Advancements in Sustainable PVDF Copolymer Membrane Preparation Using Rhodiasolv® PolarClean As an Alternative Eco-Friendly Solvent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hansen Solubility Parameters (HSPs), Cloud Point Measurements and Ternary Phase Diagram
2.3. Membrane Preparation
2.4. Characterization Tests
2.5. Water Permeability and MB Rejection Tests
3. Results and Discussion
3.1. Effect of the Solvent
3.2. Effect of the Additives and S-PES Polymer
3.3. Effect of Coagulation Bath
3.4. Water Permeability, Rejection Tests and Comparison of the Results with the Literature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shao, L.; Low, B.T.; Chung, T.-S.; Greenberg, A.R. Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future. J. Membr. Sci. 2009, 327, 18–31. [Google Scholar] [CrossRef]
- Ismail, N.; Venault, A.; Mikkola, J.-P.; Bouyer, D.; Drioli, E.; Tavajohi Hassan Kiadeh, N. Investigating the potential of membranes formed by the vapor induced phase separation process. J. Membr. Sci. 2020, 597, 117601. [Google Scholar] [CrossRef]
- Yadav, P.; Ismail, N.; Essalhi, M.; Tysklind, M.; Athanassiadis, D.; Tavajohi, N. Assessment of the environmental impact of polymeric membrane production. J. Membr. Sci. 2021, 622, 118987. [Google Scholar] [CrossRef]
- Russo, F.; Marino, T.; Galiano, F.; Gzara, L.; Gordano, A.; Organji, H.; Figoli, A. Tamisolve® NxG as an Alternative Non-Toxic Solvent for the Preparation of Porous Poly (Vinylidene Fluoride) Membranes. Polymers 2021, 13, 2579. [Google Scholar] [CrossRef] [PubMed]
- European Chemicals Agency. How to Comply with REACH Restriction 71, Guideline for Users of NMP (1-Methyl-2-Pyrrolidone); European Chemicals Agency: Helsinki, Finland, 2019.
- Figoli, A.; Marino, T.; Simone, S.; Di Nicolò, E.; Li, X.-M.; He, T.; Tornaghi, S.; Drioli, E. Towards non-toxic solvents for membrane preparation: A review. Green Chem. 2014, 16, 4034. [Google Scholar] [CrossRef]
- Prézélus, F.; Chabni, D.; Barna, L.; Guigui, C.; Remigy, J.C. A metrics-based approach to preparing sustainable membranes: Application to ultrafiltration. Green Chem. 2019, 21, 4457–4469. [Google Scholar] [CrossRef] [Green Version]
- Galiano, F.; Ghanim, A.H.; Rashid, K.T.; Marino, T.; Simone, S.; Alsalhy, Q.F.; Figoli, A. Preparation and characterization of green polylactic acid (PLA) membranes for organic/organic separation by pervaporation. Clean Technol. Environ. Policy 2019, 21, 109–120. [Google Scholar] [CrossRef]
- Marino, T.; Russo, F.; Figoli, A. The Formation of Polyvinylidene Fluoride Membranes with Tailored Properties via Vapour/Non-Solvent Induced Phase Separation. Membranes 2018, 8, 71. [Google Scholar] [CrossRef] [Green Version]
- Russo, F.; Ursino, C.; Avruscio, E.; Desiderio, G.; Perrone, A.; Santoro, S.; Galiano, F.; Figoli, A. Innovative Poly (Vinylidene Fluoride) (PVDF) Electrospun Nanofiber Membrane Preparation Using DMSO as a Low Toxicity Solvent. Membranes 2020, 10, 36. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Vovusha, H.; Schwingenschlögl, U.; Nunes, S.P. Polyethersulfone flat sheet and hollow fiber membranes from solutions in ionic liquids. J. Membr. Sci. 2017, 539, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Russo, F.; Galiano, F.; Pedace, F.; Aricò, F.; Figoli, A. Dimethyl Isosorbide As a Green Solvent for Sustainable Ultrafiltration and Microfiltration Membrane Preparation. ACS Sustain. Chem. Eng. 2020, 8, 659–668. [Google Scholar] [CrossRef]
