Reaction of Pyrrolobenzothiazines with Schiff Bases and Carbodiimides: Approach to Angular 6/5/5/5-Tetracyclic Spiroheterocycles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biology
3. Materials and Methods
3.1. Synthetic Methods and Analytic Data of Compounds
3.1.1. General Information
3.1.2. Procedure to Compounds 3a–m
- (3R*,3aS*,11aR*)-3a-Benzoyl-2,3-diphenyl-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3a). The formed precipitate was filtered off. Then, the precipitate was stirred for 30 min at 40–45 °C in a mixture of toluene and ethanol (6:1 v/v, 3 mL). After that, the precipitate was filtered off and washed with a small amount of toluene (1 mL) and ethanol (1 mL) to produce compound 3a. Yield: 80.1 mg (52%); yellow solid; mp 133–135 °C. 1H NMR (400 MHz, DMSO-d6): δ = 7.84 (m, 1H), 7.62 (m, 1H), 7.54–7.47 (m, 7H), 7.37 (m, 1H), 7.34 (m, 2H), 7.29 (m, 2H), 7.23 (m, 4H), 7.13 (m, 1H), 6.65 (s, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 192.8, 191.3, 165.1, 155.6, 136.2, 135.4, 134.9, 134.0, 133.7, 130.3, 128.9 (2C), 128.7 (2C), 128.6 (2C), 128.5 (2C), 128.3 (2C), 128.3, 126.5, 126.2, 124.4 (2C), 123.1, 117.4, 79.5, 66.0, 65.5 ppm. IR (mineral oil): 1763, 1716, 1678 cm−1. Anal. Calcd (%) for C31H20N2O4S: C 72.08; H 3.90; N 5.42. Found: C 72.23; H 3.98; N 5.43.
- (3R*,3aS*,11aR*)-3a-(4-Methylbenzoyl)-2,3-diphenyl-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3b). The solvent was evaporated to 1 mL. The resulting precipitate was filtered off, washed with benzene (0.5 mL), and recrystallized from benzene (2 mL) to produce compound 3b. Yield: 28 mg (18%); yellow solid; mp 180–182 °C. 1H NMR (400 MHz, DMSO-d6): δ = 7.85 (m, 1 H), 7.52 (m, 3H), 7.43 (m, 2H), 7.34 (m, 2H), 7.30 (m, 3H), 7.27–7.17 (m, 6H), 7.13 (m, 1H), 6.67 (s, 1H), 2.33 (s, 3H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 191.7, 191.4, 170.2, 165.1, 155.6, 144.7, 136.2, 134.8, 134.0, 132.5, 130.3, 129.5 (2C), 128.9 (2C), 128.7, 128.6 (2C), 128.5 (2C), 128.3, 126.5, 126.3, 124.4 (2C), 123.2, 117.4, 114.5, 79.4, 65.9, 65.4, 21.0 ppm. IR (mineral oil): 1785, 1716, 1672 cm−1. Anal. Calcd (%) for C32H22N2O4S: C 72.44; H 4.18; N 5.28. Found: C 72.67; H 4.28; N 5.32.
- (3R*,3aS*,11aR*)-3a-(4-Fluorobenzoyl)-2,3-diphenyl-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3c). The solvent was evaporated to 2.5 mL. The obtained mixture was frozen. The resulting precipitate was filtered off, washed with benzene (0.5 mL), and recrystallized from toluene (2 mL) to produce compound 3c. Yield: 40 mg (25%); yellow solid; mp 111–113 °C. 1H NMR (400 MHz, DMSO-d6): δ = 7.82 (m, 1H), 7.67 (m, 2H), 7.52 (m, 3H), 7.39 (m, 2H), 7.33 (m, 2H), 7.29 (m, 1H), 7.25 (m, 4H), 7.22 (m, 2H), 7.18–7.11 (m, 3H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 191.6, 190.7, 165.2, 164.9 (d, J = 254.5 Hz), 155.8, 136.2, 134.8, 134.1, 132.0 (d, J = 10.1 Hz, 2C), 131.8 (d, J = 3.0 Hz), 130.7, 128.6 (2C), 128.6 (2C), 126.6, 126.1, 125.3, 124.4 (2C), 123.0, 117.6, 116.0 (d, J = 22.2 Hz, 2C), 79.9, 65.7, 65.5 ppm. 19F NMR (376 MHz, DMSO-d6): δ = −104.24 ppm. IR (mineral oil): 1735, 1697, 1658 cm−1. Anal. Calcd (%) for 2C31H19FN2O4S·C7H8: C 71.37; H 3.99; N 4.82. Found: C 71.51; H 4.08; N 4.99.
- (3R*,3aS*,11aR*)-3a-(4-Bromobenzoyl)-2,3-diphenyl-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3d). The solvent was evaporated to 2.5 mL, the reaction mass was frozen. The resulting precipitate was filtered off, washed with benzene (0.5 mL), and recrystallized from toluene (2 mL) to produce compound 3d. Yield: 30 mg (17%); yellow solid; mp 207–209 °C. 1H NMR (400 MHz, DMSO-d6): δ = 7.81 (m, 1H), 7.75 (m, 2H), 7.53 (m, 5H), 7.33 (m, 1H), 7.29 (m, 2H), 7.26 (m, 4H), 7.22 (m, 2H), 7.13 (m, 1H), 6.57 (s, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 192.2, 190.5, 165.08, 155.6, 136.1, 134.8, 134.2, 133.9, 131.8 (2C), 130.6 (2C), 128.8, 128.6 (2C), 128.5 (2C), 128.1, 127.7, 126.4, 126.0, 124.2 (2C), 122.8, 117.5, 79.8, 65.7, 65.4 ppm. IR (mineral oil): 1757, 1728, 1701 cm−1. Anal. Calcd (%) for C31H19BrN2O4S: C 62.53; H 3.22; N 4.70. Found: C 62.64; H 3.35; N 4.60.
