
Citation: Lam, S.F.; Shang, X.; Ghosh,

R. Membrane-Based Hybrid Method

for Purifying PEGylated Proteins.

Membranes 2023, 13, 182. https://

doi.org/10.3390/membranes13020182

Academic Editors: Mohtada

Sadrzadeh, Anthony G. Dixon,

Laurent Bazinet, Soryong Chae,

Milad Rabbani Esfahani and

Cristiana Boi

Received: 16 December 2022

Revised: 18 January 2023

Accepted: 30 January 2023

Published: 2 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

membranes

Article

Membrane-Based Hybrid Method for Purifying
PEGylated Proteins
Shing Fung Lam, Xiaojiao Shang and Raja Ghosh *

Department of Chemical Engineering, McMaster University, 1280 Main Street West,
Hamilton, ON L8S 4L7, Canada
* Correspondence: rghosh@mcmaster.ca; Tel.: +1-905-525-9140 (ext. 27415)

Abstract: PEGylated proteins are usually purified using chromatographic methods, which are limited
in terms of both speed and scalability. In this paper, we describe a microfiltration membrane-based
hybrid method for purifying PEGylated proteins. Polyethylene glycol (or PEG) is a lower critical
solution temperature polymer which undergoes phase transition in the presence of a lyotropic salt
and forms micelle-like structures which are several microns in size. In the proposed hybrid method,
the PEGylated proteins are first converted to their micellar form by the addition of a lyotropic salt
(1.65 M ammonium sulfate). While the micelles are retained using a microfiltration membrane,
soluble impurities such as the unmodified protein are washed out through the membrane. The
PEGylated proteins thus retained by the membrane are recovered by solubilizing them by removing
the lyotropic salt. Further, by precisely controlling the salt removal, the different PEGylated forms of
the protein, i.e., mono-PEGylated and di-PEGylated forms, are fractionated from each other. Hybrid
separation using two different types of microfiltration membrane devices, i.e., a stirred cell and a
tangential flow filtration device, are examined in this paper. The membrane-based hybrid method for
purifying PEGylated proteins is both fast and scalable.

Keywords: PEGylated protein; purification; hybrid method; microfiltration; membrane separation

1. Introduction

PEGylation, which refers to the covalent attachment of polyethylene glycol (PEG), is
one of the most common and proven methods by which physical properties and therapeutic
effectiveness of protein biopharmaceuticals could be enhanced [1,2]. The improvements
resulting from protein PEGylation include an increase in biological half-life due to increase
in size, a decrease in proteolytic degradation and immunogenicity due to shielding, and
a decrease in hydrophobicity and the tendency to aggregate due to the presence of the
hydrophilic PEG chains [3,4]. Numerous synthetic methods are available for carrying out
protein PEGylation [5,6]. After the chemical reaction, the PEGylated protein is purified
from unreacted protein and other species present in the reaction mixture, typically using
chromatographic methods [7–15].

A PEGylated protein can be purified by size exclusion chromatography (based on the
fact that it is bigger than its impurities) [7,8], by ion-exchange chromatography (based on
the shielding of charged groups present on the protein molecule by the neutral PEG compo-
nent) [9–13], by hydrophobic interaction chromatography (based on the phase transition of
PEG in the presence of salt which make the PEGylated protein apparently more hydropho-
bic than the unmodified protein) [14,15], and by heparin affinity chromatography [16,17].
The purification of PEGylated proteins using monolith-based chromatography has also
been reported [17]. While very pure products can be obtained using these chromatographic
methods, the productivity in chromatography is restricted by binding capacity and scalabil-
ity limitations [18–25]. The large-scale production capability for PEGylated proteins could
be significantly enhanced through the use of a high-throughput, non-chromatographic
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purification step followed by a high-resolution chromatographic step. However, there
has been considerably less work done on purification of PEGylated proteins using non-
chromatographic methods. Ultrafiltration (UF), which is a permeability-based membrane
separation technique, has been proposed as a scalable and high-throughput method for
purification of PEGylated proteins [19–22]. Following a conventional line of thinking, one
would expect such a separation to be based on size difference. However, this is not the
case, as PEG, unlike a protein, is a relatively flexible molecule which can elongate during
ultrafiltration, making size-based separation extremely difficult. Most of the work on the
purification of PEGylated proteins using UF is based on the exploitation of electrostatic
charge shielding by PEG [19–22]. Aqueous two-phase systems have also been successfully
used for purifying PEGylated proteins [23–25]. This technique relies on addition of salt such
as citrate which serve both as reaction stopper (thereby avoiding the use of hydroxylamine)
as well as phase separator [23]. This approach of combining reaction and separation is
referred to as process integration, and this can be done in many different ways [24–28].

