Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = polyethylene microfiltration membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 18244 KiB  
Article
Removal of Microplastics in a Hybrid Treatment Process of Ceramic Microfiltration and Photocatalyst-Mounted PES Spheres with Air Backwashing
by Minjoo Song and Jin Yong Park
Membranes 2024, 14(8), 169; https://doi.org/10.3390/membranes14080169 - 31 Jul 2024
Cited by 1 | Viewed by 2333
Abstract
Microplastics (MPs), which are defined as plastics with a size of less than 5 mm, cannot be treated completely in wastewater treatment plants (WWTPs) and discharged to a water body because they are too small in size. It has been reported that MPs [...] Read more.
Microplastics (MPs), which are defined as plastics with a size of less than 5 mm, cannot be treated completely in wastewater treatment plants (WWTPs) and discharged to a water body because they are too small in size. It has been reported that MPs can have adverse effects on human beings and water ecosystems. There is a need to combine existing drinking water treatment plants (DWTPs) and WWTPs with the traditional treatment process and technology with high removal efficiency of MPs or to develop a new technology to separate MPs from water and wastewater. In this study, the effects of MPs (polyethylene (PE), 125 μm) and organic matter (humic acid) were researched in a hybrid treatment process of ceramic microfiltration (MF) and photocatalyst (TiO2)-mounted polyether sulfone (PES) spheres with air backwashing. The roles of the MF, photooxidation, and adsorption of PES spheres were confirmed in a single MF process (MF), an MF process with UV irradiation (MF+UV), MF and PES sphere adsorption without UV irradiation (MF+PES), and a hybrid process incorporating MF and PES spheres with UV irradiation (MF+PES+UV). The impact of the air backwashing cycle (filtration time, FT) on filtration characteristics and treatment efficiencies in the hybrid process was studied. In the MF process, membrane fouling increased with increasing organic matter (HA, humic acid). The treatment efficiency of MPs increased; however, that of dissolved organic matter (DOM) decreased with increasing HA. As MPs increased, the membrane fouling decreased; however, total filtration volume (VT) remained almost constant. The treatment efficiency of MPs increased a little, and that of DOM showed a dropping trend. In the hybrid process, the membrane fouling was controlled via the adsorption and UV photooxidation of the PES spheres, and the DOM treatment efficiency increased by combining processes from MF to MF+PES+UV. The optimal FT was 10 min at BT 10 s in this hybrid process. The results could be applied to separate MPs effectively in DWTPs/WWTPs. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

13 pages, 11026 KiB  
Article
Stretch-Induced Spin-Cast Membranes Based on Semi-Crystalline Polymers for Efficient Microfiltration
by Junaid Saleem, Zubair Khalid Baig Moghal, Ahsan Hafeez, Samra Sajjad, Mohammad Shoaib, Johaina Alahmad and Gordon McKay
Polymers 2024, 16(13), 1799; https://doi.org/10.3390/polym16131799 - 25 Jun 2024
Cited by 1 | Viewed by 1375
Abstract
Microfiltration membranes derived from semi-crystalline polymers face various challenges when synthesized through the extrusion–casting technique, including the use of large quantities of polymer, long casting times, and the generation of substantial waste. This study focuses on synthesizing these membranes using spin-casting, followed by [...] Read more.
Microfiltration membranes derived from semi-crystalline polymers face various challenges when synthesized through the extrusion–casting technique, including the use of large quantities of polymer, long casting times, and the generation of substantial waste. This study focuses on synthesizing these membranes using spin-casting, followed by stretch-induced pore formation. Recycled high-density polyethylene (HDPE) and virgin polyethylene powder, combined with a calcium carbonate filler, were used as the source materials for the membranes. The influence of the polymer–filler ratio with and without stretching on the morphology, tensile strength, and water flow rate was investigated. Optimal conditions were determined, emphasizing a balance between pore structure and mechanical integrity. The permeable membrane exhibited a water flow rate of 19 mL/min, a tensile strength of 32 MPa, and a water contact angle of 126°. These membranes effectively eliminated suspended particles from water, with their performance evaluated against that of commercially available membranes. This research, carried out utilizing the spin-casting technique, outlines a synthesis route for microfiltration membranes tailored to semi-crystalline polymers and their plastic forms. Full article
(This article belongs to the Special Issue Advances in Polymer Composites with Upcycling Waste)
Show Figures