- (3R*,3aS*,11aR*)-3a-(Furan-2-carbonyl)-2,3-diphenyl-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3e). The resulting precipitate was filtered off, washed with benzene (1 mL) and recrystallized from toluene (2–3 mL). Then, the obtained crystals were stirred in a mixture of toluene and ethanol (5:1 v/v, 3 mL) at 50 °C for 10 min. Then, the precipitate was filtered off to produce compound 3e. Yield: 71 mg (47%); yellow solid; mp 147–149 °C. 1H NMR (400 MHz, DMSO-d6): δ = 7.88 (m, 1H), 7.64 (m, 1H), 7.49 (m, 2H), 7.43 (m, 1H), 7.32 (m, 3H), 7.26 (m, 4H), 7.18 (m, 4H), 7.11 (m, 1H), 6.80 (s, 1H), 6.71 (m, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 191.3, 176.5, 165.4, 156.0, 149.7, 149.4, 136.4, 135.1, 133.9, 129.9, 129.3 (2C), 128.4, 128.3, 128.1, 127.7, 126.3, 126.1, 125.3, 124.7 (2C), 122.8, 121.8, 116.6, 114.3, 78.7, 65.5, 62.8 ppm. IR (mineral oil): 1770, 1732, 1716, 1674 cm−1. Anal. Calcd (%) for 2C29H18N2O5S·C7H8: C 70.64; H 4.01; N 5.07. Found: C 70.82; H 4.11; N 5.00.
- (3R*,3aS*,11aR*)-2,3-Diphenyl-3a-(thiophene-2-carbonyl)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3f). The resulting precipitate was filtered off, washed with benzene (1 mL), and recrystallized from toluene (2–3 mL) to produce compound 3f. Yield: 70 mg (45%); yellow solid; mp 169–171 °C. 1H NMR (400 MHz, DMSO-d6): δ = 8.15 (m, 1H), 7.87 (m, 1H), 7.51 (m, 3H), 7.40 (m, 1H), 7.35 (m, 1H), 7.31 (m, 4H), 7.26 (m, 2H), 7.23 (m, 2H), 7.21 (m, 2H), 7.17 (m, 1H), 7.12 (m, 1H), 6.75 (s, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 191.2, 182.1, 165.0, 155.2, 140.7, 137.9, 136.2, 134.7, 133.8, 130.3, 129.2, 128.9, 128.5, 128.4 (2C), 128.1 (2C), 126.3, 126.1, 125.2, 124.4 (2C), 123.0, 117.1, 79.1, 65.9, 64.6 ppm. IR (mineral oil): 1762, 1715, 1650 cm−1. Anal. Calcd (%) for 2C29H18N2O4S2·C7H8: C 68.64; H 3.90; N 4.93. Found: C 68.83; H 4.11; N 4.99.
- (3R*,3aS*,11aR*)-3a-Benzoyl-2-(3-nitrophenyl)-3-((E)-styryl)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3g). The solvent was evaporated to 1 mL. The resulting precipitate was filtered off, washed with benzene (0.5 mL), and recrystallized from acetonitrile (1 mL) to produce compound 3g. Yield: 20 mg (12%); yellow solid; mp 212–214 °C. 1H NMR (400 MHz, DMSO-d6): δ = 8.51 (m, 1H), 8.07 (m, 1H), 7.96 (m, 1H), 7.87 (m, 1H), 7.69 (m, 1H), 7.62 (m, 1H), 7.50 (m, 5H), 7.36 (m, 2H), 7.29 (m, 2H), 7.24 (m, 3H), 6.73 (d, J 15.7 Hz, 1H), 6.18 (d, J 9.3 Hz, 1H), 6.02 (dd, J 15.7 Hz, J 9.8 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 193.3, 191.7, 165.4, 156.1, 147.9, 137.5, 137.4, 136.5, 136.0, 135.3, 134.1, 132.5, 130.4, 129.6 (2C), 129.2 (2C), 129.0, 128.6 (2C), 127.1 (2C), 126.9, 124.2, 123.6, 122.1, 121.6, 117.1, 78.9, 66.8, 64.2 ppm. IR (mineral oil): 1756, 1721, 1677 cm−1. Anal. Calcd (%) for C33H21N3O6S: C 67.45; H 3.60; N 7.15. Found: C 67.62; H 3.71; N 7.10.
- (3R*,3aS*,11aR*)-3a-Benzoyl-3-(4-iodophenyl)-2-phenyl-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3h). The solvent was evaporated to 2.5 mL. The resulting precipitate was filtered off, washed with benzene (1 mL), and recrystallized from toluene (2–3 mL) to produce compound 3h. Yield: 54 mg (28%); yellow solid; mp 170–172 °C. 1H NMR (400 MHz, DMSO-d6): δ = 7.85 (m, 1H), 7.59 (m, 3H), 7.51 (m, 3H), 7.47 (m, 4H), 7.36 (m, 1H), 7.30 (m, 3H), 7.14 (m, 3H), 6.68 (s, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 192.4, 191.5, 165.0, 155.3, 137.0 (2C), 136.0, 135.6, 134.7, 133.8, 133.5, 131.0, 130.0, 128.9 (2C), 128.5 (2C), 128.2 (2C), 128.2, 127.8, 126.5, 126.2, 124.4 (2C), 123.0, 117.1, 95.2, 79.1, 66.3, 64.7 ppm. IR (mineral oil): 1762, 1715, 1691 cm−1. Anal. Calcd (%) for C31H19IN2O4S: C 57.95; H 2.98; N 4.36. Found: C 58.16; H 3.10; N 4.28.
- (3R*,3aS*,11aR*)-3a-Benzoyl-3-(4-bromophenyl)-2-(4-methoxyphenyl)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3i). The reaction mixture was evaporated to dryness. Then, the residue was recrystallized from benzene (2–3 mL) to produce compound 3i. Yield: 52 mg (28%); yellow solid; mp 221–223 °C. 1H NMR (400 MHz, DMSO-d6): δ = 7.84 (m, 1H), 7.61 (m, 1H), 7.52 (m, 1H), 7.46 (m, 4H), 7.42 (m, 4H), 7.33 (m, 2H), 7.25 (m, 2H), 6.84 (m, 2H), 6.61 (s, 1H), 3.69 (s, 3H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 192.5, 191.7, 165.0, 157.5, 155.4, 135.7, 134.8, 133.7 (2C), 133.5, 131.3, 131.2 (2C), 130.1, 129.0 (2C), 128.8, 128.3 (2C), 126.3, 126.2 (2C), 123.1, 122.0, 117.1, 113.8 (2C), 79.1, 66.5, 64.9, 55.1 ppm. IR (mineral oil): 1761, 1729, 1710, 1689 cm−1. Anal. Calcd (%) for C32H21BrN2O5S: C 61.45; H 3.38; N 4.48. Found: C 61.63; H 3.50; N 4.40.
