Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = polycyclic heterocycles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1157 KiB  
Article
Catalyst-Free Spontaneous Aza-Mannich/Lactamization Cascade Reaction: Easy Access to Polycyclic δ-Lactams
by Antonia Di Mola, Caterina Vietri, Consiglia Tedesco and Antonio Massa
Molecules 2025, 30(13), 2702; https://doi.org/10.3390/molecules30132702 - 23 Jun 2025
Viewed by 404
Abstract
Ring-fused azacyclic compounds are important building blocks in the synthesis of natural products and pharmaceutical agents. Herein, we report an effective and valuable one-pot approach to obtaining polycyclic fused δ-lactams from readily available 2-formylphenyl acetate and diamines under catalyst-free and green conditions. Full article
Show Figures

Graphical abstract

39 pages, 4164 KiB  
Review
Exploring Formation and Control of Hazards in Thermal Processing for Food Safety
by Zeyan Liu, Shujie Gao, Zhecong Yuan, Renqing Yang, Xinai Zhang, Hany S. El-Mesery, Xiaoli Dai, Wenjie Lu and Rongjin Xu
Foods 2025, 14(13), 2168; https://doi.org/10.3390/foods14132168 - 21 Jun 2025
Cited by 1 | Viewed by 953
Abstract
Thermal-processed foods like baked, smoked, and fried products are popular for their unique aroma, taste, and color. However, thermal processing can generate various contaminants via Maillard reaction, lipid oxidation, and thermal degradation, negatively impacting human health. This review summarizes the formation pathways, influencing [...] Read more.
Thermal-processed foods like baked, smoked, and fried products are popular for their unique aroma, taste, and color. However, thermal processing can generate various contaminants via Maillard reaction, lipid oxidation, and thermal degradation, negatively impacting human health. This review summarizes the formation pathways, influencing factors, and tracing approaches of potential hazards in thermally processed foods, such as polycyclic aromatic hydrocarbons (PAHs), heterocyclic aromatic amines (HAAs), furan, acrylamide (AA), trans fatty acids (TFAs), advanced glycation end-products (AGEs), sterol oxide. The formation pathways are explored through understanding high free radical activity and multiple active intermediates. Control patterns are uncovered by adjusting processing conditions and food composition and adding antioxidants, aiming to inhibit hazards and enhance the safety of thermal-processed foods. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

18 pages, 5429 KiB  
Article
Different Emergency Response Strategies to Oil Spills in Rivers Lead to Divergent Contamination Compositions and Microbial Community Response Characteristics
by Xinyu Wen, An Fan, Jinsong Wang, Yulin Xia, Sili Chen and Yuyin Yang
Microorganisms 2025, 13(6), 1193; https://doi.org/10.3390/microorganisms13061193 - 23 May 2025
Viewed by 443
Abstract
Oil spills in inland rivers pose a significant threat to the surrounding environment, and the emergency response differs greatly from that in ocean or coastal areas. In this study, we focused on several commonly used emergency water treatment strategies in China’s inland oil [...] Read more.
Oil spills in inland rivers pose a significant threat to the surrounding environment, and the emergency response differs greatly from that in ocean or coastal areas. In this study, we focused on several commonly used emergency water treatment strategies in China’s inland oil spills, as well as the spilled washing oil in a serious accident case. We investigated the changes in oil-related chemical components before and after water treatment using GCxGC-TOF MS (Comprehensive Two-dimensional Gas Chromatography Time of Flight Mass Spectrometer). We tracked the shifts of microbial communities in the microcosms incubated with clean river water, simulated oil-contaminated water, and the treatment effluent. The results revealed that typical components, especially nitrogen-containing heterocyclic compounds, had different removal efficiencies among treatments. The diversity, composition, and potential functions of microbial communities responded differently to the treatments, and could be related to various substances, including PAHs (polycyclic aromatic hydrocarbons) and heterocyclic compounds. A few genera, such as SC-I-84, exhibited a high correlation with washing oil-related components and could serve as an indicator in such an oil spill emergency response. Our findings indicated that simply using petroleum oil or PAHs to evaluate oil spills was likely to underestimate the ecological impact, especially when the spilled substances were coal chemical products widely used in China. This will provide an important scientific basis for decision-making and strategy evaluation in emergency responses to inland oil spills. Full article
(This article belongs to the Special Issue Microorganisms: A Way Forward for Sustainable Development?)
Show Figures