Figure 1

19 pages, 3346 KiB  
Article
A Comparative Study of the Self-Cleaning and Filtration Performance of Suspension Plasma-Sprayed TiO2 Ultrafiltration and Microfiltration Membranes
by Elnaz Alebrahim and Christian Moreau
Membranes 2023, 13(9), 750; https://doi.org/10.3390/membranes13090750 - 23 Aug 2023
Cited by 1 | Viewed by 1453
Abstract
This study investigated the performance of photocatalytic titanium dioxide microfiltration membranes with an average pore size of approximately 180 nm and ultrafiltration membranes with an average pore size of around 40 nm fabricated with the suspension plasma spray process. The membranes were evaluated [...] Read more.
This study investigated the performance of photocatalytic titanium dioxide microfiltration membranes with an average pore size of approximately 180 nm and ultrafiltration membranes with an average pore size of around 40 nm fabricated with the suspension plasma spray process. The membranes were evaluated for their filtration performance using SiO2 particles of different sizes and polyethylene oxide with molecular weights of 20 kDa to 1000 kDa, and the fouling parameters were characterized. The rejection rate was enhanced by increasing the thickness of the membranes. This effect was more pronounced with the ultrafiltration membranes. The rejection rate of the ultrafiltration membrane was improved significantly after filling the larger pores on the surface with agglomerates of titanium dioxide nanoparticles. The self-cleaning performance of the membranes was assessed under visible light. Both ultrafiltration and microfiltration membranes showed a flux recovery under visible light illumination due to the photocatalytic activity of titanium dioxide. The membranes also show a flux recovery of more than 90%. Full article
Show Figures

Figure 1

14 pages, 4111 KiB  
Article
The Performance of Microfiltration Using Hydrophilic and Hydrophobic Membranes for Phenol Extraction from a Water Solution
by Tamara Kawther Hussein, Nidaa Adil Jasim and Abdul-Sahib T. Al-Madhhachi
ChemEngineering 2023, 7(2), 26; https://doi.org/10.3390/chemengineering7020026 - 24 Mar 2023
Cited by 7 | Viewed by 3357
Abstract
Two types of membranes, for hydrophilic and hydrophobic microfiltration, were prepared as flat sheets to treat a phenol-contaminated water solution. The membranes were fabricated using four synthetic polymers: polysulfone, polyethylene oxide, dimethylacetamide, and N-methyl-2-pyrrolidone. Scanning electron microscope measurements of the top-surface and cross-section [...] Read more.
Two types of membranes, for hydrophilic and hydrophobic microfiltration, were prepared as flat sheets to treat a phenol-contaminated water solution. The membranes were fabricated using four synthetic polymers: polysulfone, polyethylene oxide, dimethylacetamide, and N-methyl-2-pyrrolidone. Scanning electron microscope measurements of the top-surface and cross-section images of the produced membranes were used to characterize them physically. Distilled water and water contaminated with phenol were used to evaluate the membrane’s performance based on the flux results depending on pressure, the concentration of phenol, and temperature variables. Meanwhile, the rejection performance was evaluated using the phenol-contaminated water solution. The results show that the flux increased with increases in pressure and temperature and decreased with increases in phenol concentration. Distilled water gave far higher results than water contaminated with phenol. The flux of distilled water ranged from 52.18 to 73.15 L/m2/h for the hydrophilic type and from 72.27 to 97.46 L/m2/h for the hydrophobic type, whereas the flux of water contaminated with phenol solution ranged from 26.58 to 61.55 L/m2/h for the hydrophilic type and from 29.98 to 80.55 L/m2/h for the hydrophobic type. Meanwhile, the phenol solution’s rejection was 60% when using a hydrophilic membrane, whereas it was only 45% when a hydrophobic membrane was used. The hydrophobic membrane showed high fluxes and low rejection. Thus, transport through this membrane is closer to having viscous behavior than that through the hydrophilic membrane; in contrast, the permeability through the hydrophilic membrane is less because the pore size decreases the viscous flow mechanism. Full article
Show Figures