- Aricò, F.; Tundo, P. Isosorbide and dimethyl carbonate: A green match. Beilstein J. Org. Chem. 2016, 12, 2256–2266. [Google Scholar] [CrossRef] [Green Version]
- Marino, T.; Galiano, F.; Molino, A.; Figoli, A. New frontiers in sustainable membrane preparation: CyreneTM as green bioderived solvent. J. Membr. Sci. 2019, 580, 224–234. [Google Scholar] [CrossRef]
- Marino, T.; Blasi, E.; Tornaghi, S.; Di Nicolò, E.; Figoli, A. Polyethersulfone membranes prepared with Rhodiasolv®Polarclean as water soluble green solvent. J. Membr. Sci. 2018, 549, 192–204. [Google Scholar] [CrossRef]
- Ursino, C.; Russo, F.; Ferrari, R.M.; De Santo, M.P.; Di Nicolò, E.; He, T.; Galiano, F.; Figoli, A. Polyethersulfone hollow fiber membranes prepared with Polarclean® as a more sustainable solvent. J. Membr. Sci. 2020, 608, 118216. [Google Scholar] [CrossRef]
- Jung, J.T.; Kim, J.F.; Wang, H.H.; di Nicolo, E.; Drioli, E.; Lee, Y.M. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J. Membr. Sci. 2016, 514, 250–263. [Google Scholar] [CrossRef]
- Hassankiadeh, N.T.; Cui, Z.; Kim, J.H.; Shin, D.W.; Lee, S.Y.; Sanguineti, A.; Arcella, V.; Lee, Y.M.; Drioli, E. Microporous poly(vinylidene fluoride) hollow fiber membranes fabricated with PolarClean as water-soluble green diluent and additives. J. Membr. Sci. 2015, 479, 204–212. [Google Scholar] [CrossRef]
- García-Payo, M.C.; Essalhi, M.; Khayet, M. Effects of PVDF-HFP concentration on membrane distillation performance and structural morphology of hollow fiber membranes. J. Membr. Sci. 2010, 347, 209–219. [Google Scholar] [CrossRef]
- Lalia, B.S.; Guillen, E.; Arafat, H.A.; Hashaikeh, R. Nanocrystalline cellulose reinforced PVDF-HFP membranes for membrane distillation application. Desalination 2014, 332, 134–141. [Google Scholar] [CrossRef]
- Tian, X.; Jiang, X. Poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) membranes for ethyl acetate removal from water. J. Hazard. Mater. 2008, 153, 128–135. [Google Scholar] [CrossRef]
- Pu, W.; He, X.; Wang, L.; Jiang, C.; Wan, C. Preparation of PVDF–HFP microporous membrane for Li-ion batteries by phase inversion. J. Membr. Sci. 2006, 272, 11–14. [Google Scholar] [CrossRef]
- Wongchitphimon, S.; Wang, R.; Jiraratananon, R. Surface modification of polyvinylidene fluoride-co-hexafluoropropylene (PVDF–HFP) hollow fiber membrane for membrane gas absorption. J. Membr. Sci. 2011, 381, 183–191. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hilal, N.; Hashaikeh, R. Underwater superoleophobic cellulose/electrospun PVDF–HFP membranes for efficient oil/water separation. Desalination 2014, 344, 48–54. [Google Scholar] [CrossRef]
- Rhodiasolv® PolarClean—Green solvent|Solvay. Available online: https://www.solvay.com/en/brands/rhodiasolv-polarclean (accessed on 1 September 2021).