- (3R*,3aS*,11aR*)-3a-Benzoyl-2-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3j) and (3S*,3aS*,11aR*)-3a-benzoyl-2-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3′j). The reaction mixture was cooled to 10 °C. The resulting precipitate was filtered off (a mixture of products 3j and 3′j, 1:1). The mother liquor was evaporated to dryness. Then, the residue was recrystallized from ethanol (2–3 mL) at 60–65 °C to afform product 3j. Product 3j: Yield: 50 mg (28%); yellow solid; mp 238–240 °C. 1H NMR (400 MHz, DMSO-d6): δ = 7.84 (m, 1H), 7.62 (m, 1H), 7.58 (m, 2H), 7.50 (m, 5H), 7.34 (m, 4H), 6.80 (m, 3H), 6.56 (s, 1H), 3.69 (s, 3H), 3.60 (s, 3H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 193.0, 190.7, 165.0, 155.8, 148.9, 148.4, 135.6, 135.2, 134.8, 133.4, 130.6, 130.2, 128.7 (2C), 128.4 (2C), 128.4 (2C), 128.1, 126.2 (2C), 126.1, 125.5, 123.0, 121.4, 117.2, 112.5, 111.3, 79.4, 66.0, 65.2, 55.5, 55.2 ppm. IR (mineral oil): 1761, 1726, 1713, 1682 cm−1. Anal. Calcd (%) for C33H23ClN2O6S: C 64.86; H 3.79; N 4.58. Found: C 64.93; H 3.85; N 4.60. Product 3′j: Yield: 24 mg (13%, the mixture 3j:3′j, 1:1), orange solid; mp 224–226 °C (mixture 3j:3′j, 1:1). 1H NMR (400 MHz, DMSO-d6): δ = 7.80 (m, 1H), 7.62 (m, 2H), 7.56 (m, 2H), 7.36 (m, 5H), 7.30 (m, 2H), 6.77 (m, 1H), 6.71 (m, 3H), 6.47 (s, 1H), 3.59 (s, 3H), 3.54 (s, 3H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 191.0, 168.1, 165.7, 154.4, 148.7, 148.1, 135.7, 134.9, 134.4, 132.7, 130.7, 130.1, 129.0 (2C), 128.6 (2C), 127.7 (2C), 127.6, 125.9, 125.7 (2C), 122.43, 121.0, 115.8, 112.8, 111.4, 79.2, 70.6, 65.2, 55.3, 55.2 ppm. IR (mineral oil): 1761, 1713, 1680 cm−1. Anal. Calcd. (%) for C33H23ClN2O6S: C 64.86; H 3.79; N 4.58. Found: C 64.12; H 3.94; N 4.71.
- (3R*,3aS*,11aR*)-3a-Benzoyl-3-(3,4-dimethoxyphenyl)-2-phenyl-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3k) and (3S*,3aS*,11aR*)-3a-benzoyl-3-(3,4-dimethoxyphenyl)-2-phenyl-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3′k). The reaction mixture was cooled to 10 °C. The resulting precipitate was filtered off and recrystallized from benzene (2–3 mL) to give product 3’k. The mother liquor was evaporated to dryness, and the residue was recrystallized from toluene (2–3 mL) to produce product 3k. Product 3k: Yield: 40 mg (23%); yellow solid; mp 217–219 °C. 1H NMR (400 MHz, DMSO-d6): δ = 7.84 (m, 1H), 7.64 (m, 1H), 7.54 (m, 7H), 7.33 (m, 4H), 7.16 (m, 1H), 6.86 (s, 1H), 6.81 (m, 2H), 6.54 (s, 1H), 3.68 (s, 3H), 3.61 (s, 3H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 193.1, 190.6, 165.0, 155.9, 148.9, 148.5, 136.3, 135.4, 134.9, 133.5, 130.3, 128.7 (2C), 128.6 (2C), 128.5 (2C), 128.1, 126.4, 126.1, 125.8, 124.3 (2C), 123.0, 121.1, 117.3, 112.2, 111.3, 79.6, 65.7, 65.5, 55.5, 55.2 ppm. IR (mineral oil): 1759, 1728, 1715, 1689 cm−1. Anal. Calcd (%) for C33H24N2O6S: C 68.74; H 4.20; N 4.86. Found: C 68.90; H 4.27; N 4.79. Product 3′k: Yield: 48 mg (28%); orange solid; mp 247–249 °C. 1H NMR (400 MHz, DMSO-d6): δ = 7.82 (m, 3H), 7.62 (m, 1H), 7.52 (m, 3H), 7.40 (m, 2H), 7.32 (m, 4H), 7.16 (m, 1H), 6.73 (m, 2H), 6.67 (m, 1H), 6.46 (s, 1H), 3.59 (s, 3H), 3.52 (s, 3H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 191.4, 188.0, 165.8, 154.5, 148.7, 148.0, 136.0, 135.8, 134.5, 132.9, 130.3, 129.2 (2C), 128.7 (2C), 127.9 (2C), 126.6, 126.1, 125.8, 124.1 (2C), 123.0, 122.5, 121.0, 115.9, 112.7, 111.2, 79.3, 70.8, 64.5, 55.3, 55.2 ppm. IR (mineral oil): 1762, 1709, 1669 cm−1. Anal. Calcd (%) for C33H24N2O6S: C 68.74; H 4.20; N 4.86. Found: C 68.86; H 4.31; N 4.93.
- (3R*,3aS*,11aR*)-3a-Benzoyl-2-benzyl-3-(4-bromophenyl)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3l). The solvent was evaporated. The resulting mass was stirred in acetonitrile (2 mL) at 80 °C for 5 min. Then, the obtained mixture was cooled to room temperature, and the formed precipitate was filtered off to produce compound 3l. Yield: 60 mg (33%); yellow solid; mp 204–206 °C. 1H NMR (400 MHz, DMSO-d6): δ = 7.79 (m, 1H), 7.59 (m, 3H), 7.54 (m, 1H), 7.37 (m, 9H), 7.16 (m, 2H), 7.09 (m, 2H), 5.58 (s, 1H), 4.95 (d, J 15.2 Hz, 1H), 3.71 (d, J 14.7 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 192.7, 191.2, 166.1, 155.1, 134.7, 134.6, 134.0, 133.8, 132.6, 131.9 (2C), 130.7, 129.8, 128.8 (2C), 128.7 (2C), 128.3 (2C), 128.3, 128.1 (2C), 128.0, 127.6, 126.3, 123.2, 122.6, 117.3, 78.9, 65.6, 63.9, 45.4 ppm. IR (mineral oil): 1760, 1719, 1672 cm−1. Anal. Calcd (%) for C32H21BrN2O4S: C 63.06; H 3.47; N 4.60. Found: C 63.14; H 3.58; N 4.63.