Figure 1

11 pages, 1284 KiB  
Article
Microplastic Removal from Drinking Water Using Point-of-Use Devices
by Ashlyn G. Cherian, Zeyuan Liu, Michael J. McKie, Husein Almuhtaram and Robert C. Andrews
Polymers 2023, 15(6), 1331; https://doi.org/10.3390/polym15061331 - 7 Mar 2023
Cited by 28 | Viewed by 9282
Abstract
The occurrence of microplastics in drinking water has drawn increasing attention due to their ubiquity and unresolved implications regarding human health. Despite achieving high reduction efficiencies (70 to >90%) at conventional drinking water treatment plants (DWTPs), microplastics remain. Since human consumption represents a [...] Read more.
The occurrence of microplastics in drinking water has drawn increasing attention due to their ubiquity and unresolved implications regarding human health. Despite achieving high reduction efficiencies (70 to >90%) at conventional drinking water treatment plants (DWTPs), microplastics remain. Since human consumption represents a small portion of typical household water use, point-of-use (POU) water treatment devices may provide the additional removal of microplastics (MPs) prior to consumption. The primary objective of this study was to evaluate the performance of commonly used pour-through POU devices, including those that utilize combinations of granular activated carbon (GAC), ion exchange (IX), and microfiltration (MF), with respect to MP removal. Treated drinking water was spiked with polyethylene terephthalate (PET) and polyvinyl chloride (PVC) fragments, along with nylon fibers representing a range of particle sizes (30–1000 µm) at concentrations of 36–64 particles/L. Samples were collected from each POU device following 25, 50, 75, 100 and 125% increases in the manufacturer’s rated treatment capacity, and subsequently analyzed via microscopy to determine their removal efficiency. Two POU devices that incorporate MF technologies exhibited 78–86% and 94–100% removal values for PVC and PET fragments, respectively, whereas one device that only incorporates GAC and IX resulted in a greater number of particles in its effluent when compared to the influent. When comparing the two devices that incorporate membranes, the device with the smaller nominal pore size (0.2 µm vs. ≥1 µm) exhibited the best performance. These findings suggest that POU devices that incorporate physical treatment barriers, including membrane filtration, may be optimal for MP removal (if desired) from drinking water. Full article
(This article belongs to the Special Issue Durability and Degradation of Polymeric Materials II)
Show Figures

Figure 1

18 pages, 4853 KiB  
Article
Performance Enhancement of Kaolin/Chitosan Composite-Based Membranes by Cross-Linking with Sodium Tripolyphosphate: Preparation and Characterization
by S. Bouzid Rekik, S. Gassara, J. Bouaziz, S. Baklouti and A. Deratani
Membranes 2023, 13(2), 229; https://doi.org/10.3390/membranes13020229 - 14 Feb 2023
Cited by 8 | Viewed by 2903
Abstract
A new family of environmentally friendly and low-cost membranes based on readily available mineral and polymeric materials has been developed from cast suspensions of kaolin and chitosan using aqueous phase separation and polyethylene glycol as a pore-forming agent. The as-fabricated membranes were further [...] Read more.
A new family of environmentally friendly and low-cost membranes based on readily available mineral and polymeric materials has been developed from cast suspensions of kaolin and chitosan using aqueous phase separation and polyethylene glycol as a pore-forming agent. The as-fabricated membranes were further cross-linked with sodium tripolyphosphate (STPP) in order to strengthen the properties of the obtained samples. The functional groups determined by FTIR and EDX confirmed that the reaction occurred. A detailed study of the effects of cross-linking time on the physicochemical, surface and permeation properties showed that a 30-minute reaction enabled the composite membrane to be stable in acidic media (up to pH 2) and increased the mechanical strength twofold compared to the non-cross-linked membrane. A similar morphology to that generally observed in polymeric membranes was obtained, with a sponge-like surface overlaying a finger-like through structure. The top layer and cross-section thicknesses of the membranes increased during STPP post-treatment, while the pore size decreased from 160 to 15 nm. At the same time, the molecular weight cut-off and permeance decreased due to the increase in cross-linking density. These results observed in a series of kaolin/chitosan composite membranes showed that STPP reaction can provide control over the separation capability range, from microfiltration to ultrafiltration. Full article
(This article belongs to the Special Issue Surface Modification and Performance Enhancement for Membranes)
Show Figures

