Surface Antifouling Modification on Polyethylene Filtration Membranes by Plasma Polymerization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Plasma Polymerization
2.3. Surface Characterizations
2.4. Zeta Potential Measurements
2.5. Static Protein Adsorption
2.6. Filtration Experiments
2.7. Statistical Analyses
3. Results
Characterizations of pp-EO1V and pp-EO2V
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bowen, W.R.; Doneva, T.A.; Stoton, J.G. Protein deposition during cross-flow membrane filtration: AFM studies and flux loss. Colloids Surf. B Biointerfaces 2003, 27, 103–113. [Google Scholar] [CrossRef]
- Tijing, L.D.; Woo, Y.C.; Choi, J.-S.; Lee, S.; Kim, S.-H.; Shon, H.K. Fouling and its control in membrane distillation—A review. J. Membr. Sci. 2015, 475, 215–244. [Google Scholar] [CrossRef]
- Musumeci, T.; Leonardi, A.; Bonaccorso, A.; Pignatello, R.; Puglisi, G. Tangential flow filtration technique: An overview on nanomedicine applications. Pharm. Nanotechnol. 2018, 6, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Van Reis, R.; Leonard, L.C.; Hsu, C.C.; Builder, S.E. Industrial scale harvest of proteins from mammalian cell culture by tangential flow filtration. Biotechnol. Bioeng. 1991, 38, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, B.P.; Dubey, N.C.; Stamm, M. Polyethylene glycol cross-linked sulfonated polyethersulfone based filtration membranes with improved antifouling tendency. J. Membr. Sci. 2014, 453, 263–274. [Google Scholar] [CrossRef]
- Lü, X.; Wang, X.; Guo, L.; Zhang, Q.; Guo, X.; Li, L. Preparation of PU modified PVDF antifouling membrane and its hydrophilic performance. J. Membr. Sci. 2016, 520, 933–940. [Google Scholar] [CrossRef]
- Etemadi, H.; Yegani, R.; Seyfollahi, M. The effect of amino functionalized and polyethylene glycol grafted nanodiamond on anti-biofouling properties of cellulose acetate membrane in membrane bioreactor systems. Sep. Purif. Technol. 2017, 177, 350–362. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Z.; Lan, Q.; Wang, Y. Antifouling ultrafiltration membranes by selective swelling of polystyrene/poly(ethylene oxide) block copolymers. J. Membr. Sci. 2017, 542, 226–232. [Google Scholar] [CrossRef]
- Akkahat, P.; Kiatkamjornwong, S.; Yusa, S.-I.; Hoven, V.P.; Iwasaki, Y. Development of a novel antifouling platform for biosensing probe immobilization from methacryloyloxyethyl phosphorylcholine-containing copolymer brushes. Langmuir 2012, 28, 5872–5881. [Google Scholar] [CrossRef]
- Asatekin, A.; Kang, S.; Elimelech, M.; Mayes, A.M. Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives. J. Membr. Sci. 2007, 298, 136–146. [Google Scholar] [CrossRef]
- Albert, C.C.; Ciampi, S.; Harper, J.B.; Gooding, J.J. Antifouling behaviour of silicon surfaces modified with self-assembled monolayers containing both ethylene glycol and charged moieties. Surf. Sci. 2010, 604, 1388–1394. [Google Scholar]
- Yan, M.-G.; Liu, L.-Q.; Tang, Z.-Q.; Huang, L.; Li, W.; Zhou, J.; Gu, J.-S.; Wei, X.-W.; Hai-Yin, Y. Plasma surface modification of polypropylene microfiltration membranes and fouling by BSA dispersion. Chem. Eng. J. 2008, 145, 218–224. [Google Scholar] [CrossRef]
- Ayyavoo, J.; Nguyen, T.P.N.; Jun, B.-M.; Kim, I.-C.; Kwon, Y.-N. Protection of polymeric membranes with antifouling surfacing via surface modifications. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 190–201. [Google Scholar] [CrossRef]
- Zou, L.; Vidalis, I.; Steele, D.; Michelmore, A.; Low, S.; Verberk, J. Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling. J. Membr. Sci. 2011, 369, 420–428. [Google Scholar] [CrossRef]
- Khoo, Y.S.; Lau, W.; Liang, Y.Y.; Karaman, M.; Gürsoy, M.; Ismail, A.F. A green approach to modify surface properties of polyamide thin film composite membrane for improved antifouling resistance. Sep. Purif. Technol. 2020, 250, 116976. [Google Scholar] [CrossRef]