- (3R*,3aS*,11aR*)-3a-Benzoyl-2-(benzylideneamino)-3-phenyl-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3m). The solvent was evaporated to 1 mL. The resulting precipitate was filtered off, stirred in benzene (2–3 mL) at 85 °C for 10 min, and then filtered off to produce compound 3m. Yield: 42 mg (26%); yellow solid; mp 224–226 °C. 1H NMR (400 MHz, DMSO-d6): δ = 8.63 (s, 1H), 7.81 (m, 1H), 7.65 (m, 1H), 7.55 (m, 7H), 7.43 (m, 3H), 7.35 (m, 5H), 7.29 (2H), 6.54 (s, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 192.4, 190.4, 162.3, 156.6, 155.5, 134.9, 134.6, 133.7, 133.5, 132.9, 131.3, 130.4, 129.0, 128.9 (2C), 128.8 (2C), 128.8 (2C), 128.7 (2C), 128.3, 128.0 (2C), 127.5 (2C), 126.1, 123.0, 117.5, 78.3, 65.3, 64.7 ppm. IR (mineral oil): 1757, 1725, 1686 cm−1. Anal. Calcd (%) for C32H21N3O4S: C 70.71; H 3.89; N 7.73. Found: C 70.93; H 3.97; N 7.81.
3.1.3. Procedure to Compounds 8a–j
- (3aS*,11aR*)-3a-Benzoyl-2-cyclohexyl-3-(cyclohexylimino)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8a). Yield: 69 mg (44%); yellow solid; mp 264–266 °C. 1H NMR (400 MHz, CDCl3): δ = 7.87 (m, 1H), 7.68 (m, 3H), 7.49 (m, 2H), 7.25 (m, 3H), 4.31 (m, 1H), 3.41 (m, 1H), 2.32 (m, 2H), 1.86 (s, 3H), 1.73 (m, 4H), 1.51 (m, 1H), 1.42 (m, 3H), 1.36 (m, 2H), 1.21 (m, 2H), 0.91 (m, 2H), 0.38 (m, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ = 190.7, 187.7, 168.0, 154.1, 141.6, 135.1, 134.8, 133.8, 129.3, 129.1 (2C), 128.7 (2C), 128.5, 126.9, 122.6, 118.0, 77.6, 65.4, 60.6, 54.0, 34.1, 32.1, 28.2, 27.8, 25.9, 25.8, 25.7, 25.2, 23.9, 23.8 ppm. IR (mineral oil): 1779, 1749, 1722, 1677 cm−1. Anal. Calcd (%) for C31H31N3O4S: C 68.74; H 5.77; N 7.76. Found: C 68.85; H 5.83; N 7.71.
- (3aS*,11aR*)-2-Cyclohexyl-3-(cyclohexylimino)-3a-(4-methylbenzoyl)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8b). Yield: 25 mg (15%); yellow solid; mp 230–232 °C. 1H NMR (400 MHz, CDCl3): δ = 7.87 (m, 1H), 7.59 (m, 2H), 7.29 (m, 2H), 7.24 (m, 3H), 4.33 (m, 1H), 3.45 (m, 1H), 2.46 (s, 3H), 2.31 (m, 2H), 1.86 (m, 3H), 1.75 (m, 1H), 1.69 (m, 4H), 1.53 (m, 1H), 1.44 (m, 3H), 1.39 (m, 1H), 1.35 (m, 1H), 1.29 (m, 1H), 1.20 (m, 2H), 0.93 (m, 2H), 0.47 (m, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ = 190.1, 187.8, 168.1, 154.1, 146.6, 141.8, 134.8, 131.2, 129.8, 129.4, 129.0, 128.9, 128.5, 128.2, 126.8, 125.3, 122.5, 118.0, 77.7, 60.5, 54.0, 34.1, 32.2, 28.2, 27.8, 25.9, 25.8, 25.7, 25.2, 24.0, 23.7, 21.8 ppm. IR (mineral oil): 1788, 1744, 1729, 1674 cm−1. Anal. Calcd (%) for C32H33N3O4S: C 69.17; H 5.99; N 7.56. Found: C 69.55; H 6.12; N 7.66.
- (3aS*,11aR*)-2-Cyclohexyl-3-(cyclohexylimino)-3a-(4-fluorobenzoyl)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8c). Yield: 18 mg (11%); yellow solid; mp 228–230 °C. 1H NMR (400 MHz, CDCl3): δ = 7.92 (m, 1H), 7.79 (m, 2H), 7.33 (m, 2H), 7.23 (m, 3H), 4.36 (m, 1H), 3.47 (m, 1H), 2.36 (m, 2H), 1.92 (m, 3H), 1.80 (m, 1H), 1.74 (m, 3H), 1.60–1.47 (m, 4H), 1.45–1.37 (m, 2H), 1.29–1.19 (m, 2H), 1.00 (m, 2H), 0.52 (m, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ = 189.1, 187.4, 168.0, 166.7 (d, J = 261.6 Hz), 154.0, 141.5, 134.7, 131.5 (d, J = 10.1 Hz, 2C), 130.2 (d, J = 3.0 Hz), 129.1, 128.6, 127.0, 122.6, 118.1, 116.5 (d, J = 24.2 Hz, 2C), 77.5, 65.3, 60.6, 54.1, 34.1, 32.3, 28.3, 27.8, 25.9, 25.8, 25.6, 25.1, 23.9, 23.8 ppm. 19F NMR (376 MHz, DMSO-d6): δ = −100.03 ppm. IR (mineral oil): 1789, 1749, 1726, 1673 cm−1. Anal. Calcd (%) for C31H30FN3O4S: C 66.53; H 5.40; N 7.51. Found: C 66.68; H 5.51; N 7.60.
- (3aS*,11aR*)-3a-(4-Bromobenzoyl)-2-cyclohexyl-3-(cyclohexylimino)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8d). Yield: 57 mg (31%); yellow solid; mp 180–182 °C. 1H NMR (400 MHz, CDCl3): δ = 7.92 (m, 1H), 7.71 (m, 2H), 7.61 (m, 2H), 7.32 (m, 1H), 7.26 (m, 2H), 4.35 (m, 1H), 3.46 (m, 1H), 2.36 (m, 2H), 1.91 (m, 3H), 1.80 (m, 1H), 1.74 (m, 2H), 1.60 (m, 3H), 1.48 (m, 1H), 1.46–1.31 (m, 3H), 1.25 (m, 2H), 1.02 (m, 2H), 0.55 (m, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ = 189.6, 187.3, 167.9, 153.9, 141.3, 134.7, 132.5 (2C), 130.7, 130.0 (2C), 129.0, 128.6, 127.0, 122.6, 118.1, 77.4, 65.2, 60.5, 54.1, 34.1, 32.3, 28.2, 27.8, 25.8, 25.8, 25.6, 25.1, 23.9, 23.8 ppm. IR (mineral oil): 1791, 1789, 1752, 1726, 1672 cm−1. Anal. Calcd (%) for C31H30BrN3O4S: C 60.00; H 4.87; N 6.77. Found: C 60.14; H 4.97; N 6.65.