Graphical abstract

12 pages, 3119 KiB  
Article
Membrane-Based Hybrid Method for Purifying PEGylated Proteins
by Shing Fung Lam, Xiaojiao Shang and Raja Ghosh
Membranes 2023, 13(2), 182; https://doi.org/10.3390/membranes13020182 - 2 Feb 2023
Viewed by 2502
Abstract
PEGylated proteins are usually purified using chromatographic methods, which are limited in terms of both speed and scalability. In this paper, we describe a microfiltration membrane-based hybrid method for purifying PEGylated proteins. Polyethylene glycol (or PEG) is a lower critical solution temperature polymer [...] Read more.
PEGylated proteins are usually purified using chromatographic methods, which are limited in terms of both speed and scalability. In this paper, we describe a microfiltration membrane-based hybrid method for purifying PEGylated proteins. Polyethylene glycol (or PEG) is a lower critical solution temperature polymer which undergoes phase transition in the presence of a lyotropic salt and forms micelle-like structures which are several microns in size. In the proposed hybrid method, the PEGylated proteins are first converted to their micellar form by the addition of a lyotropic salt (1.65 M ammonium sulfate). While the micelles are retained using a microfiltration membrane, soluble impurities such as the unmodified protein are washed out through the membrane. The PEGylated proteins thus retained by the membrane are recovered by solubilizing them by removing the lyotropic salt. Further, by precisely controlling the salt removal, the different PEGylated forms of the protein, i.e., mono-PEGylated and di-PEGylated forms, are fractionated from each other. Hybrid separation using two different types of microfiltration membrane devices, i.e., a stirred cell and a tangential flow filtration device, are examined in this paper. The membrane-based hybrid method for purifying PEGylated proteins is both fast and scalable. Full article
(This article belongs to the Special Issue State-of-the-Art Membrane Science and Technology in North America)
Show Figures