PEG is an LCST (lower critical solution temperature) polymer, i.e., it undergoes phase
transition from a hydrophilic state to a mildly hydrophobic one when temperature is
increased [29]. This phase transition can be made to occur at ambient temperature by the
addition of lyotropic salts such as sodium chloride and ammonium sulfate. Upon phase
transition, the normally hydrophilic PEG collapses into a relatively hydrophobic entity, and
if the salt concentration is increased further, these hydrophobic entities eventually aggregate
and form micelle-like structures [30]. It is anticipated that the micellar PEGylated proteins
that consist of collapsed PEG chains on the interior and the relatively more hydrophilic
protein (at that solution condition) on the exterior would be large enough to be retained by
appropriate microporous membranes. Our preliminary studies showed that a majority of
these micelles were several microns in size. Therefore, they could potentially be retained
by a microfiltration membrane while most of the impurities such as unmodified proteins
could be washed out through the membrane. Based on this, a membrane-based hybrid
technique for purifying PEGylated proteins could be developed. Membrane-based hybrid
separation techniques are those that typically combine a solute insolubilization step with
a membrane filtration step [31–34]. However, unlike protein-precipitation-based hybrid
separation [31–34], the current work is based on the phase transition and micelle formation
of the PEG component of PEGylated proteins.

The working principle of the hybrid purification method proposed in this paper is
shown in Figure 1. Step 1 shows the feed material, consisting of a mixture of the unmodified
protein and the PEGylated protein; step 2 shows the formation of micron-sized micelle-like
structures due to addition of salt; step 3 shows the separation of the unmodified protein
and PEGylated protein micelles by microfiltration; and step 4 shows the recovery of the
PEGylated protein from the membrane module by reduction in salt concentration, following
which the solubilized PEGylated proteins freely pass through the pores of the membrane.
The technique was evaluated by examining its applicability for purifying mono-PEGylated
human serum albumin (HSA). Hybrid purification was carried out at two different scales
of operation: (a) at a small scale using a stirred cell filtration device and (b) at a significantly
larger scale using a tangential flow filtration system. The results obtained are discussed.



Membranes 2023, 13, 182 3 of 12Membranes 2023, 13, x FOR PEER REVIEW 3 of 12 
 

 

 

Figure 1. Steps involved in hybrid purification of PEGylated protein. 

2. Materials and Methods 

2.1. Materials 

Human serum albumin (A8763), FITC-BSA (A9771), sodium cyanoborohydride 

(156159), sodium acetate, sodium phosphate monobasic (S0751), sodium phosphate 

dibasic (S0876), ammonium sulfate (A4418), glycine (G8898), barium chloride (202738), 

hydrochloric acid (258148), 25% glutaraldehyde (G6257), iodine (326143), glycine (G8898), 