- (3aS*,11aR*)-2-Cyclohexyl-3-(cyclohexylimino)-3a-(furan-2-carbonyl)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8e). Yield: 71 mg (45%); yellow solid; mp 251–253 °C. 1H NMR (400 MHz, CDCl3): δ = 7.91 (m, 1H), 7.60 (s, 1H), 7.51 (m, 1H), 7.28 (m, 3H), 6.72 (s, 1H), 4.34 (m, 1H), 3.60 (br.s, 1H), 2.34 (m, 2H), 1.85 (m, 4H), 1.73 (d, J = 12, 3H), 1.63 (m, 2H), 1.52 (m, 2H), 1.38 (m, 3H), 1.22 (m, 3H), 0.95–0.62 (m, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ = 186.6, 168.2, 149.4 (2C), 140.5, 134.9, 129.3, 128.4, 126.7, 122.6, 120.9, 118.0, 114.2, 77.7, 77.2, 54.1, 34.0, 28.3, 27.8, 25.9, 25.9, 25.7, 25.2, 24.0, 23.8 ppm. IR (mineral oil): 1775, 1745, 1721, 1667 cm−1. Anal. Calcd (%) for C29H29N3O5S: C 65.52; H 5.50; N 7.90. Found: C 65.71; H 5.58; N 8.03.
- (3aS*,11aR*)-2-Cyclohexyl-3-(cyclohexylimino)-3a-(thiophene-2-carbonyl)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8f). Yield: 96 mg (59%); yellow solid; mp 274–276 °C. 1H NMR (400 MHz, CDCl3): δ = 7.91 (m, 2H), 7.55 (m, 1H), 7.32 (m, 2H), 7.23 (m, 2H), 4.39 (m, 1H), 3.70 (m, 1H), 2.38 (m, 2H), 1.94 (m, 3H), 1.83 (m, 1H), 1.76 (m, 3H), 1.60 (m, 2H), 1.54 (m, 2H), 1.42 (m, 2H), 1.29 (m, 2H), 1.13 (m, 2H), 0.75 (m, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ = 170.7, 168.0, 154.0, 141.3, 137.4 (2C), 134.8, 133.1, 129.2, 128.6, 128.5, 126.9, 122.6, 118.0, 77.8, 77.2, 60.4, 54.1, 34.2, 32.3, 28.3, 27.8, 25.9, 25.8, 25.7, 25.2, 24.0, 23.8 ppm. IR (mineral oil): 1779, 1747, 1724, 1682, 1657 cm−1. Anal. Calcd (%) for C29H29N3O4S2: C 63.60; H 5.34; N 7.67. Found: C 63.83; H 5.41; N 7.54.
- (3aS*,11aR*)-3a-(4-Chlorobenzoyl)-2-cyclohexyl-3-(cyclohexylimino)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8g). Yield: 43 mg (25%); yellow solid; mp 248–250 °C. 1H NMR (400 MHz, CDCl3): δ = 7.92 (m, 1H), 7.69 (m, 2H), 7.53 (m, 2H), 7.30 (m, 3H), 4.35 (m, 1H), 3.46 (m, 1H), 2.36 (m, 2H), 1.92 (m, 3H), 1.80 (m, 1H), 1.74 (m, 3H), 1.58 (m, 2H), 1.48 (m, 2H), 1.39 (m, 2H), 1.26 (m, 2H), 1.01 (m, 2H), 0.53 (m, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ = 189.4, 187.4, 167.9, 153.9, 142.0, 141.3, 134.7, 132.1, 130.0 (2C), 129.5 (2C), 129.1, 128.6, 127.0, 122.6, 118.1, 77.5, 65.3, 60.5, 54.1, 34.1, 32.3, 28.3, 27.8, 25.9, 25.8, 25.6, 25.1, 23.9, 23.8 ppm. IR (mineral oil): 1791, 1789, 1751, 1726, 1674 cm−1. Anal. Calcd (%) for C31H30ClN3O4S: C 64.63; H 5.25; N 7.29. Found: C 64.69; H 5.19; N 7.37.
- (3aS*,11aR*)-3a-Benzoyl-2-isopropyl-3-(isopropylimino)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8h). Yield: 89 mg (65%); yellow solid; mp 207–207 °C. 1H NMR (400 MHz, CDCl3): δ = 7.94 (m, 1H), 7.74 (m, 3H), 7.56 (m, 2H), 7.35–7.25 (m, 3H), 4.78 (m, 1H), 3.79 (m, 1H), 1.54 (m, 6H), 1.30 (m, 3H), 0.50 (d, J = 8 Hz, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ = 190.3, 187.8, 167.9, 154.1, 141.4, 135.2, 134.8, 133.8, 129.2, 129.2 (2C), 128.8 (2C), 128.5, 126.9, 122.6, 118.1, 77.6, 66.7, 52.8, 46.1, 24.4, 22.0, 18.8, 18.4 ppm. IR (mineral oil): 1786, 1749, 1724, 1669 cm−1. Anal. Calcd (%) for C25H23N3O4S: C 65.06; H 5.02; N 9.10. Found: C 65.17; H 5.09; N 9.18.
- (3aS*,11aR*)-2-Isopropyl-3-(isopropylimino)-3a-(4-methylbenzoyl)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8i). Yield: 106 mg (75%); yellow solid; mp 216–218 °C. 1H NMR (400 MHz, CDCl3): δ = 7.94 (m, 1H), 7.67 (m, 2H), 7.37 (m, 2H), 7.35–7.25 (m, 3H), 4.79 (m, 1H), 3.84 (m, 1H), 2.52 (s, 3H), 1.55 (m, 6H), 1.31 (m, 3H), 0.53 (m, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ = 189.8, 187.8, 167.9, 154.1, 146.8, 141.6, 134.8, 131.2, 129.9, 129.3, 129.0, 128.5, 126.9 (2C), 122.6, 118.0 (2C), 115.0, 52.7, 46.1, 24.4, 22.1, 21.8, 18.8, 18.4 ppm. IR (mineral oil): 1786, 1751, 1727 cm−1. Anal. Calcd (%) for C26H25N3O4S: C 65.67; H 5.30; N 8.84. Found: C 65.81; H 5.26; N 8.80.