- Clark, J.H.; Hunt, A.; Topi, C.; Paggiola, G.; Sherwood, J. An Appendix of Solvent Data Sheets in Sustainable Solvents: Perspectives from Research, Business and International Policy, Ch. 6; Royal Society of Chemistry: Cambdridge, UK, 2017; pp. 235–347. [Google Scholar]
- Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C.R.; Abou-Shehada, S.; Dunn, P.J. CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 2016, 18, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Russo, F.; Bulzomì, M.; Di Nicolò, E.; Ursino, C.; Figoli, A. Enhanced anti-fouling behavior and performance of pes membrane by uv treatment. Processes 2021, 9, 246. [Google Scholar] [CrossRef]
- Alder, C.M.; Hayler, J.D.; Henderson, R.K.; Redman, A.M.; Shukla, L.; Shuster, L.E.; Sneddon, H.F. Updating and further expanding GSK’s solvent sustainability guide. Green Chem. 2016, 18, 3879–3890. [Google Scholar] [CrossRef]
- Adamska, K.; Voelkel, A. Hansen solubility parameters for polyethylene glycols by inverse gas chromatography. J. Chromatogr. A 2006, 1132, 260–267. [Google Scholar] [CrossRef]
- Hansen, C.M. Hansen Solubility Parameters: A User’s Handbook, 2nd ed.; CRC Press: London, UK, 2007. [Google Scholar]
- Huang, W.; Wang, H.; Li, C.; Wen, T.; Xu, J.; Ouyang, J.; Zhang, C. Measurement and correlation of solubility, Hansen solubility parameters and thermodynamic behavior of Clozapine in eleven mono-solvents. J. Mol. Liq. 2021, 333, 115894. [Google Scholar] [CrossRef]
- Wang, R.; Shi, L.; Tang, C.Y.; Chou, S.; Qiu, C.; Fane, A.G. Characterization of novel forward osmosis hollow fiber membranes. J. Membr. Sci. 2010, 355, 158–167. [Google Scholar] [CrossRef]
- Wijmans, J.G.; Kant, J.; Mulder, M.H.V.; Smolders, C.A. Phase separation phenomena in solutions of polysulfone in mixtures of a solvent and a nonsolvent: Relationship with membrane formation. Polymer 1985, 26, 1539–1545. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Wang, R.; Cao, Y. Effect of the rheology of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF–HFP) dope solutions on the formation of microporous hollow fibers used as membrane contactors. J. Membr. Sci. 2009, 344, 112–122. [Google Scholar] [CrossRef]
- Russo, F.; Castro-Muñoz, R.; Galiano, F.; Figoli, A. Unprecedented preparation of porous Matrimid® 5218 membranes. J. Membr. Sci. 2019, 585, 166–174. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546. [Google Scholar] [CrossRef]
- Randová, A.; Bartovská, L.; Morávek, P.; Matějka, P.; Novotná, M.; Matějková, S.; Drioli, E.; Figoli, A.; Lanč, M.; Friess, K. A fundamental study of the physicochemical properties of Rhodiasolv®Polarclean: A promising alternative to common and hazardous solvents. J. Mol. Liq. 2016, 224, 1163–1171. [Google Scholar] [CrossRef]
- Mulder, M.H.V.; Hendrikman, J.O.; Wijmans, J.G.; Smolders, C.A. A rationale for the preparation of asymmetric pervaporation membranes. J. Appl. Polym. Sci. 1985, 30, 2805–2820. [Google Scholar] [CrossRef] [Green Version]
- Hou, T.P.; Dong, S.H.; Zheng, L.Y. The study of mechanism of organic additives action in the polysulfone membrane casting solution. Desalination 1991, 83, 343–360. [Google Scholar] [CrossRef]