Figure 1

34 pages, 2331 KiB  
Review
Imidazole Hybrids: A Privileged Class of Heterocycles in Medicinal Chemistry with New Insights into Anticancer Activity
by Zarifa Murtazaeva, Azizbek Nasrullaev, Anvarjon Buronov, Shukhrat Gaybullaev, Lifei Nie, Sodik Numonov, Zohidjon Khushnazarov, Davron Turgunov, Rustamkhon Kuryazov, Jiangyu Zhao and Khurshed Bozorov
Molecules 2025, 30(10), 2245; https://doi.org/10.3390/molecules30102245 - 21 May 2025
Cited by 2 | Viewed by 2584
Abstract
Imidazole is a five-membered heterocyclic system featuring two nitrogen heteroatoms at the 1- and 3-positions of the ring. The imidazole scaffold is particularly suited for kinase inhibition concepts. This further confirms that this scaffold is a privileged structure in the development of anticancer [...] Read more.
Imidazole is a five-membered heterocyclic system featuring two nitrogen heteroatoms at the 1- and 3-positions of the ring. The imidazole scaffold is particularly suited for kinase inhibition concepts. This further confirms that this scaffold is a privileged structure in the development of anticancer drugs. Considering these key factors and the recent focus of scientists on imidazole compounds, we discuss the anticancer activities of imidazole-containing hybrids and related compounds, highlighting articles published in 2023 that serve as a basis for medicinal chemistry leads. From a chemical perspective, the present review emphasizes hybrid molecules with an imidazole ring in the side chain, imidazole-centered hybrid molecules, condensed imidazole hybrids, hybrid compounds containing two or more imidazole rings, polycyclic imidazole hybrids, imidazole-containing metal complexes, and benzimidazole hybrids. Full article
Show Figures

Graphical abstract

24 pages, 3161 KiB  
Review
Pollution Characterization and Environmental Impact Evaluation of Atmospheric Intermediate Volatile Organic Compounds: A Review
by Yongxin Yan, Yan Nie, Xiaoshuai Gao, Xiaoyu Yan, Yuanyuan Ji, Junling Li and Hong Li
Toxics 2025, 13(4), 318; https://doi.org/10.3390/toxics13040318 - 19 Apr 2025
Cited by 1 | Viewed by 595
Abstract
Atmospheric intermediate volatile organic compounds (IVOCs) are important precursors of secondary organic aerosols (SOAs), and in-depth research on them is crucial for atmospheric pollution control. This review systematically synthesizes global advancements in understanding IVOC sources, emissions characterization, compositional characteristics, ambient concentrations, SOA contributions, [...] Read more.
Atmospheric intermediate volatile organic compounds (IVOCs) are important precursors of secondary organic aerosols (SOAs), and in-depth research on them is crucial for atmospheric pollution control. This review systematically synthesizes global advancements in understanding IVOC sources, emissions characterization, compositional characteristics, ambient concentrations, SOA contributions, and health risk assessments. IVOCs include long-chain alkanes (C12~C22), sesquiterpenes, polycyclic aromatic hydrocarbons, monocyclic aromatic hydrocarbons, phenolic compounds, ketones, esters, organic acids, and heterocyclic compounds, which originate from primary emissions and secondary formation. Primary emissions include direct emissions from anthropogenic and biogenic sources, while secondary formation mainly results from radical reactions or particulate surface reactions. Recently, the total IVOC emissions have decreased in some countries, while emissions from certain sources, such as volatile chemical products, have increased. Ambient IVOC concentrations are generally higher in urban rather than in rural areas, higher indoors than outdoors, and on land rather than over oceans. IVOCs primarily generate SOAs via oxidation reactions with hydroxyl radicals, nitrate radicals, the ozone, and chlorine atoms, which contribute more to SOAs than traditional VOCs, with higher SOA yields. SOA tracers for IVOC species like naphthalene and β-caryophyllene have been identified. Integrating IVOC emissions into regional air quality models could significantly improve SOA simulation accuracy. The carcinogenic risk posed by naphthalene should be prioritized, while benzo[a]pyrene requires a combined risk assessment and hierarchical management. Future research should focus on developing high-resolution online detection technologies for IVOCs, clarifying the multiphase reaction mechanisms involved and SOA tracers, and conducting comprehensive human health risk assessments. Full article
(This article belongs to the Special Issue Analysis of the Sources and Components of Aerosols in Air Pollution)
Show Figures