Figure 1

19 pages, 5353 KiB  
Article
A Green Stable Antifouling PEGylated PVDF Membrane Prepared by Vapor-Induced Phase Separation
by Hana Nur Aini, Irish Maggay, Yung Chang and Antoine Venault
Membranes 2022, 12(12), 1277; https://doi.org/10.3390/membranes12121277 - 16 Dec 2022
Cited by 5 | Viewed by 2638
Abstract
While green solvents are being implemented in the fabrication of polyvinylidene fluoride (PVDF) membranes, most are not compatible with the vapor-induced phase separation (VIPS) process for which relatively low dissolution temperatures are required. Additionally, preparing antifouling green membranes in one step by blending [...] Read more.
While green solvents are being implemented in the fabrication of polyvinylidene fluoride (PVDF) membranes, most are not compatible with the vapor-induced phase separation (VIPS) process for which relatively low dissolution temperatures are required. Additionally, preparing antifouling green membranes in one step by blending the polymer with an antifouling material before inducing phase separation remains extremely challenging due to the solubility issues. Here, the green solvent triethyl phosphate (TEP) was used to solubilize both PVDF and a copolymer (synthesized from styrene monomer and poly(ethylene glycol) methyl ether methacrylate). VIPS was then used, yielding symmetric bi-continuous microfiltration membranes. For a 2 wt% copolymer content in the casting solution, the corresponding membrane P2 showed a homogeneous and dense surface distribution of the copolymer, resulting in a high hydration capacity (>900 mg/cm3) and effective resistance to biofouling during the adsorption tests using bovine serum albumin, Escherichia coli or whole blood, with a measured fouling reduction of 80%, 89% and 90%, respectively. Cyclic filtration tests using bacteria highlighted the competitive antifouling properties of the membranes with a flux recovery ratio after two water/bacterial solution cycles higher than 70%, a reversible flux decline ratio of about 62% and an irreversible flux decline ratio of 28%. Finally, these green antifouling membranes were shown to be stable despite several weeks of immersion in water. Full article
(This article belongs to the Special Issue Separation Principles and Applications of Membrane Technology)
Show Figures

Figure 1

14 pages, 27797 KiB  
Article
Preparation of ECTFE Porous Membrane for Dehumidification of Gaseous Streams through Membrane Condenser
by Jun Pan, Kun Chen, Zhaoliang Cui, Omar Bamaga, Mohammed Albeirutty, Abdulmohsen Omar Alsaiari, Francesca Macedonio and Enrico Drioli
Membranes 2022, 12(1), 65; https://doi.org/10.3390/membranes12010065 - 1 Jan 2022
Cited by 12 | Viewed by 2893
Abstract
Due to the good hydrophobicity and chemical resistance of poly(ethylene trifluoroethylene) (ECTFE), it has been an attractive potential material for microfiltration, membrane distillation and more. However, few porous hydrophobic ECTFE membranes were prepared by thermally induced phase separation (TIPS) for membrane condenser applications. [...] Read more.
Due to the good hydrophobicity and chemical resistance of poly(ethylene trifluoroethylene) (ECTFE), it has been an attractive potential material for microfiltration, membrane distillation and more. However, few porous hydrophobic ECTFE membranes were prepared by thermally induced phase separation (TIPS) for membrane condenser applications. In this work, the diluent, di-n-octyl phthalate (DnOP), was selected to prepare the dope solutions. The calculated Hassen solubility parameter indicated that ECTFE has good compatibility with DnOP. The corresponding thermodynamic phase diagram was established, and it has been mutually verified with the bi-continuous structure observed in the SEM images. At 30 wt% ECTFE, the surface contact angle and liquid entry pressure reach their maximum values of 139.5° and 0.71 MPa, respectively. In addition, some other basic membrane properties, such as pore size, porosity, and mechanical properties, were determined. Finally, the prepared ECTFE membranes were tested using a homemade membrane condenser setup. When the polymer content is 30 wt%, the corresponding results are better; the water recovery and condensed water yield is 17.6% and 1.86 kg m−2 h−1, respectively. Full article
Show Figures

