by incorporating pristine and EB-irradiated CNCs in an internal mixer, using minute amounts of poly(ethylene oxide) (PEO) to facilitate the dispersion of the filler within the polymer matrix. The resulting PLA/PEO/CNC films were evaluated for their mechanical, thermal, barrier, and antioxidant properties. The results showed that structural modifications of CNCs led to significant enhancements in the performance of the composite films, including a 30% improvement in water barrier properties and a 50% increase in antioxidant activity. These findings underscore the potential of irradiated CNCs as effective additives in biopolymer-based active packaging, offering a sustainable approach to reduce dependence on synthetic preservatives and potentially extend the shelf life of food products. Full article
(This article belongs to the Special Issue Sustainable Polymers for Value Added and Functional Packaging)
Show Figures

Figure 1

31 pages, 1834 KiB  
Review
A Review of Polylactic Acid (PLA) and Poly(3-hydroxybutyrate) (PHB) as Bio-Sourced Polymers for Membrane Production Applications
by Lacrimioara Senila, Eniko Kovacs and Marin Senila
Membranes 2025, 15(7), 210; https://doi.org/10.3390/membranes15070210 - 14 Jul 2025
Viewed by 771
Abstract
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane [...] Read more.
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane composition. Among these materials, polylactic acid (PLA) and poly(3-hydroxybutyrate) (PHB) are two bio-sourced and biodegradable polymers that can be derived from lignocellulosic waste. These polymers also possess suitable characteristics, such as thermal resistance and mechanical strength, which make them potential candidates for replacing conventional plastics. This study provides an overview of recent advances in the production of PLA and PHB, with a focus on their extraction from lignocellulosic biomass, as well as the recent applications of these two biodegradable polymers as sustainable materials in membrane manufacturing. The advantages and limitations of membranes produced from these materials are also summarized. Lastly, an analysis of future trends is provided concerning new sources, production possibilities, and potential applications in water treatment (mainly for metal ions separation), gas separation, oil–water separation, medical applications, drug release control, and food packaging. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

21 pages, 7773 KiB  
Article
Dynamic Properties and Vibration Control of Additively Manufactured Carbon and Glass Fiber Reinforced Polymer Composites Using MFC: A Numerical Study with Experimental Validation
by Ali Raza, Magdalena Mieloszyk, Rūta Rimašauskienė, Vytautas Jūrėnas, Nabeel Maqsood, Marius Rimašauskas and Tomas Kuncius
J. Manuf. Mater. Process. 2025, 9(7), 235; https://doi.org/10.3390/jmmp9070235 - 8 Jul 2025
Viewed by 385
Abstract
With the growing need for lightweight, durable, and high-performance structures, additively manufactured (AM) polymer composite structures have captured significant attention in the engineering community. These structures offer considerable advantages in various dynamic engineering sectors including automotive, aviation, and military. Thus, this investigation emphasizes [...] Read more.
With the growing need for lightweight, durable, and high-performance structures, additively manufactured (AM) polymer composite structures have captured significant attention in the engineering community. These structures offer considerable advantages in various dynamic engineering sectors including automotive, aviation, and military. Thus, this investigation emphasizes the numerical analysis of the dynamic properties and vibration control of AM polylactic acid (PLA) composite structures reinforced with continuous glass fibers (CGFR-PLA) and carbon fibers (CCFR-PLA), with 0°–0° and 0°–90° layer orientations. The findings of this numerical study are compared and validated against earlier published experimental results. Initially, the numerical models were created using the Abaqus CAE 2024, replicating the actual experimental models. The numerical bending modal frequency of each numerical model is determined, and the 0°–0° oriented models exhibited considerably higher values compared to the corresponding 0°–90° models. Significant differences were noted between the numerical and experimental values in the higher modes, mainly due to existence of voids and misalignment in the actual models that were not considered in numerical models. Following this, a numerical amplitude frequency response (AFR) analysis was conducted to observe vibration amplitude variations as a function of frequency. The AFR numerical results demonstrated consistent trends with the experimental results despite differences between the absolute values of both scenarios. Afterwards, vibration amplitude control analysis was performed under the influence of a macro fiber composite (MFC) actuator. The findings from both numerical and experimental cases revealed that vibration control was noticeably higher in 0°–0° oriented structures compared to 0°–90° structures. Experimental models demonstrated higher vibration control effectiveness than the corresponding numerical models. Although significant differences between the numerical and experimental vibration response values were observed in each composite structure, the numerical results exhibited consistent trends with the experiments. This discrepancy is attributed to the challenge of capturing all boundary conditions of the experimental scenario and incorporating them into the numerical simulation. Full article
Show Figures

Figure 1

25 pages, 17922 KiB  
Article
Application of Food Waste in Biodegradable Composites: An Ecological Alternative in Tribology
by Łukasz Wojciechowski, Zuzanna Sydow, Karol Bula and Tomasz Runka
Materials 2025, 18(14), 3216; https://doi.org/10.3390/ma18143216 - 8 Jul 2025
Viewed by 355
Abstract
Biodegradable composite materials enhanced with food waste for tribological applications are proposed in this article. Polymer materials used as matrices included polypropylene and polylactic acid, which, according to the manufacturers’ claims, were made entirely or partially from biodegradable raw materials. Additionally, the matrices [...] Read more.
Biodegradable composite materials enhanced with food waste for tribological applications are proposed in this article. Polymer materials used as matrices included polypropylene and polylactic acid, which, according to the manufacturers’ claims, were made entirely or partially from biodegradable raw materials. Additionally, the matrices were enhanced with three types of waste materials: powders derived from cherry and plum stones, and pomace extracted from flax seeds. The composites differed in the percentage content of filler (15 or 25 wt.%) and particle size (d < 400 µm or d > 400 µm). Thirty-minute block-on-ring friction tests were performed to determine frictional behaviour (when pairing with steel), and the wear mechanisms were analysed using optical microscopy and scanning electron microscopy, supplemented with Raman spectroscopy. A notable effect of cherry and plum stone fillers was observed as a reduction in motion resistance, as measured by the friction coefficient. This reduction was evident across all material configurations in polypropylene-based composites and was significant at the lowest concentrations and granulation in polylactic acid composites. The effect of flaxseed pomace filler was ambiguous for both composite bases. Full article
(This article belongs to the Special Issue Advances in Wear Behaviour and Tribological Properties of Materials)
Show Figures

Figure 1

Back to TopTop