Graphical abstract

21 pages, 3134 KiB  
Article
4-Alkyl-4H-thieno[2′,3′:4,5]pyrrolo[2,3-b]quinoxaline Derivatives as New Heterocyclic Analogues of Indolo[2,3-b]quinoxalines: Synthesis and Antitubercular Activity
by Gusein A. Sadykhov, Danila V. Belyaev, Ekaterina E. Khramtsova, Diana V. Vakhrusheva, Svetlana Yu. Krasnoborova, Dmitry V. Dianov, Marina G. Pervova, Gennady L. Rusinov, Egor V. Verbitskiy and Valery N. Charushin
Int. J. Mol. Sci. 2025, 26(1), 369; https://doi.org/10.3390/ijms26010369 - 3 Jan 2025
Cited by 1 | Viewed by 1417
Abstract
The synthetic approach based on a sequence of Buchwald–Hartwig cross-coupling and annulation through intramolecular oxidative cyclodehydrogenation has been used for the construction of novel 4-alkyl-4H-thieno[2′,3′:4,5]pyrrolo[2,3-b]quinoxaline derivatives. For the first time, these polycyclic compounds were evaluated for antimycobacterial activity, including [...] Read more.
The synthetic approach based on a sequence of Buchwald–Hartwig cross-coupling and annulation through intramolecular oxidative cyclodehydrogenation has been used for the construction of novel 4-alkyl-4H-thieno[2′,3′:4,5]pyrrolo[2,3-b]quinoxaline derivatives. For the first time, these polycyclic compounds were evaluated for antimycobacterial activity, including extensively drug-resistant strains. A reasonable bacteriostatic effect against Mycobacterium tuberculosis H37Rv was demonstrated. A plausible mechanism for antimycobacterial activity of heterocyclic analogues of indolo[2,3-b]quinoxalines has been advanced on the basis of their molecular docking data. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

21 pages, 4617 KiB  
Article
Pd/Ag-Cocatalyzed Merging Intramolecular Oxidative Coupling and Cascade [4 + 2] Cycloaddition: Synthesis and Photophysical Properties of Novel Polycyclic N-Heterocycles Fused Naphthoquinones
by Yu Dong, Lin Chen, Han-Qing Wu, Li Xie, Jing-Hao Yu, Fan Yang, Yu-Ting Wang, Yu-Rong Liu, Guo-Wei Deng and Zhi-Fan Wang
Molecules 2024, 29(23), 5639; https://doi.org/10.3390/molecules29235639 - 28 Nov 2024
Cited by 1 | Viewed by 789
Abstract
We report a step-economic strategy for the direct synthesis of novel polycyclic N-heterocycle-fused naphthoquinones by merging intramolecular oxidative coupling and cascade [4 + 2] cycloaddition. In the protocol, mechanistic investigations suggest that the cascade reaction involves the intermediate spiro polycyclic N-heterocycles [...] Read more.
We report a step-economic strategy for the direct synthesis of novel polycyclic N-heterocycle-fused naphthoquinones by merging intramolecular oxidative coupling and cascade [4 + 2] cycloaddition. In the protocol, mechanistic investigations suggest that the cascade reaction involves the intermediate spiro polycyclic N-heterocycles and [4 + 2] cycloaddition processes. This protocol is featured with moderate to excellent yields, wide substrate scope, and divergent structures of products. In addition, the photophysical properties of the synthesized products were evaluated. These products exhibit interesting fluorescence properties, and surprisingly, the compounds have the ability to selectively recognize trifluoroacetic acid. Full article
Show Figures