Figure 1

16 pages, 4574 KiB  
Article
Cross-Linking Combined with Surfactant Bilayer Assembly Enhances the Hydrophilic and Antifouling Properties of PTFE Microfiltration Membranes
by Shijie Xu, Wenzhong Ma, Haicun Yang, Zheng Cao, Fanghong Gong and Chunlin Liu
Separations 2022, 9(1), 2; https://doi.org/10.3390/separations9010002 - 22 Dec 2021
Cited by 9 | Viewed by 4150
Abstract
The inherent strong hydrophobicity of Polytetrafluoroetylene (PTFE) microfiltration membranes results in low separation efficiency and easy contamination. In order to enhance its hydrophilic and antifouling properties, we first modified the PTFE microfiltration membrane by using Polyethylene glycol laurate (PEGML) for first layer deposition [...] Read more.
The inherent strong hydrophobicity of Polytetrafluoroetylene (PTFE) microfiltration membranes results in low separation efficiency and easy contamination. In order to enhance its hydrophilic and antifouling properties, we first modified the PTFE microfiltration membrane by using Polyethylene glycol laurate (PEGML) for first layer deposition and then used Polyvinyl alcohol (PVA)/citric acid (CA) cross-linked coatings for second layer deposition. The Scanning Electron Microscope (SEM) results showed that the fibers and nodes of the modified PTFE microfiltration membrane were coated with PVA/CA hydrophilic coating. FT-IR Spectromete and X-ray photoelectron spectrometer (XPS) analysis results confirmed that crosslinking of PVA and CA occurred and that PEGML and PVA/CA were successfully deposited onto the membrane surface. The modification conditions were optimized by hydrophilicity testing, and the best hydrophilicity of the modified membrane was achieved when the crosslinking content of PEGML was 2 g·L−1, PVA was 5 g·L−1, and CA was 2 g·L−1. PTFE microfiltration membranes modified by the optimal conditions achieved a water flux of 396.9 L·m−2·h−1 (three times that of the original membrane) at low operating pressures (0.05 MPa), and the contact angle decreased from 120° to 40°. Meanwhile, the modified PTFE microfiltration membrane has improved contamination resistance and good stability of the hydrophilic coating. Full article
(This article belongs to the Section Materials in Separation Science)
Show Figures

Figure 1

19 pages, 6322 KiB  
Article
Fabrication of High Performance PVDF Hollow Fiber Membrane Using Less Toxic Solvent at Different Additive Loading and Air Gap
by Hazirah Syahirah Zakria, Mohd Hafiz Dzarfan Othman, Siti Hamimah Sheikh Abdul Kadir, Roziana Kamaludin, Asim Jilani, Muhammad Firdaus Omar, Suriani Abu Bakar, Juhana Jaafar, Mukhlis A. Rahman, Huda Abdullah, Mohd Hafiz Puteh, Oulavanh Sinsamphanh and Muhammad Ayub
Membranes 2021, 11(11), 843; https://doi.org/10.3390/membranes11110843 - 29 Oct 2021
Cited by 18 | Viewed by 5641
Abstract
Existing toxic solvents in the manufacturing of polymeric membranes have been raising concerns due to the risks of exposure to health and the environment. Furthermore, the lower tensile strength of the membrane renders these membranes unable to endure greater pressure during water treatment. [...] Read more.
Existing toxic solvents in the manufacturing of polymeric membranes have been raising concerns due to the risks of exposure to health and the environment. Furthermore, the lower tensile strength of the membrane renders these membranes unable to endure greater pressure during water treatment. To sustain a healthier ecosystem, fabrication of polyvinylidene fluoride (PVDF) hollow fiber membrane using a less toxic solvent, triethyl phosphate (TEP), with a lower molecular weight polyethylene glycol (PEG 400) (0–3 wt.%) additive were experimentally demonstrated via a phase inversion-based spinning technique at various air gap (10, 20 and 30 cm). Membrane with 2 wt.% of PEG 400 exhibited the desired ultrafiltration asymmetric morphology, while 3 wt.% PEG 400 resulting microfiltration. The surface roughness, porosity, and water flux performance increased as the loading of PEG 400 increased. The mechanical properties and contact angle of the fabricated membrane were influenced by the air gap where 20 cm indicate 2.91 MPa and 84.72°, respectively, leading to a stronger tensile and hydrophilicity surface. Lower toxicity TEP as a solvent helped in increasing the tensile properties of the membrane as well as producing an eco-friendly membrane towards creating a sustainable environment. The comprehensive investigation in this study may present a novel composition for the robust structure of polymeric hollow fiber membrane that is suitable in membrane technology. Full article
Show Figures