Trizma (T1503), 30% acrylamide (A3699), N,N,N′,N′-Tetramethyethylene diamine 

(T9281), 70% perchloric acid (77227), and ammonium persulfate (A3678) were purchased 

from Sigma Aldrich, St. Louis, MO, USA. Sodium dodecyl sulfate (17-1313) was purchased 

from GE Healthcare, Mississauga, ON, Canada. High quality deionized water (18.2 MΩ 

cm) was obtained from a DiamondTM NANOpure water purification unit (Barnstead, 

Dubuque, IA, USA). Isopore membrane (0.22 µm pore size, GTTP04700), PES membrane 

(5µm pore size, SMWP04700), and PES membrane (0.2 µm pore size, GSWP14250) were 

purchased from Millipore, Billerica, MA, USA. mPEG-propionaldehyde 10kDa (P1PAL-

10) was purchased from Sun Bio Inc., Gyeonggi-do, Republic of Korea. 

2.2. Protein PEGylation 

HSA PEGylation was carried out at room temperature in small flasks with 

continuous stirring. The reaction mixture consisted of 1 mg/mL HSA, P1PAL-10 (P1PAL-

10: HSA molar ratio being 4:1) and 10 mM sodium cyanoborohydride in 100 mM sodium 

acetate buffer (pH 5.0) as reaction medium. The PEGylation reaction was carried out for 

20 h followed by quenching by addition of 1.0 M glycine solution to a final glycine 

concentration of 10 mM. A batch of FITC-BSA was also PEGylated and quenched using 

the above protocol. The PEGylated FITC-BSA micelles formed by addition of lyotropic 

salt were observed using fluorescence microscopy. 

2.3. Stirred Cell Filtration 

The stirred cell filtration set-up in this study is shown in Figure 2. A custom-designed 

stirred cell filtration module having an effective volume of 13 mL was integrated with an 

AKTA Prime liquid chromatography system (GE Healthcare). The module was fitted with 

a stack of 4 membrane discs, each having 28 mm diameter. The top layer was an Isopore 

membrane with 0.22 µm pores size (Millipore, GTTP04700). This membrane served as the 

retaining membrane for the PEGylated protein micelles. The remaining layers consisted 

of regenerated PES membrane discs (Millipore, SMWP04700) with 5 µm pore size. These 

Figure 1. Steps involved in hybrid purification of PEGylated protein.

2. Materials and Methods
2.1. Materials

Human serum albumin (A8763), FITC-BSA (A9771), sodium cyanoborohydride (156159),
sodium acetate, sodium phosphate monobasic (S0751), sodium phosphate dibasic (S0876),
ammonium sulfate (A4418), glycine (G8898), barium chloride (202738), hydrochloric acid
(258148), 25% glutaraldehyde (G6257), iodine (326143), glycine (G8898), Trizma (T1503),
30% acrylamide (A3699), N,N,N′,N′-Tetramethyethylene diamine (T9281), 70% perchloric
acid (77227), and ammonium persulfate (A3678) were purchased from Sigma Aldrich,
St. Louis, MO, USA. Sodium dodecyl sulfate (17-1313) was purchased from GE Healthcare,
Mississauga, ON, Canada. High quality deionized water (18.2 MΩ cm) was obtained from
a DiamondTM NANOpure water purification unit (Barnstead, Dubuque, IA, USA). Isopore
membrane (0.22 µm pore size, GTTP04700), PES membrane (5µm pore size, SMWP04700),
and PES membrane (0.2 µm pore size, GSWP14250) were purchased from Millipore, Biller-
ica, MA, USA. mPEG-propionaldehyde 10kDa (P1PAL-10) was purchased from Sun Bio
Inc., Gyeonggi-do, Republic of Korea.

2.2. Protein PEGylation

HSA PEGylation was carried out at room temperature in small flasks with continuous
stirring. The reaction mixture consisted of 1 mg/mL HSA, P1PAL-10 (P1PAL-10: HSA
molar ratio being 4:1) and 10 mM sodium cyanoborohydride in 100 mM sodium acetate
buffer (pH 5.0) as reaction medium. The PEGylation reaction was carried out for 20 h
followed by quenching by addition of 1.0 M glycine solution to a final glycine concentration
of 10 mM. A batch of FITC-BSA was also PEGylated and quenched using the above protocol.
The PEGylated FITC-BSA micelles formed by addition of lyotropic salt were observed
using fluorescence microscopy.