Figure 1

7 pages, 1796 KiB  
Proceeding Paper
Regioselective Synthesis of Coumarin-Annulated Polycyclic Heterocycles via Sequential Claisen Rearrangement and Radical Cyclization Reaction
by Pradip Debnath
Chem. Proc. 2024, 16(1), 87; https://doi.org/10.3390/ecsoc-28-20127 - 14 Nov 2024
Viewed by 433
Abstract
Coumarin and its annulated heterocycles are mainly found in natural products, many of which show significant biological activities and are used extensively for the preparation of pharmaceutical products. Investigation revealed that many heterocyclic compounds fused with coumarin moiety exhibited antihelmentic, hypnotic, insecticidal, antifungal, [...] Read more.
Coumarin and its annulated heterocycles are mainly found in natural products, many of which show significant biological activities and are used extensively for the preparation of pharmaceutical products. Investigation revealed that many heterocyclic compounds fused with coumarin moiety exhibited antihelmentic, hypnotic, insecticidal, antifungal, and anti-coagulant properties. In industry, coumarin scaffolds are widely used for the preparation of drugs, agrochemicals, pesticides, and dyes. In recent studies, several coumarin derivatives have been used in materials science for the preparation of organic cell imaging materials, fluorescent biological probes, etc. Due to their immense application potential in biological science and material chemistry, much attention has been paid by researchers towards the synthesis of a new class of coumarin annulated heterocycles. In this paper, the synthesis of coumarin-annulated polycyclic heterocycles via sequential Claisen rearrangement and tin-hydride mediated radical cyclization is reported. The requisite starting materials 3-((4-chlorobut-2-yn-1-yl)oxy)-2H-chromen-2-one (1) was prepared from 3-hydroxycoumarin and 1,4-dichlorobut-2-yne. The Claisen rearrangement of 1 in refluxing chlorobenzene afforded 1-(chloromethyl)pyrano[2,3-c]chromen-5(3H)-one (2). Finally, radical cyclization reactions were carried out smoothly using nBu3SnH and AIBN in toluene at 110 °C, leading to the coumarin-annulated polycyclic heterocycles in high yields. The process is operationally simple and easy to work-up, making it convenient for the preparation of coumarin annulated heterocycles. Full article
Show Figures

Scheme 1

13 pages, 6433 KiB  
Article
A Theoretical Study of Positively Curved Circulenes Embedded with Five-Membered Heterocycles: Structures and Inversions
by Yijian Ma, Tianle Dai and Chengshuo Shen
Molecules 2024, 29(22), 5335; https://doi.org/10.3390/molecules29225335 - 13 Nov 2024
Viewed by 1059
Abstract
Recently, polycyclic arenes with positive curvature have gained increasing significance in the field of material chemistry. This study specifically explores the inversion barriers of a series of positively curved circulenes by using five-membered heterocycles integrated into the backbone of primitive [5]circulenes and [6]circulenes. [...] Read more.
Recently, polycyclic arenes with positive curvature have gained increasing significance in the field of material chemistry. This study specifically explores the inversion barriers of a series of positively curved circulenes by using five-membered heterocycles integrated into the backbone of primitive [5]circulenes and [6]circulenes. For hetero[5]circulenes, where one benzenoid ring is replaced by a heterocycle, the inversion barriers exhibit a strong correlation with the rotary angles of the heterocycles, and larger rotary angles result in lower inversion barriers. Additionally, the aromaticity of the circulene undergoes a significant reduction during the inversion process. As the number n of replaced rings increases, the inversion barriers can be adjusted, demonstrating an almost linear relationship with n. In the case of hetero[6]circulenes, molecules bearing heterocycles with small rotary angles also show positive curvatures. Furthermore, we examine the relationship between the radii of the fitted sphere for the circulenes and the inversion barriers, revealing an intriguing inverse proportionality between the fourth power of the radius and the inversion barrier. We anticipate that this research will offer a fresh perspective on studies related to positively curved polycyclic arenes. Full article
Show Figures