- Gzara, L.; Rehan, Z.A.; Simone, S.; Galiano, F.; Hassankiadeh, N.T.; Al-Sharif, S.F.; Figoli, A.; Drioli, E. Tailoring PES membrane morphology and properties via selected preparation parameters. J. Polym. Eng. 2017, 37, 69–81. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, C.; Liu, H.; Huang, Q.; Fu, H. Fabrication and properties of PVDF and PVDF-HFP microfiltration membranes. J. Appl. Polym. Sci. 2018, 135, 46711. [Google Scholar] [CrossRef]
- Cui, Z.; Hassankiadeh, N.T.; Zhuang, Y.; Drioli, E.; Lee, Y.M. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 2015, 51, 94–126. [Google Scholar] [CrossRef]
- Meringolo, C.; Mastropietro, T.F.; Poerio, T.; Fontananova, E.; De Filpo, G.; Curcio, E.; Di Profio, G. Tailoring PVDF Membranes Surface Topography and Hydrophobicity by a Sustainable Two-Steps Phase Separation Process. ACS Sustain. Chem. Eng. 2018, 6, 10069–10077. [Google Scholar] [CrossRef]
- Smolders, C.A.; Reuvers, A.J.; Boom, R.M.; Wienk, I.M. Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. J. Membr. Sci. 1992, 73, 259–275. [Google Scholar] [CrossRef] [Green Version]
- Chou, W.-L.; Yu, D.-G.; Yang, M.-C.; Jou, C.-H. Effect of molecular weight and concentration of PEG additives on morphology and permeation performance of cellulose acetate hollow fibers. Sep. Purif. Technol. 2007, 57, 209–219. [Google Scholar] [CrossRef]
- Susanto, H.; Stahra, N.; Ulbricht, M. High performance polyethersulfone microfiltration membranes having high flux and stable hydrophilic property. J. Membr. Sci. 2009. [Google Scholar] [CrossRef]
- Rahimpour, A.; Madaeni, S.S.; Ghorbani, S.; Shockravi, A.; Mansourpanah, Y. The influence of sulfonated polyethersulfone (SPES) on surface nano-morphology and performance of polyethersulfone (PES) membrane. Appl. Surf. Sci. 2010, 256, 1825–1831. [Google Scholar] [CrossRef]
- Rahimpour, A.; Jahanshahi, M.; Rajaeian, B.; Rahimnejad, M. TiO2 entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties. Desalination 2011, 278, 343–353. [Google Scholar] [CrossRef]
- Deshmukh, S.P.; Li, K. Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fibre membranes. J. Membr. Sci. 1998, 150, 75–85. [Google Scholar] [CrossRef]
- Fadhil, S.; Marino, T.; Makki, H.F.; Alsalhy, Q.F.; Blefari, S.; Macedonio, F.; Di Nicolò, E.; Giorno, L.; Drioli, E.; Figoli, A. Novel PVDF-HFP flat sheet membranes prepared by triethyl phosphate (TEP) solvent for direct contact membrane distillation. Chem. Eng. Process. Process. Intensif. 2016, 102, 16–26. [Google Scholar] [CrossRef]
- Zou, D.; Jeon, S.M.; Kim, H.W.; Bae, J.Y.; Lee, Y.M. In-situ grown inorganic layer coated PVDF/PSF composite hollow fiber membranes with enhanced separation performance. J. Membr. Sci. 2021, 637, 119632. [Google Scholar] [CrossRef]
- Jung, J.T.; Wang, H.H.; Kim, J.F.; Lee, J.; Kim, J.S.; Drioli, E.; Lee, Y.M. Tailoring nonsolvent-thermally induced phase separation (N-TIPS) effect using triple spinneret to fabricate high performance PVDF hollow fiber membranes. J. Membr. Sci. 2018, 559, 117–126. [Google Scholar] [CrossRef]
- Alyarnezhad, S.; Marino, T.; Parsa, J.B.; Galiano, F.; Ursino, C.; Garcìa, H.; Puche, M.; Figoli, A. Polyvinylidene Fluoride-Graphene Oxide Membranes for Dye Removal under Visible Light Irradiation. Polymers 2020, 12, 1509. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Chen, C.; Li, Y.; Li, J. PVDF membrane formation via thermally induced phase separation. J. Macromol. Sci. A Pure Appl. Chem. 2007, 44, 99–104. [Google Scholar] [CrossRef]