2.3. Stirred Cell Filtration

The stirred cell filtration set-up in this study is shown in Figure 2. A custom-designed
stirred cell filtration module having an effective volume of 13 mL was integrated with an
AKTA Prime liquid chromatography system (GE Healthcare). The module was fitted with
a stack of 4 membrane discs, each having 28 mm diameter. The top layer was an Isopore
membrane with 0.22 µm pores size (Millipore, GTTP04700). This membrane served as the
retaining membrane for the PEGylated protein micelles. The remaining layers consisted
of regenerated PES membrane discs (Millipore, SMWP04700) with 5 µm pore size. These
3 layers of backing membrane were added to provide mechanical support to the Isopore
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membranes. The effective salt concentration within the membrane module was adjusted
with the AKTA system using a combination of two buffers (buffer A: 1.85 M ammonium
sulfate prepared in 100 mM sodium acetate buffer, pH 5.0; buffer B: 100 mM sodium acetate
buffer, pH 5.0). The separation experiment was started by pumping a combination of
buffer A and buffer B through the membrane module at 3 mL/min flow rate such that the
effective ammonium sulfate concentration was 1.65 M. The PEGylation reaction mixture
samples (5 mL volume), adjusted to 1.65 M ammonium sulfate, were then injected into the
membrane module. In these experiments, the UV absorbance (at 280 nm), conductivity,
and pH values were continuously monitored and recorded using Prime View 5.31 (GE
Healthcare Bio-Science, Mississauga, ON, Canada). The buffers used for elution were 1.5 M,
1.35 M, and 0 M of ammonium sulfate solutions, in that order. The samples corresponding
to the different flow-through and eluted peaks were collected and analyzed by using
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and size-exclusion
chromatography (SEC).
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2.4. Tangential Flow Filtration

The tangential flow filtration (TFF) set-up used for hybrid separation is shown in
Figure 3. Tank 1 contained the PEGylated protein solution; tank 2 contained 1.85 M
ammonium sulfate solution prepared in 100 mM sodium acetate buffer, pH 5.0; and tank 3
contained 100 mM sodium acetate buffer, pH 5.0 (i.e., 0 M ammonium sulfate). The custom-
designed TFF module housed within it a rectangular piece of PES membrane (GSWP14250,
0.22 µm pores size) having an area of 10 cm2. The feed channel depth was 1 mm. As with
the stirred cell membrane filtration experiments described in the previous paragraph, the
PEGylated protein feed solution was adjusted 1.65 M ammonium sulfate concentration by
appropriately proportioning the liquids from tank 1 and tank 2 using an MCP pump. This
modified feed solution was pumped to an intermediate feed tank (17 mL volume), from
where it was pumped to the tangential flow filtration module at a flow rate of 2 mL/min
using a peristaltic pump. Permeate was collected by suction using an P90 pump (GE
Healthcare, Mississauga, ON, Canada) at a flow rate of 1 mL/min and this was directed to
a UV detector. The retentate from the tangential flow filtration module was sent back to the
intermediate feed tank. The buffers used for elution were 1.5 M and 0 M of ammonium
sulfate solutions, in that order. The samples corresponded to the different flow-through, and
eluted peaks were collected and analyzed by using sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) and size-exclusion chromatography (SEC).
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2.5. SEC Analysis

SEC analysis was carried out at a flow rate of 0.5 mL/min using a Superdex 200
10/300 GL column (GE Healthcare Bio-Sciences, Mississauga, ON, Canada) fitted to a
Varian HPLC system (Varian, Palo Alto, CA, USA) using 20 mM sodium phosphate buffer
of pH 7.0 as mobile phase.