Figure 1

35 pages, 20755 KiB  
Review
Cyclization Strategies in Carbonyl–Olefin Metathesis: An Up-to-Date Review
by Xiaoke Zhang
Molecules 2024, 29(20), 4861; https://doi.org/10.3390/molecules29204861 - 14 Oct 2024
Cited by 4 | Viewed by 3502
Abstract
The metathesis reaction between carbonyl compounds and olefins has emerged as a potent strategy for facilitating swift functional group interconversion and the construction of intricate organic structures through the creation of novel carbon–carbon double bonds. To date, significant progress has been made in [...] Read more.
The metathesis reaction between carbonyl compounds and olefins has emerged as a potent strategy for facilitating swift functional group interconversion and the construction of intricate organic structures through the creation of novel carbon–carbon double bonds. To date, significant progress has been made in carbonyl–olefin metathesis reactions, where oxetane, pyrazolidine, 1,3-diol, and metal alkylidene have been proved to be key intermediates. Recently, several reviews have been disclosed, focusing on distinct catalytic approaches for achieving carbonyl–olefin metathesis. However, the summarization of cyclization strategies for constructing aromatic heterocyclic frameworks through carbonyl–olefin metathesis reactions has rarely been reported. Consequently, we present an up-to-date review of the cyclization strategies in carbonyl–olefin metathesis, categorizing them into three main groups: the formation of monocyclic compounds, bicyclic compounds, and polycyclic compounds. This review delves into the underlying mechanism, scope, and applications, offering a comprehensive perspective on the current strength and the limitation of this field. Full article
(This article belongs to the Special Issue Cyclization Reactions in Organic Synthesis: Recent Developments)
Show Figures

Figure 1

24 pages, 3096 KiB  
Article
The Effect of Biochar Particle Size on the Leaching of Organic Molecules and Macro- and Microelements
by Sarka Sovova, Ludmila Mravcova, Jaromir Porizka, Leona Kubikova and Michal Kalina
Agronomy 2024, 14(10), 2346; https://doi.org/10.3390/agronomy14102346 - 11 Oct 2024
Viewed by 1485
Abstract
Biochar is a carbon-rich material that has recently received attention due to its increasing agronomical potential. The agricultural utilization of biochar relates to its potential to act in the soil as a soil conditioner; nevertheless, complex information on the direct dependence of biochar’s [...] Read more.
Biochar is a carbon-rich material that has recently received attention due to its increasing agronomical potential. The agricultural utilization of biochar relates to its potential to act in the soil as a soil conditioner; nevertheless, complex information on the direct dependence of biochar’s physical properties (texture, particle size) and corresponding leaching and availability of organic molecules (e.g., the polycyclic and heterocyclic organic compounds) and inorganic mineral salts (based on micro- and macroelements) is still inconsistent. Multi-elemental analysis by using inductively coupled plasma atomic emission spectroscopy (ICP-OES) was used to assess the information on the contents and availability of macro- and microelements in studied commercial biochar samples. The results showed a statistically significant indirect relation between an increase in the size fraction of biochar and the content of aqueous-extractable K and Na and the direct relation with the aqueous-extractable Ca, Mg, and P. Compared to the macroelements, the detected contents of aqueous-extractable microelements were almost three orders lower, and the dependence on fraction size was not consistent or statistically significant. In addition, gas chromatography (GC) coupled with mass spectroscopy (MS) was further used to reveal the concentrations of available polycyclic aromatic and heterocyclic compounds in biochar samples. The detected concentrations of these types of organic compounds were far below the certified limits, and a statistically significant indirect correlation with particle size was also observed for all the studied biochar samples. The proposed methodological concept could provide the necessary insights into the description of biochar mineral content and its connection to biochar texture, the physicochemical properties, and the potential of biochar to release nutrients into the soil. These findings could help in the further assessment of biochar as a soil conditioner in modern agriculture. Full article
Show Figures