Graphical abstract

26 pages, 5303 KiB  
Article
Advancements in Sustainable PVDF Copolymer Membrane Preparation Using Rhodiasolv® PolarClean As an Alternative Eco-Friendly Solvent
by Francesca Russo, Claudia Ursino, Burcu Sayinli, Ismail Koyuncu, Francesco Galiano and Alberto Figoli
Clean Technol. 2021, 3(4), 761-786; https://doi.org/10.3390/cleantechnol3040045 - 19 Oct 2021
Cited by 23 | Viewed by 6946
Abstract
In this work, Rhodiasolv® PolarClean was employed as a more sustainable solvent for the preparation of poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) flat sheet membranes via phase inversion technique by coupling vapour induced phase separation (VIPS) and non-solvent induced phase separation (NIPS) processes. Preliminary calculations [...] Read more.
In this work, Rhodiasolv® PolarClean was employed as a more sustainable solvent for the preparation of poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) flat sheet membranes via phase inversion technique by coupling vapour induced phase separation (VIPS) and non-solvent induced phase separation (NIPS) processes. Preliminary calculations based on Hansen solubility parameters well predicted the solubilization of the polymer in the selected solvent. The effect of exposure time on humidity and the influence of polyethylene glycol (PEG), polyvinyl pyrrolidone (PVP) and sulfonated polyether sulfone (S-PES) on membrane properties and performance, were evaluated. Three different coagulation bath compositions were also explored. The obtained membranes, prepared using a more sustainable approach, were compared with those produced with the traditional toxic solvent N-methyl-2-pyrrolidone (NMP) and characterised in terms of morphology, porosity, wettability, pore size, surface roughness and mechanical resistance. The potential influence of the new solvent on the crystallinity of PVDF-HFP-based membranes was also evaluated by infrared spectroscopy. The adjustment of the parameters investigated allowed tuning of the membrane pore size in the microfiltration (MF) and ultrafiltration (UF) range resulting in membranes with various morphologies. From the water permeability and rejection tests, performed with methylene blue dye, the prepared membranes showed their potentiality to be used in MF and UF applications. Full article
(This article belongs to the Collection Brilliant Young Researchers in Clean Technologies)
Show Figures

Graphical abstract

24 pages, 5994 KiB  
Article
Tamisolve® NxG as an Alternative Non-Toxic Solvent for the Preparation of Porous Poly (Vinylidene Fluoride) Membranes
by Francesca Russo, Tiziana Marino, Francesco Galiano, Lassaad Gzara, Amalia Gordano, Hussam Organji and Alberto Figoli
Polymers 2021, 13(15), 2579; https://doi.org/10.3390/polym13152579 - 3 Aug 2021
Cited by 25 | Viewed by 5264
Abstract
Tamisolve® NxG, a well-known non-toxic solvent, was used for poly(vinylidene fluoride) (PVDF) membranes preparation via a non-solvent-induced phase separation (NIPS) procedure with water as a coagulation bath. Preliminary investigations, related to the study of the physical/chemical properties of the solvent, the solubility [...] Read more.
Tamisolve® NxG, a well-known non-toxic solvent, was used for poly(vinylidene fluoride) (PVDF) membranes preparation via a non-solvent-induced phase separation (NIPS) procedure with water as a coagulation bath. Preliminary investigations, related to the study of the physical/chemical properties of the solvent, the solubility parameters, the gel transition temperature and the viscosity of the polymer–solvent system, confirmed the power of the solvent to solubilize PVDF polymer for membranes preparation. The role of polyvinylpyrrolidone (PVP) and/or poly(ethylene glycol) (PEG), as pore former agents in the dope solution, was studied along with different polymer concentrations (10 wt%, 15 wt% and 18 wt%). The produced membranes were then characterized in terms of morphology, thickness, porosity, contact angle, atomic force microscopy (AFM) and infrared spectroscopy (ATR-FTIR). Pore size measurements, pore size distribution and water permeability (PWP) tests placed the developed membranes in the ultrafiltration (UF) and microfiltration (MF) range. Finally, PVDF membrane performances were investigated in terms of rejection (%) and permeability recovery ratio (PRR) using methylene blue (MB) in water solution to assess their potential application in separation and purification processes. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