2.6. SDS-PAGE

SDS-PAGE experiments were carried out according to the work of Laemmli [35];
10% non-reducing gels were run using a Hoefer MiniVE system (GE Healthcare Bio-
Sciences, Canada). The gels were stained with Coomassie brilliant blue dye to visualize the
protein bands.

2.7. Microscopy

PEGylated FITC-BSA samples were examined by light and florescence microscopy at
a magnification factor of 50×.

3. Results and Discussion

When sufficient salt is added, the PEG component of the PEGylated protein un-
dergoes phase transition, thereby becoming more hydrophobic and forming a micellar
structure [29,30]. Figure 4 shows the optical and fluorescent micrographs obtained with
PEGylated FITC-BSA solution adjusted to 1.65 M ammonium sulfate concentration (pre-
pared as discussed in Section 2.2) at 50×magnification. Both images indicate presence of
micellar structures in the size range of 1 to 10µm formed by PEGylated FITC-BSA. Based
on this, it could be expected that PEG-HSA would behave in a similar way, i.e., by forming
micelles in the micron size range. It could also be anticipated that these micelles would be
retained by microfiltration membranes, and thereby these could easily be separated from
any unreacted protein.
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Figure 4. Micrographs of PEGylated FITC-BSA solution adjusted to 1.65 M ammonium sulfate
concentration (left: image obtained by optical microscopy; right: image of same field obtained by
fluorescence microscopy; magnification: 50×).

Figure 5 shows the UV absorbance and conductivity profiles obtained from the ex-
periment for PEGylated HSA purification using the stirred cell microfiltration protocol
described in Section 2.3. The peak labeled sample 1 in the figure represented the flow-
through corresponding to 1.65 M ammonium sulfate concentration within the membrane
module. Since PEG-HSA was expected to form micron-sized micellar structures at this
salt concentration (which were retained by the 0.22-micron membrane housed within the
stirred cell module), it could be presumed that the peak was due to unreacted HSA in
the feed sample that could pass through the membrane. When the ammonium sulfate
concentration was reduced in three steps to 1.5 M, 1.35 M and 0 M respectively, three eluted
“peaks” were obtained corresponding to each of these steps. Samples corresponding to
each of these peaks were collected and analyzed by SDS-PAGE and SEC.
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respond to the 1.65, 1.5, 1.35, and 0 M ammonium sulfate concentration in the stirred cell mem-
brane module.
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Figure 6 shows the image of the Coomassie-blue-stained SDS-PAGE gel corresponding
to the “peak” samples collected during the stirred cell microfiltration-based PEG-HSA
purification experiment described in the previous paragraph. Samples loaded in lanes 2 and
3 corresponded to pure HSA and unfractionated PEG-HSA reaction mixture respectively.
The bands on lane 3 indicate that mono-PEGylated HSA was the main PEGylation product,
while smaller amounts of higher PEGylated forms were also synthesized. The single band
in lane 4 indicate that Sample 1, i.e., the flow-through obtained corresponding to 1.65 M
ammonium sulfate, contained only HSA. Therefore, PEG-HSA was quantitatively retained
within the membrane module at this salt concentration. The eluate obtained at 1.5 M
ammonium sulfate concentration (Sample 2) contained similar amounts of HSA and mono-
PEG-HSA. Samples 3 and 4 were made up almost entirely of PEG-HSA (i.e., were largely
or completely free of unreacted HSA), with Sample 3 containing mainly mono-PEG-HSA
and Sample 4 containing some of the higher PEGylated forms. Figure 7 shows the SEC
chromatograms obtained with samples collected during the stirred cell microfiltration-
based PEG-HSA purification experiment. As expected from the SDS-PAGE results shown
in Figure 6, single SEC peaks were obtained with pure HSA and Sample 1. Sample 2
consisted of a mixture of HSA and mono-PEGylated HSA as evident from the broad bump
instead of a defined single SEC peak. Samples 3 and 4 consisted almost entirely of PEG-
HSA (i.e., these samples were quite pure). Thus, the SDS-PAGE results shown in Figure 6
were consistent with the SEC results shown in Figure 7. These experiments also provide
preliminary evidence that the stirred cell microfiltration-based hybrid separation technique
could indeed be used for separation of PEG-HSA from the PEGylation reaction mixture.
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Figure 6. Image of Coomassie-blue-stained SDS-PAGE gel of sample obtained by stirred cell hybrid
separation (lane 1: MW markers, lane 2 HSA, lane 3 PEG reaction mixture, lane 4 sample 1 (1.65 M
flow-through), lane 5 sample 2 (1.5 M eluate), lane 6 sample 3 (1.35 M eluate), lane 7 sample 4
(0 M eluate)).