Figure 1

16 pages, 4015 KiB  
Article
Enhanced Removal of Refractory Organic Compounds from Coking Wastewater Using Polyaluminum Chloride with Coagulant Aids
by Huifang Sun, Yifan Zhou, Mengfan Du and Zhiping Du
Water 2024, 16(18), 2662; https://doi.org/10.3390/w16182662 - 19 Sep 2024
Viewed by 1639
Abstract
This study explores the enhanced removal of refractory organic compounds from coking wastewater using polyaluminum chloride (PACl) with two different basicity levels (0.5 and 2.5), in combination with coagulant aids such as cationic polyacrylamide (CPAM) and iron ions. The results demonstrated that both [...] Read more.
This study explores the enhanced removal of refractory organic compounds from coking wastewater using polyaluminum chloride (PACl) with two different basicity levels (0.5 and 2.5), in combination with coagulant aids such as cationic polyacrylamide (CPAM) and iron ions. The results demonstrated that both PACl formulations significantly outperformed commercial PACl in terms of COD and color removal, with PACl at the basicity of 2.5 achieving slightly higher efficiency than PACl at the basicity of 0.5. The improved performance was attributed to the higher content of polymeric aluminum species, enhancing charge neutralization and bridging adsorption. The addition of coagulant aids further improved the performance, with PACl at the basicity of 2.5 combined with iron ions achieving the highest COD (48.41%) and color removal (80.77%), due to sweep coagulation and complexation. Organic composition analysis using gas chromatography–mass spectrometry (GC-MS), three-dimensional excitation–emission matrix (3D-EEM) fluorescence spectroscopy, and ultraviolet (UV) spectroscopy indicated that PACl combined with iron ions was the most effective in removing polycyclic aromatic hydrocarbons (PAHs) and nitrogen-, oxygen-, and sulfur-containing heterocyclic compounds. Additionally, a floc analysis showed that the flocs formed with iron ions were more compact and had better settleability compared to those formed with CPAM, further contributing to the improved coagulation efficiency. These results highlight the importance of optimizing the PACl basicity and coagulant aid selection for the enhanced removal of refractory organic compounds from coking wastewater, offering a promising strategy for advanced wastewater treatment. Full article
Show Figures

Figure 1

23 pages, 5154 KiB  
Article
Reaction of Pyrrolobenzothiazines with Schiff Bases and Carbodiimides: Approach to Angular 6/5/5/5-Tetracyclic Spiroheterocycles
by Ekaterina A. Lystsova, Anastasia D. Novokshonova, Pavel V. Khramtsov, Alexander S. Novikov, Maksim V. Dmitriev, Andrey N. Maslivets and Ekaterina E. Khramtsova
Molecules 2024, 29(9), 2089; https://doi.org/10.3390/molecules29092089 - 1 May 2024
Cited by 3 | Viewed by 1426
Abstract
1H-Pyrrole-2,3-diones, fused at [e]-side with a heterocycle, are suitable platforms for the synthesis of various angular polycyclic alkaloid-like spiroheterocycles. Recently discovered sulfur-containing [e]-fused 1H-pyrrole-2,3-diones (aroylpyrrolobenzothiazinetriones) tend to exhibit unusual reactivity. Based on these peculiar representatives [...] Read more.
1H-Pyrrole-2,3-diones, fused at [e]-side with a heterocycle, are suitable platforms for the synthesis of various angular polycyclic alkaloid-like spiroheterocycles. Recently discovered sulfur-containing [e]-fused 1H-pyrrole-2,3-diones (aroylpyrrolobenzothiazinetriones) tend to exhibit unusual reactivity. Based on these peculiar representatives of [e]-fused 1H-pyrrole-2,3-diones, we have developed an approach to an unprecedented 6/5/5/5-tetracyclic alkaloid-like spiroheterocyclic system of benzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole via their reaction with Schiff bases and carbodiimides. The experimental results have been supplemented with DFT computational studies. The synthesized alkaloid-like 6/5/5/5-tetracyclic compounds have been tested for their biotechnological potential as growth stimulants in the green algae Chlorella vulgaris. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