- (3aS*,11aR*)-3a-(4-Chlorobenzoyl)-2-isopropyl-3-(isopropylimino)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8j). Yield: 106 mg (72%); yellow solid; mp 228–230 °C. 1H NMR (400 MHz, CDCl3): δ = 7.64 (m, 1H), 7.41 (m, 2H), 7.30 (m, 1H), 7.06–6.96 (m, 4H), 4.48 (m, 1H), 3.49 (m, 1H), 1.25 (d, J = 4 Hz, 6H), 1.02 (d, J = 8 Hz, 3H), 0.29 (d, J = 8 Hz, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ = 189.1, 187.4, 167.7, 153.9, 142.1, 141.2, 134.7, 132.0, 131.3, 130.1 (2C), 129.6, 129.0, 128.6 (2C), 127.0, 122.6, 118.1, 52.8, 46.2, 24.4, 22.2, 18.8, 18.4 ppm. IR (mineral oil): 1786, 1750, 1726, 1664 cm−1. Anal. Calcd (%) for C25H22ClN3O4S: C 60.54; H 4.47; N 8.47. Found: C 60.76; H 4.58; N 8.55.
3.1.4. Procedures to Compounds 4a,b,6d
- 5-Hydroxy-4-(2-oxo-2H-benzo[b][1,4]thiazin-3(4H)-ylidene)-1,5-diphenylpyrrolidine-2,3-dione (4a). Method 1. Acetic acid (3 mL) was added to the mixture of APBTT 1a (100 mg, 0.298 mmol) and N-benzylideneaniline 2a (54 mg, 0.298 mmol). The mixture was stirred for 24 h at room temperature. The resulting precipitate was filtered off and washed with acetone (2 mL) to produce compound 4a. Yield: 110 mg (86%); red solid; mp 179–181 °C. Method 2. Aniline 5a (27.2 μL, 0.298 mmol) was added to the mixture of acetic acid (3 mL) and APBTT 1a (100 mg, 0.298 mmol). The mixture was stirred for 24 h at room temperature. The resulting precipitate was filtered off and washed with acetone (2 mL) to produce compound 4a. Yield: 121 mg (95%); red solid; mp 179–181 °C. 1H NMR (400 MHz, DMSO-d6): δ = 14.05 (s, 1H), 7.60 (m, 1H), 7.52 (m, 2H), 7.38 (m, 1H), 7.34 (m, 2H), 7.22 (m, 3H), 7.18 (m, 1H), 7.16 (s, 1H), 7.13 (m, 1H), 7.11 (s, 1H), 7.04 (m, 2H) ppm. IR (mineral oil): 3467, 3169, 3083, 1723, 1684, 1632 cm−1. Anal. Calcd (%) for C24H16N2O4S: C 67.28; H 3.76; N 6.54. Found: C 67.39; H 3.81; N 6.47.
- 1-Benzyl-5-hydroxy-4-(2-oxo-2H-benzo[b][1,4]thiazin-3(4H)-ylidene)-5-(4-methylphenyl)pyrrolidine-2,3-dione (4b). Benzylamine 5b (15.6 μL, 0.143 mmol) was added to the mixture of acetic acid (3 mL) and APBTT 1a (50 mg, 0.143 mmol). The mixture was stirred for 24 h at room temperature. The resulting precipitate was filtered off and washed with acetone (1 mL) to produce compound 4b. Yield: 63 mg (46%); orange solid; mp 162–164 °C. 1H NMR (400 MHz, DMSO-d6): δ = 14.24 (s, 1H), 7.55 (m, 1H), 7.46 (m, 2H), 7.31 (m, 3H), 7.12 (m, 3H), 7.03 (m, 4H), 6.67 (s, 1H), 4.20 (dd, J 64.1 Hz, J 15.2 Hz, 2H), 2.24 (s, 3H) ppm. 13C NMR (400 MHz, DMSO-d6): δ = 183.1, 177.4, 160.4, 138.8, 137.8, 137.0, 136.3, 129.5, 128.6, 128.1 (2C), 127.8 (2C), 127.5 (2C), 126.3, 126.1, 125.9 (2C), 125.5, 120.5, 119.4, 109.9, 88.6, 42.5, 20.5 ppm. IR (mineral oil): 3474, 3192, 3058, 1720, 1640 cm−1. Anal. Calcd (%) for C26H20N2O4S: C 68.41; H 4.42; N 6.14. Found: C 68.56; H 4.47; N 6.20.
- (Z)-3-(Benzo[d]thiazol-2(3H)-ylidene)-4-(4-bromophenyl)-2,4-dioxo-N-phenylbutanamide (6d). This product was a by-product in the synthesis of compound 3d. Product 6d was precipitated in the first fraction upon recrystallization of the main product from toluene. Yield: 3 mg (2%); colorless crystals; mp 179–181 °C. 1H NMR (400 MHz, CDCl3): δ = 13.76 (br.s, 1H), 10.39 (s, 1H), 8.07 (m, 1H), 7.53 (m, 3H), 7.43 (m, 3H), 7.29 (m, 2H), 7.21 (m, 3H), 7.02 (m, 1H) ppm. IR (mineral oil): 3278, 3136, 1718, 1672, 1635 cm−1. Anal. Calcd (%) for C23H15BrN2O3S: C 57.63; H 3.15; N 5.84. Found: C 57.86; H 3.24; N 5.91.