- Buonomenna, M.G.; Lopez, L.C.; Favia, P.; D’Agostino, R.; Gordano, A.; Drioli, E. New PVDF membranes: The effect of plasma surface modification on retention in nanofiltration of aqueous solution containing organic compounds. Water Res. 2007, 41, 4309–4316. [Google Scholar] [CrossRef] [PubMed]
- Van Tran, T.T.; Kumar, S.R.; Lue, S.J. Separation mechanisms of binary dye mixtures using a PVDF ultrafiltration membrane: Donnan effect and intermolecular interaction. J. Membr. Sci. 2019, 575, 38–49. [Google Scholar] [CrossRef]
Solvent | Physical Properties from [25,26] | Supplier from [26] | Source | Environmental Impact from [26] | Hazard Level from [27] | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Miscibility with Water | Molecular Weight | Boiling Point | Flash Point | Density | Dynamic Viscosity | Surface Tension | Freezing Point | |||||
(g/mol) | (°C) | (°C) | (g/cm3) | (mPa·s) | (mN/m) | (°C) | ||||||
PolarClean | Miscible | 187.8 | 280 | 145 | 1.04 | 9.40 | 36 | <−60 | Rhodiasolv® PolarClean Solvay (Belgium) | From Agrochemical formulations | Inherently biodegradable [28] | Preferred (H319) |
Traditional toxic solvents | ||||||||||||
NMP | Miscible | 99.13 | 202 | 91 | 1.02 | 1.67 | 40 | <−24 | Multiple | From petrochemical feedstock | Not rapidly biodegrade under anaerobic conditions | Highly hazardous (H315; H319; H335; H360) |
DMF | Miscible | 73.09 | 153 | 58 | 0.94 | 0.80 | 36 | <−61 | Multiple | From petrochemical feedstock | Not rapidly biodegrade under anaerobic conditions | Highly hazardous (H226; H312; H332; H319; H360) |
DMA | Miscible | 87.12 | 165 | 70 | 0.93 | 0.92 | 32.5 | <−20 | Multiple | From petrochemical feedstock | Not rapidly biodegrade under anaerobic conditions | Highly hazardous (H312; H332; H319; H360) |
Greener solvents | ||||||||||||
Tamisolve® | Miscible | 121.18 | 240.6 | 100 | 0.96 | 4.3 | 67.3 | <−75 | Taminco/Eastman company | From petrochemical feedstock but with green characteristics [29] | Biodegradable | Not preferred (H302; H315; H319) |
TEP | Miscible | 182.15 | 215 | 101 | 1.07 | 4.1 | 47 | <−56 | Multiple | From organic synthesis | Biodegradable | Preferred (H302; H319) |
DMC | Miscible | 90.08 | 90 | 16 | 1.07 | 0.62 | 29.3 | <−4 | Multiple | From petrochemical feedstock but with green characteristics [29] | Readily biodegradable. Evaporation from water and soil is expected | Preferred (H225) |
Propylene carbonate | Miscible | 102.09 | 242 | 116 | 1.21 | 2.1 | 40.9 | <−49 | JEFFSOLR®/Huntsman (USA) | From petrochemical feedstock but with green characteristics [29] | Readily biodegradable | Preferred (H319) |
Bio-based solvents | ||||||||||||
DMSO | Miscible | 78.13 | 189 | 87 | 1.1 | 2.14 | 43.5 | 18 | Multiple | Oxidation dimethyl sulphide Biomass type: Lignocellulose | Total bio-based content 100%; probably inherently biodegradable | Not preferred |
Cyrene® | Miscible | 128.13 | 227 | 108 | 1.25 | 10.5 | 33.6 | <−20 | Circa (Australia) | Hydrogenation of levoglucosenone Biomass type: Softwood lignocellulose | Total bio-based content 100%; Readily biodegradable | Preferred |
DMI | Miscible | 174.2 | 250 | 120 | 1.16 | 6 | - | <−56.72 | Croda (UK) | Methylation of isosorbide from sorbitol Biomass type: Starch | Total bio-based content 83% | Preferred |