17 pages, 315 KiB  
Article
The Risk of Oral Cancer and the High Consumption of Thermally Processed Meat Containing Mutagenic and Carcinogenic Compounds
by Sylwia Bulanda, Karolina Lau, Agnieszka Nowak, Dorota Łyko-Morawska, Anna Kotylak and Beata Janoszka
Nutrients 2024, 16(7), 1084; https://doi.org/10.3390/nu16071084 - 7 Apr 2024
Cited by 5 | Viewed by 3844
Abstract
The International Agency for Research on Cancer has classified the consumption of heat-processed meat as a direct human carcinogen and the consumption of red meat as a probable carcinogen. Mutagenic and carcinogenic compounds present in meat dishes include, among others, polycyclic aromatic hydrocarbons [...] Read more.
The International Agency for Research on Cancer has classified the consumption of heat-processed meat as a direct human carcinogen and the consumption of red meat as a probable carcinogen. Mutagenic and carcinogenic compounds present in meat dishes include, among others, polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HAAs). These compounds can cause the development of gastrointestinal cancer. Oral cancer is one of the world’s research priorities due to the ever-increasing incidence rate. However, the effect of diet on oral cancer is still a poorly recognized issue. The aim of this study was to assess the relationship between the risk of oral cancer and dietary ingredients with a particular emphasis on red meat and thermally processed meat. This study was conducted among patients with oral cancer in 2022 and 2023. The shortened standardized Food Frequency Questionnaire (FFQ) and a multivariate regression statistical analysis were used. The high consumption of red meat in general and thermally processed meat, especially smoked, fried, roasted and boiled, increases the risk of oral cavity cancer. Limiting the consumption of meat products and modifying the methods of preparing meat dishes may reduce exposure to carcinogenic compounds from the diet and thus reduce the risk of developing oral cancer. Full article
(This article belongs to the Special Issue Do We Have a Specific Diet for Cancer Prevention?)
Show Figures

Graphical abstract

9 pages, 1653 KiB  
Article
Sorption of Polycyclic Aromatic Sulfur Heterocycles (PASH) on Nylon Microplastics at Environmentally Relevant Concentrations
by Stephanie D. Nauth and Andres D. Campiglia
Molecules 2024, 29(7), 1653; https://doi.org/10.3390/molecules29071653 - 7 Apr 2024
Viewed by 1601
Abstract
Microplastics have garnered an infamous reputation as a sorbate for many concerning environmental pollutants and as a delivery vehicle for the aquatic food chain through the ingestion of these contaminated small particulates. While sorption mechanisms have been extensively studied for polycyclic aromatic hydrocarbons, [...] Read more.
Microplastics have garnered an infamous reputation as a sorbate for many concerning environmental pollutants and as a delivery vehicle for the aquatic food chain through the ingestion of these contaminated small particulates. While sorption mechanisms have been extensively studied for polycyclic aromatic hydrocarbons, polycyclic aromatic sulfur heterocycles (PASHs) have not been investigated, partly due to their low concentrations in aquatic ecosystems. Herein, an analytical methodology is presented for the analysis of dibenzothiophene, benzo[b]naphtho[1,2-b]thiophene, benzo[b]naphtho[2,1-b]thiophene, benzo[b]naphtho[2,3-b]thiophene, chryseno[4,5-bcd]thiophene and dinaphtho[1,2-b:1′,2′-d]thiophene at relevant environmental concentrations based on solid phase extraction and high-performance liquid chromatography. The sorption uptake behavior and the sorption kinetics of the three benzo[b]napthothiophene isomers were then investigated on nylon microplastics to provide original information on their environmental fate and avoid human contamination through the food chain. The obtained information might also prove relevant to the development of successful remediation approaches for aquatic ecosystems. Full article
Show Figures

Graphical abstract

Back to TopTop