13 pages, 3569 KiB  
Article
Surface Antifouling Modification on Polyethylene Filtration Membranes by Plasma Polymerization
by An-Li Hou, Szu-Yi Wang, Wen-Pin Lin, Wei-Hsuan Kuo, Tsung-Jen Wang and Meng-Jiy Wang
Materials 2020, 13(21), 5020; https://doi.org/10.3390/ma13215020 - 6 Nov 2020
Cited by 4 | Viewed by 2474
Abstract
Surface modification on microporous polyethylene (PE) membranes was facilitated by plasma polymerizing with two hydrophilic precursors: ethylene oxide vinyl ether (EO1V) and diethylene oxide vinyl ether (EO2V) to effectively improve the fouling against mammalian cells (Chinese hamster ovary, CHO cells) and proteins (bovine [...] Read more.
Surface modification on microporous polyethylene (PE) membranes was facilitated by plasma polymerizing with two hydrophilic precursors: ethylene oxide vinyl ether (EO1V) and diethylene oxide vinyl ether (EO2V) to effectively improve the fouling against mammalian cells (Chinese hamster ovary, CHO cells) and proteins (bovine serum albumin, BSA). The plasma polymerization procedure incorporated uniform and pin-hole free ethylene oxide-containing moieties on the filtration membrane in a dry single-step process. The successful deposition of the plasma polymers was verified by Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) analyses. Water contact angle measurements and permeation experiments using cell and protein solutions were conducted to evaluate the change in hydrophilicity and fouling resistance for filtrating biomolecules. The EO1V and EO2V plasma deposited PE membranes showed about 1.45 fold higher filtration performance than the pristine membrane. Moreover, the flux recovery reached 80% and 90% by using deionized (DI) water and sodium hydroxide (NaOH) solution, indicating the efficacy of the modification and the good reusability of the modified PE membranes. Full article
Show Figures

Graphical abstract

15 pages, 3380 KiB  
Article
Comparison of Capillary Flow Porometry (CFP) and Liquid Extrusion Porometry (LEP) Techniques for the Characterization of Porous and Face Mask Membranes
by R. I. Peinador, José I. Calvo and Roger Ben Aim
Appl. Sci. 2020, 10(16), 5703; https://doi.org/10.3390/app10165703 - 17 Aug 2020
Cited by 15 | Viewed by 4793
Abstract
This work aims to study the characterization of several membrane filters by using capillary flow porometry (CFP) and liquid extrusion porometry (LEP) to obtain their pore size distributions (PSD) and mean pore diameters (davg). Three polymeric membranes of different materials namely, [...] Read more.
This work aims to study the characterization of several membrane filters by using capillary flow porometry (CFP) and liquid extrusion porometry (LEP) to obtain their pore size distributions (PSD) and mean pore diameters (davg). Three polymeric membranes of different materials namely, polyethylene (PET), cellulose nitrate (CN), and FM (face mask), and one inorganic (namely, alumina Al2O3) from ultrafiltration (UF)/microfiltration (MF) and particle separation were analyzed using a pressure constant fluid/liquid extrusion porometer, developed at institute de la filtration et techniques séparatives (IFTS). Several porosimetric fluids have been used to wet and penetrate into the porous/fiber structure. The results show the accuracy of the setup on characterizing membranes in the UF/MF range by CFP, with reasonable agreement with nominal data of the filters. Additionally, LEP extension of the equipment obtained good agreement with nominal data and the CFP results, while filters presenting a microstructure of highly interconnected pores (face mask) resulted in clear differences in terms of resulting PSD and average sizes when CFP and LEP results are compared. Full article
(This article belongs to the Special Issue Preparation, Characterization and Modelling of Advanced Membranes)
Show Figures

Figure 1

Back to TopTop