GVL | Miscible | 100.12 | 208 | 96 | 1.05 | 2.1 | - | <−31 | Multiple | From hydrogenative cyclisation of levulinic acid Biomass type: Cellulose | Total bio-based content 100% | Preferred |
Ethyl lactate | Miscible | 144 | 250 | 90 | 1.06 | 1.4 | 28.57 | <−25 | Galatic (Belgium), Corbion (Netherlands) | From esterification of lactic acid Biomass type: Corn starch, sugar cane | Readily biodegradable | Preferred |
Membrane Code | Polymers (10 wt%) | Additives (wt%) | Solvent (wt%) | Exposure Time to Humidity (min) | Coagulation Bath | |
---|---|---|---|---|---|---|
PVDF-HFP | S-PES | |||||
Ratio | ||||||
M1 | 100 | 0 | - | NMP (90 wt%) | 0 | Water |
M2 | 100 | 0 | - | NMP (90 wt%) | 2.5 | Water |
M3 | 100 | 0 | - | NMP (90 wt%) | 5 | Water |
M4 | 100 | 0 | - | PolarClean (90 wt%) | 0 | Water |
M5 | 100 | 0 | - | PolarClean (90 wt%) | 2.5 | Water |
M6 | 100 | 0 | - | PolarClean (90 wt%) | 5 | Water |
M7 | 100 | 0 | PVP K17 (3 wt%) PEG 200 (15 wt%) | PolarClean (72 wt%) | 0 | Water |
M8 | 100 | 0 | PVP K17 (3 wt%) PEG 200 (15 wt%) | PolarClean (72 wt%) | 2.5 | Water |
M9 | 100 | 0 | PVP K17 (3 wt%) PEG 200 (15 wt%) | PolarClean (72 wt%) | 5 | Water |
M10 | 95 | 5 | PVP K17 (3 wt%) PEG 200 (15 wt%) | PolarClean (72 wt%) | 0 | Water |
M11 | 95 | 5 | PVP K17 (3 wt%) PEG 200 (15 wt%) | PolarClean (72 wt%) | 2.5 | Water |
M12 | 95 | 5 | PVP K17 (3 wt%) PEG 200 (15 wt%) | PolarClean (72 wt%) | 5 | Water |
M13 | 95 | 5 | PVP K17 (3 wt%) PEG 200 (15 wt%) | PolarClean (72 wt%) | 2.5 | Ethanol/water (50:50) |
M14 | 95 | 5 | PVP K17 (3 wt%) PEG 200 (15 wt%) | PolarClean (72 wt%) | 2.5 | Isopropanol/water (50:50) |
Compound | δh (MPa1/2) | δd (MPa1/2) | δp (MPa1/2) | ΔA−B (MPa1/2) | Ref. |
---|---|---|---|---|---|
PolarClean | 9.2 | 15.8 | 10.7 | 2.48 | [15] |
NMP | 7.2 | 18 | 12.3 | 1.29 | [30] |
DMF | 11.3 | 17.4 | 13.7 | 3.33 | [31] |
DMA | 11.8 | 17.8 | 14.1 | 3.98 | [31] |
Water | 42.3 | 15.6 | 16 | 34.31 | [14] |
Ethanol | 19.4 | 15.8 | 8.8 | 11.87 | [32] |
Isopropanol | 16.4 | 15.8 | 6.1 | 10.49 | [32] |
PVDF-HFP | 8.2 | 17.2 | 12.5 | - | [33] |
Membrane Code | Mean Pore Size (µm) | Thickness (μm) | Porosity (%) | Contact Angle (°) |
---|---|---|---|---|
M1 | 0.04 ± 0.01 | 68 ± 1 | 69 ± 1 | 96 ± 1 |
M2 | 0.05 ± 0.12 | 169 ± 12 | 69 ± 1 | 121 ± 5 |
M3 | 0.03 ± 0.01 | 128 ± 5 | 66 ± 2 | 106 ± 1 |
M4 | 0.03 ± 0.01 | 96 ± 7 | 72 ± 2 | 87 ± 4 |
M5 | 0.05 ± 0.01 | 104 ± 13 | 79 ± 1 | 107 ± 2 |
M6 | 0.03 ± 0.01 | 106 ± 13 | 79 ± 2 | 91 ± 3 |
Membrane Code | Mean Pore Size (µm) | Thickness (μm) | Porosity (%) | Contact Angle (°) |
---|---|---|---|---|
M7 | 0.05 ± 0.01 | 109 ± 3 | 80 ± 1 | 84 ± 1 |
M8 | 0.70 ± 0.11 | 193 ± 5 | 76 ± 2 | 106 ± 5 |
M9 | 0.96 ± 0.29 | 71 ± 2 | 79 ± 1 | 93 ± 4 |
M10 | 0.26 ± 0.03 | 127 ± 20 | 88 ± 1 | 101 ± 1 |
M11 | 0.82 ± 0.10 | 117 ± 2 | 87 ± 1 | 116 ± 5 |
M12 | 1.34 ± 0.29 | 176 ± 3 | 86 ± 1 | 110 ± 7 |
Membrane Code | Mean Pore Size (µm) | Thickness (μm) | Porosity (%) | Contact Angle (°) |
---|---|---|---|---|
M11 | 0.65 ± 0.01 | 117 ± 2 | 87 ± 1 | 116 ± 5 |
M13 | 0.11 ± 0.07 | 116 ± 2 | 87 ± 3 | 114 ± 6 |
M14 | 0.24 ± 0.05 | 118 ± 3 | 87 ± 1 | 126 ± 6 |