3.2. Computational Details
3.3. Biology
3.3.1. Screening of Substances in 96-Well Plates
3.3.2. Evaluation of Lead Substances in 50-mL Flasks
3.3.3. Cell Count and Pigments Analysis
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52, 6752–6756. [Google Scholar] [CrossRef]
- Lovering, F. Escape from Flatland 2: Complexity and promiscuity. Med. Chem. Commun. 2013, 4, 515–519. [Google Scholar] [CrossRef]
- Boström, J.; Brown, D.G.; Young, R.J.; Keserü, G.M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 2018, 17, 709–727. [Google Scholar] [CrossRef]
- Cotman, A.E. Escaping from Flatland: Stereoconvergent Synthesis of Three-Dimensional Scaffolds via Ruthenium(II)-Catalyzed Noyori–Ikariya Transfer Hydrogenation. Chem. Eur. J. 2021, 27, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Galloway, W.; Isidro-Llobet, A.; Spring, D. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat. Commun. 2010, 1, 80. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Zhang, K.Y.J. Advances in the Development of Shape Similarity Methods and Their Application in Drug Discovery. Front. Chem. 2018, 6, 315. [Google Scholar] [CrossRef]
- Wei, W.; Cherukupalli, S.; Jing, L.; Liu, X.; Zhan, P. Fsp3: A new parameter for drug-likeness. Drug Discov. Today 2020, 25, 1839–1845. [Google Scholar] [CrossRef] [PubMed]
- Gerry, C.J.; Schreiber, S.L. Recent achievements and current trajectories of diversity-oriented synthesis. Curr. Opin. Chem. Biol. 2020, 56, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sano, T. Synthesis of Heterocyclic Compounds Containing Nitrogen Utilizing Dioxopyrrolines. J. Synth. Org. Chem. Jpn. 1984, 42, 340–354. [Google Scholar] [CrossRef]
- Konovalova, V.V.; Shklyaev, Y.V.; Maslivets, A.N. Reactions of fused pyrrole-2,3-diones with dinucleophiles. ARKIVOC 2015, i, 48–69. [Google Scholar] [CrossRef]
- Konovalova, V.V.; Maslivets, A.N. Synthesis of Spiro Compounds Based on 1H-Pyrrole-2,3-Diones. Mini-Rev. Org. Chem. 2019, 16, 173–192. [Google Scholar] [CrossRef]
- Lystsova, E.A.; Khramtsova, E.E.; Maslivets, A.N. Acyl(imidoyl)ketenes: Reactive Bidentate Oxa/Aza-Dienes for Organic Synthesis. Symmetry 2021, 13, 1509. [Google Scholar] [CrossRef]
- Stepanova, E.E.; Dmitriev, M.V.; Maslivets, A.N. Facile approach to alkaloid-like 6/6/5/5-tetracyclic spiroheterocycles via 1,3-dipolar cycloaddition reaction of fused 1H-pyrrole-2,3-diones with nitrones. Tetrahedron Lett. 2020, 61, 151595. [Google Scholar] [CrossRef]
- Stepanova, E.E.; Dmitriev, M.V.; Maslivets, A.N. Hetero-Diels-Alder Reaction of 3-Aroylpyrrolo[2,1-c][1,4]benzoxazines with Styrene. Synthesis of Pyrano[4′,3′:2,3]pyrrolo[2,1-c][1,4]benzoxazines. Russ. J. Org. Chem. 2017, 53, 1851–1856. [Google Scholar] [CrossRef]
- Stepanova, E.E.; Dmitriev, M.V.; Slepukhin, P.A.; Maslivets, A.N. Two Concurrent Pathways of the Reaction Pyrrolobenzoxazinetriones with Cyclic Alkoxyolefins. Synthesis of Alkaloid-Like Pentacyclic 6/6/5/6/5- and 6/6/5/6/6-Angularly Fused Heterocycles. Russ. J. Org. Chem. 2017, 53, 74–81. [Google Scholar] [CrossRef]
- Chervyakov, A.V.; Maslivets, A.N. Synthesis of Angular [1,2,5]Oxadiazolo[3,4-b]pyrazino[1′,2′:1,2]pyrrolo[2,3-e][1,4]diazepine by Stepwise Reaction of Pyrrolo[1,2-a]pyrazinetrione with 3,4-Diaminofurazan. Russ. J. Org. Chem. 2018, 54, 512–513. [Google Scholar] [CrossRef]
- Chervyakov, A.V.; Maslivets, A.N. Reaction of pyrrolo[1,2-a]pyrazinetriones with o-phenylenediamine. Synthesis of angular benzo[b]pyrazino[1′,2′:1,2]pyrrolo[2,3-e][1,4]diazepines. Russ. J. Org. Chem. 2016, 52, 610–611. [Google Scholar] [CrossRef]
- Mashevskaya, I.V.; Duvalov, A.V.; Kol’tsova, S.V.; Maslivets, A.N. Unusual reaction of condensed 2,3-dihydro-2,3-pyrrolediones with o-phenylenediamine. Chem. Heterocycl. Compd. 2000, 36, 617–618. [Google Scholar] [CrossRef]
- Tsuda, Y.; Ohshima, T.; Hosoi, S.; Kaneuchi, S.; Kiuchi, F.; Toda, J.; Sano, T. Synthesis of Erythrina and related alkaloids. XLIV. Total synthesis of homoerythrinan alkaloids, schelhammericine and 3-epischelhammericine. Chem. Pharm. Bull. 1996, 44, 500–508. [Google Scholar] [CrossRef]
- Sano, T.; Toda, J.; Shoda, M.; Yamamoto, R.; Ando, H.; Isobe, K.; Hosoi, S.; Tsuda, Y. Synthesis of erythrina and related alkaloids. XXXVI. Studies toward total synthesis of non-aromatic Erythrina alkaloids. 6. Synthesis of 8-oxo-γ-erythroidine and 8-oxocycloerythroidine, isomers of the natural alkaloids. Chem. Pharm. Bull. 1992, 40, 3145–3156. [Google Scholar] [CrossRef]
- Lystsova, E.A.; Dmitriev, M.V.; Maslivets, A.N.; Khramtsova, E.E. Nucleophile-induced ring contraction in pyrrolo[2,1-c][1,4]benzothiazines: Access to pyrrolo[2,1-b][1,3]benzothiazoles. Beilstein J. Org. Chem. 2023, 19, 646–657. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.R.; Hudlický, T. Retigeranic acid. In Total Synthesis of Natural Products. At the Frontiers of Organic Chemistry, 1st ed.; Li, J.J., Corey, E.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 235–258. [Google Scholar] [CrossRef]
- Yu, X.Y.; Finn, J.; Hill, J.M.; Wang, Z.G.; Keith, D.; Silverman, J.; Oliver, N. A series of heterocyclic inhibitors of phenylalanyl-tRNA synthetases with antibacterial activity. Bioorg. Med. Chem. Lett. 2004, 14, 1343–1346. [Google Scholar] [CrossRef] [PubMed]
- Goudreau, N.; Cameron, D.R.; Déziel, R.; Haché, B.; Jakalian, A.; Malenfant, E.; Naud, J.; Ogilvie, W.W.; O’Meara, J.; White, P.W.; et al. Optimization and determination of the absolute configuration of a series of potent inhibitors of human papillomavirus type-11 E1–E2 protein–protein interaction: A combined medicinal chemistry, NMR and computational chemistry approach. Bioorg. Med. Chem. 2007, 15, 2690–2700. [Google Scholar] [CrossRef] [PubMed]