- Mangindaan, D.; Kuo, W.-H.; Chang, C.-C.; Wang, S.-L.; Liu, H.-C.; Wang, M.-J. Plasma polymerization of amine-containing thin films and the studies on the deposition kinetics. Surf. Coat. Technol. 2011, 206, 1299–1306. [Google Scholar] [CrossRef]
- Hurwitz, G.; Guillen, G.R.; Hoek, E.M. Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements. J. Membr. Sci. 2010, 349, 349–357. [Google Scholar] [CrossRef]
- Yim, J.H.; Rodriguez-Santiago, V.; Williams, A.A.; Gougousi, T.; Pappas, D.D.; Hirvonen, J.K. Atmospheric pressure plasma enhanced chemical vapor deposition of hydrophobic coatings using fluorine-based liquid precursors. Surf. Coat. Technol. 2013, 234, 21–32. [Google Scholar] [CrossRef]
- Rahimpour, A.; Madaeni, S.S.; Zereshki, S.; Mansourpanah, Y. Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting. Appl. Surf. Sci. 2009, 255, 7455–7461. [Google Scholar] [CrossRef]
- Choi, C.; Jung, D.; Moon, D.W.; Lee, T.G. Surface analysis of protein-resistant, plasma-polymerized ethylene glycol thin films. Surf. Interface Anal. 2010, 43, 331–335. [Google Scholar] [CrossRef]
- Al-Hamarneh, I.; Pedrow, P.; Eskhan, A.; Abu-Lail, N. Synthesis and characterization of di(ethylene glycol) vinyl ether films deposited by atmospheric pressure corona discharge plasma. Surf. Coat. Technol. 2013, 234, 33–41. [Google Scholar] [CrossRef]
- Wu, Y.J.; Timmons, R.B.; Jen, J.S.; Molock, F.E. Non-fouling surfaces produced by gas phase pulsed plasma polymerization of an ultra low molecular weight ethylene oxide containing monomer. Colloids Surf. B Biointerfaces 2000, 18, 235–248. [Google Scholar] [CrossRef]
Sample | Applied Power (W) | Water Contact Angle (°) | Roughness | |
---|---|---|---|---|
Ra (nm) | Rrms (nm) | |||
Si | 58.6 ± 0.82° | 0.148 | 0.231 | |
EO1V/Si | 10 | 0.176 | 0.235 | |
20 | 0.227 | 0.287 | ||
30 | 18.6 ± 1.69° | 0.235 | 0.320 | |
40 | 0.267 | 0.374 | ||
50 | 0.355 | 0.455 | ||
EO2V/Si | 10 | 0.189 | 0.237 | |
20 | 0.236 | 0.297 | ||
30 | 18.9 ± 0.91° | 0.246 | 0.375 | |
40 | 0.287 | 0.405 | ||
50 | 0.325 | 0.494 |
Sample | Element (At. %) | Thickness for Filtrate Cake (μm) | |
---|---|---|---|
C1s | O1s | ||
Pristine PE | 97.2 | 2.8 | 183.3 ± 18.93 |
10-ppEO1V/PE | 83.2 | 16.8 | 102.7 ± 6.11 |
20-ppEO1V/PE | 81.3 | 18.7 | 73.3 ± 6.11 |
30-ppEO1V/PE | 79.4 | 20.6 | 69.3 ± 8.33 |
40-ppEO1V/PE | 76.8 | 23.2 | 109.3 ± 6.11 |
50-ppEO1V/PE | 73.8 | 26.2 | 104.0 ± 12.00 |
10-ppEO2V/PE | 82.7 | 17.3 | 119.2 ± 10.17 |
20-ppEO2V/PE | 80.7 | 19.3 | 83.3 ± 15.56 |
30-ppEO2V/PE | 77.5 | 22.5 | 67.9 ± 5.90 |
40-ppEO2V/PE | 74.9 | 25.1 | 70.5 ± 2.28 |
50-ppEO2V/PE | 72.2 | 27.8 | 91.0 ± 9.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, A.-L.; Wang, S.-Y.; Lin, W.-P.; Kuo, W.-H.; Wang, T.-J.; Wang, M.-J. Surface Antifouling Modification on Polyethylene Filtration Membranes by Plasma Polymerization. Materials 2020, 13, 5020. https://doi.org/10.3390/ma13215020
Hou A-L, Wang S-Y, Lin W-P, Kuo W-H, Wang T-J, Wang M-J. Surface Antifouling Modification on Polyethylene Filtration Membranes by Plasma Polymerization. Materials. 2020; 13(21):5020. https://doi.org/10.3390/ma13215020
Chicago/Turabian StyleHou, An-Li, Szu-Yi Wang, Wen-Pin Lin, Wei-Hsuan Kuo, Tsung-Jen Wang, and Meng-Jiy Wang. 2020. "Surface Antifouling Modification on Polyethylene Filtration Membranes by Plasma Polymerization" Materials 13, no. 21: 5020. https://doi.org/10.3390/ma13215020
APA StyleHou, A.-L., Wang, S.-Y., Lin, W.-P., Kuo, W.-H., Wang, T.-J., & Wang, M.-J. (2020). Surface Antifouling Modification on Polyethylene Filtration Membranes by Plasma Polymerization. Materials, 13(21), 5020. https://doi.org/10.3390/ma13215020