Type of PVDF | Dope Solution Composition | Temp. of Dope Solution | Membrane Configuration | Membrane Preparation Procedure | Membranepore Size (µm) | Water Permeability (L/m2 h Bar) | Rejection | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|
PVDF Content (wt%) | Solvent and Concentration (wt%) | Additive(s) Type and Content | ||||||||
PVDF-HFP (Solef®21510) | 10 | PolarClean (72 wt%) | PVP K17 (3 wt%) PEG 200 (15 wt%) | 80 °C | Flat sheet | VIPS (0–5 min)-NIPS | 0.05–0.96 | 4.000–10.000 | rejection to MB (72 to 89%) | This work |
PVDF (Solef®1015) | 15–30 | PolarClean (75–50 wt%) | PVP10k (5–10 wt%) Pluronic F-127 (5–10 wt%) | 140 °C | Flat sheet | N-TIPS | 0.01–0.05 | 850–2800 | - | [17] |
PVDF (Solef®1015) | 10–35 | PolarClean (89–60 wt%) | PVP (10 kDa, 55 kDa, 360 kDa and 1300 kDa); PMMA (1200 kDa) | 180 °C | Hollow fibers | N-TIPS | - | 5–1000 | - | [18] |
PVDF (Solef®1015) | 25 | PolarClean (75 wt%) | - | 130 °C | Hollow fibers | N-TIPS | 0.05–0.06 | 150–198 | - | [53] |
PVDF (Solef®1015) | 25 | PolarClean (67.5 wt%) | Blended with PES polymer (7.5 wt%), TiO2 | 130 °C | Hollow fibers | N-TIPS | 0.05–0.1 | 50–500 | rejection to BSA (~91.5%) | [52] |
PVDF (Solef®6010) | 10–15 | TamisolveNxG (85–75 wt%) | PVP (5 wt%) PEG (20 wt%) | 80–120 °C | Flat sheet | NIPS | 0.03–0.2 | 88–269 | rejection to MB (57 to 79%) | [4] |
PVDF (Solef®6010) | 13 | TEP (60–87 wt%) | PVP (3 wt%) PEG (24 wt%) | 100 °C | Flat sheet | NIPS | 0.1–0.7 | 2900–3400 | rejection to MB (~53%) | [54] |
PVDF (M w~ 170,000) | 25–35 | γ-Butyrolactone (65–75 wt%) | - | Not reported | Flat sheet | TIPS | - | - | - | [55] |
PVDF (M w~ 170,000) | 25–35 | Propylene carbonate (65–75 wt%) | - | Not reported | Flat sheet | TIPS | - | - | - | [55] |
PVDF (Solef®6010) | 15 | DMF (85 wt%) | - | 60 °C | Flat sheet | NIPS | 0.07 | 5 | rejection to MB (~40%) | [56] |
PVDF (Solef®6010) plasma modified | NIPS + plasma surface treatment | 0.07 | 12.3 | rejection to MB (~100%) | ||||||
PVDF (M w~534.000) | 20 | NMP (80 wt%) | - | 40 °C | Flat sheet | NIPS | ~0.2 µm | ~131 | rejection to MB (~50%) | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, F.; Ursino, C.; Sayinli, B.; Koyuncu, I.; Galiano, F.; Figoli, A. Advancements in Sustainable PVDF Copolymer Membrane Preparation Using Rhodiasolv® PolarClean As an Alternative Eco-Friendly Solvent. Clean Technol. 2021, 3, 761-786. https://doi.org/10.3390/cleantechnol3040045
Russo F, Ursino C, Sayinli B, Koyuncu I, Galiano F, Figoli A. Advancements in Sustainable PVDF Copolymer Membrane Preparation Using Rhodiasolv® PolarClean As an Alternative Eco-Friendly Solvent. Clean Technologies. 2021; 3(4):761-786. https://doi.org/10.3390/cleantechnol3040045
Chicago/Turabian StyleRusso, Francesca, Claudia Ursino, Burcu Sayinli, Ismail Koyuncu, Francesco Galiano, and Alberto Figoli. 2021. "Advancements in Sustainable PVDF Copolymer Membrane Preparation Using Rhodiasolv® PolarClean As an Alternative Eco-Friendly Solvent" Clean Technologies 3, no. 4: 761-786. https://doi.org/10.3390/cleantechnol3040045
APA StyleRusso, F., Ursino, C., Sayinli, B., Koyuncu, I., Galiano, F., & Figoli, A. (2021). Advancements in Sustainable PVDF Copolymer Membrane Preparation Using Rhodiasolv® PolarClean As an Alternative Eco-Friendly Solvent. Clean Technologies, 3(4), 761-786. https://doi.org/10.3390/cleantechnol3040045