Figure 8 shows the UV absorbance profile obtained from the experiment conducted
for PEGylated HSA purification using the tangential flow membrane filtration system
described in Section 2.4. The peak 1 in the figure corresponded to the flow-through obtained
at 1.65 M ammonium sulfate concentration. As in the stirred cell microfiltration experiment,
PEG-HSA being micron-sized would be expected to be quantitatively retained by the
0.2-micron membrane housed within the TFF module. It could therefore be presumed that
peak 1 was due to unreacted HSA present in the feed sample that simply flowed through
the membrane. When the ammonium sulfate concentration was reduced in two steps to
1.5 M and 0 M, two eluted “peaks” were obtained corresponding to each of these steps.
Samples corresponding to each of these peaks were collected and analyzed by SDS-PAGE
and SEC.
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Figure 8. UV absorbance profile of the permeate stream obtained during tangential flow hybrid
separation of PEGylated HSA (peak 1: 1.65 M flow-through, peak 2: 1.5 M eluate, peak 3: 0 M eluate).

Figure 9 shows the image of the Coomassie-blue-stained SDS-PAGE gel obtained with
the samples collected during the tangential flow-filtration-based PEG-HSA purification
experiment described in the previous paragraph. Samples loaded in lanes 2 and 3 were
pure HSA and unfractionated PEG-HSA reaction mixture respectively. Peak 1, i.e., the
flow-through obtained corresponding to 1.65 M ammonium sulfate contained only HSA
(lane 4). The eluate obtained at 1.5 M ammonium sulfate concentration (lane 5) contained
both HSA and mono-PEG-HSA. The eluate sample obtained at 0 M ammonium sulfate
(lane 6) was made up almost entirely of PEG-HSA including both mono-PEG-HSA and
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higher PEGylated forms. Figure 10 shows the SEC chromatograms obtained with samples
collected during the tangential flow-filtration-based PEG-HSA purification experiment. As
expected from the SDS-PAGE results shown in Figure 9, single SEC peaks were obtained
with pure HSA and the flow-through obtained at 1.65 M ammonium sulfate. The eluate
obtained at 1.5 M ammonium sulfate consisted of mostly mono-PEGylated HSA and smaller
amounts of HSA as evident from the composite peak skewed towards mono-PEGylated
HSA. The eluate obtained at 0 M ammonium sulfate consisted almost entirely of PEG-HSA
(i.e., the sample was quite pure). Once again, the SDS-PAGE results shown in Figure 9 are
consistent with the SEC results shown in Figure 10. These experiments provide further
evidence that the microfiltration-based hybrid separation technique could indeed be used
for separation of PEG-HSA from the PEGylation reaction mixture. Based on these results,
a high recovery of PEG-HSA could be expected. The results obtained with the stirred
cell microfiltration experiments were also very consistent with those obtained with the
tangential flow filtration experiments, indicating that the method was scalable. However,
these results are preliminary in nature and the work presented in this paper is meant to be
a proof-of-concept study for the proposed hybrid separation of PEGylated proteins. The
results discussed in the paper clearly indicate that the separation performance could be
improved through proper process optimization. This would involve optimization of the
feed condition, filtration parameters, proper selection of membranes, and optimization of
elution conditions. While the current study does indicate the hybrid techniques would
be suitable for purification of PEGylated proteins, it does not demonstrate superiority
over chromatography. This can only be achieved by performing an objective head-to-
head comparison with an equivalent chromatographic separation process. This will be
included as part of a follow-up study. The follow up study will also include quantitative
aspects such as mass balance, purity analysis, and determination of product recovery. In
hybrid membrane processes, proper membrane selection is of critical importance. The
membrane used should be able to quantitatively retain the precipitated/micellar species
while allowing unhindered passage of soluble species. Buffer consumption is an important
factor in a bioseparation process, and this factor could influence the type of equipment
used for the hybrid separation process. With a stirred cell device, the buffer consumption
would be quite high. However, much lower buffer consumption could be expected when
using a tangential flow filtration system. The buffer consumption in a stirred cell could be
significantly decreased by stopping stirring during the elution phase and thereby allowing
the eluate to be obtained as a more concentrated fraction. The use of this strategy has
been discussed in the context of immunoglobulin G purification using precipitation-based
hybrid separation [33].

Membranes 2023, 13, x FOR PEER REVIEW 9 of 12 
 

 

it does not demonstrate superiority over chromatography. This can only be achieved by 

performing an objective head-to-head comparison with an equivalent chromatographic 

separation process. This will be included as part of a follow-up study. The follow up study 

will also include quantitative aspects such as mass balance, purity analysis, and 

determination of product recovery. In hybrid membrane processes, proper membrane 

selection is of critical importance. The membrane used should be able to quantitatively 

retain the precipitated/micellar species while allowing unhindered passage of soluble 

species. Buffer consumption is an important factor in a bioseparation process, and this 

factor could influence the type of equipment used for the hybrid separation process. With 

a stirred cell device, the buffer consumption would be quite high. However, much lower 

buffer consumption could be expected when using a tangential flow filtration system. The 

buffer consumption in a stirred cell could be significantly decreased by stopping stirring 

during the elution phase and thereby allowing the eluate to be obtained as a more 

concentrated fraction. The use of this strategy has been discussed in the context of 

immunoglobulin G purification using precipitation-based hybrid separation [33]. 

 

Figure 8. UV absorbance profile of the permeate stream obtained during tangential flow hybrid 

separation of PEGylated HSA (peak 1: 1.65 M flow-through, peak 2: 1.5 M eluate, peak 3: 0 M eluate). 

 

Figure 9. Image of Coomassie-blue-stained SDS-PAGE gel of samples obtained by tangential flow-

based hybrid separation (lane 1: MW markers, lane 2: HSA, lane 3: PEG reaction mixture, lane 4: 

peak 1 (1.65 M flow-through), lane 5: peak 2 (1.5 M eluate), lane 6: peak 3 (0 M eluate)). 
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based hybrid separation (lane 1: MW markers, lane 2: HSA, lane 3: PEG reaction mixture, lane 4:
peak 1 (1.65 M flow-through), lane 5: peak 2 (1.5 M eluate), lane 6: peak 3 (0 M eluate)).
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4. Conclusions

The results discussed in the paper provide proof of concept for the proposed hybrid
purification of PEGylated protein from PEGylation reaction mixture. The addition of the
lyotropic salt resulted in the formation of micron sized micelles of the PEGylated protein.
These micelles could be retained by using appropriate microfiltration membrane which
simultaneously allowed the unreacted protein to flow through. The retained PEGylated
protein could be recovered by elution from the membrane device by lowering the lyotropic
salt concentration. The results obtained with the stirred cell microfiltration experiments
were consistent with those obtained with the tangential flow filtration device, indicating
that the method was scalable. The separation performance could be improved through
proper process optimization, which would involve optimization of feed condition, filtration
parameters, proper selection of membrane and optimization of elution conditions. The
optimized methods thus developed could potentially overcome some of the processing
limitations typically associated with resin-based chromatography.
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