- Khramtsova, E.E.; Lystsova, E.A.; Dmitriev, M.V.; Maslivets, A.N.; Jasiński, R. Reaction of Aroylpyrrolobenzothiazinetriones with Electron-Rich Dienophiles. ChemistrySelect 2021, 6, 6295–6301. [Google Scholar] [CrossRef]
- Kollenz, G.; Penn, G.; Ott, W.; Peters, K.; Peters, E.-M.; von Schnering, H.G. Reaktionen mit cyclischen Oxalylverbindungen, XXIII. Zur Reaktion heterocyclischer Fünfring-2,3-dione mit Carbodiimiden—Eine Synthesemöglichkeit für hetero-analoge 7-Desazapurin-Systeme. Chem. Ber. 1984, 117, 1310–1329. [Google Scholar] [CrossRef]
- Lystsova, E.A.; Novikov, A.S.; Dmitriev, M.V.; Maslivets, A.N.; Khramtsova, E.E. Approach to Pyrido[2,1-b][1,3]benzothiazol-1-ones via In Situ Generation of Acyl(1,3-benzothiazol-2-yl)ketenes by Thermolysis of Pyrrolo[2,1-c][1,4]benzothiazine-1,2,4-triones. Molecules 2023, 28, 5495. [Google Scholar] [CrossRef] [PubMed]
- Bito, T.; Okumura, E.; Fujishima, M.; Watanabe, F. Potential of Chlorella as a Dietary Supplement to Promote Human Health. Nutrients 2020, 12, 2524. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, C.; Norici, A.; Mollo, L.; Osimani, A.; Aquilanti, L. Fermentation of Microalgal Biomass for Innovative Food Production. Microorganisms 2022, 10, 2069. [Google Scholar] [CrossRef] [PubMed]
- Al-Hammadi, M.; Güngörmüşler, M. New insights into Chlorella vulgaris applications. Biotechnol. Bioeng. 2024, 121, 1486–1502. [Google Scholar] [CrossRef]
- Win, T.T.; Barone, G.D.; Secundo, F.; Fu, P. Algal biofertilizers and plant growth stimulants for sustainable agriculture. Ind. Biotechnol. 2018, 14, 203–211. [Google Scholar] [CrossRef]
- Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.Y.; Vaca-Garcia, C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sustain. Energ. Rev. 2014, 35, 265–278. [Google Scholar] [CrossRef]
- Moreira, J.B.; Vaz, B.d.S.; Cardias, B.B.; Cruz, C.G.; Almeida, A.C.A.d.; Costa, J.A.V.; Morais, M.G.d. Microalgae Polysaccharides: An Alternative Source for Food Production and Sustainable Agriculture. Polysaccharides 2022, 3, 441–457. [Google Scholar] [CrossRef]
- Khan, S.; Das, P.; Thaher, M.I.; AbdulQuadir, M.; Mahata, C.; Al Jabri, H. Utilization of nitrogen-rich agricultural waste streams by microalgae for the production of protein and value-added compounds. Curr. Opin. Green Sustain. Chem. 2023, 41, 100797. [Google Scholar] [CrossRef]
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L. The Potential Use of Marine Microalgae and Cyanobacteria in Cosmetics and Thalassotherapy. Cosmetics 2017, 4, 46. [Google Scholar] [CrossRef]
- Cunha, S.A.; Coscueta, E.R.; Nova, P.; Silva, J.L.; Pintado, M.M. Bioactive Hydrolysates from Chlorella vulgaris: Optimal Process and Bioactive Properties. Molecules 2022, 27, 2505. [Google Scholar] [CrossRef] [PubMed]
- Yarkent, Ç.; Gürlek, C.; Oncel, S.S. Potential of microalgal compounds in trending natural cosmetics: A review. Sustain. Chem. Pharm. 2020, 17, 100304. [Google Scholar] [CrossRef]
- Sakarika, M.; Kornaros, M. Chlorella vulgaris as a green biofuel factory: Comparison between biodiesel, biogas and combustible biomass production. Bioresour. Technol. 2019, 273, 237–243. [Google Scholar] [CrossRef]
- Mallick, N.; Mandal, S.; Singh, A.K.; Bishai, M.; Dash, A. Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. J. Chem. Technol. Biotechnol. 2021, 87, 137–145. [Google Scholar] [CrossRef]
- Lam, M.K.; Lee, K.T. Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Appl. Energy 2012, 94, 303–308. [Google Scholar] [CrossRef]
- Thirugnanasambantham, R.; Elango, T.; Elangovan, K. Chlorella vulgaris sp. microalgae as a feedstock for biofuel. Mater. Today Proc. 2020, 33, 3182–3185. [Google Scholar] [CrossRef]
- Stephenson, A.L.; Dennis, J.S.; Howe, C.J.; Scott, S.A.; Smith, A.G. Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 2010, 1, 47–58. [Google Scholar] [CrossRef]
- Sharma, K.K.; Schuhmann, H.; Schenk, P.M. High Lipid Induction in Microalgae for Biodiesel Production. Energies 2012, 5, 1532–1553. [Google Scholar] [CrossRef]
- Farooq, W.; Naqvi, S.R.; Sajid, M.; Shrivastav, A.; Kumar, K. Monitoring lipids profile, CO2 fixation, and water recyclability for the economic viability of microalgae Chlorella vulgaris cultivation at different initial nitrogen. J. Biotechnol. 2020, 345, 30–39. [Google Scholar] [CrossRef]
- Chiu, S.Y.; Kao, C.Y.; Chen, T.Y.; Chang, Y.B.; Kuo, C.M.; Lin, C.S. Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresour. Technol. 2015, 184, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Panahi, Y.; Darvishi, B.; Jowzi, N.; Beiraghdar, F.; Sahebkar, A. Chlorella vulgaris: A multifunctional dietary supplement with diverse medicinal properties. Curr. Pharm. Des. 2016, 22, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Dolganyuk, V.; Sukhikh, S.; Kalashnikova, O.; Ivanova, S.; Kashirskikh, E.; Prosekov, A.; Michaud, P.; Babich, O. Food Proteins: Potential Resources. Sustainability 2023, 15, 5863. [Google Scholar] [CrossRef]
- de Carvalho Silvello, M.A.; Gonçalves, I.S.; Azambuja, S.P.H.; Costa, S.S.; Silva, P.G.P.; Santos, L.O.; Goldbeck, R. Microalgae-based carbohydrates: A green innovative source of bioenergy. Bioresour. Technol. 2022, 344, 126304. [Google Scholar] [CrossRef] [PubMed]
- Spínola, M.P.; Costa, M.M.; Prates, J.A.M. Enhancing Digestibility of Chlorella vulgaris Biomass in Monogastric Diets: Strategies and Insights. Animals 2023, 13, 1017. [Google Scholar] [CrossRef] [PubMed]
- Gouda, M.; Tadda, M.A.; Zhao, Y.; Farmanullah, F.; Chu, B.; Li, X.; He, Y. Microalgae bioactive carbohydrates as a novel sustainable and eco-friendly source of prebiotics: Emerging health functionality and recent technologies for extraction and detection. Front. Nutr. 2022, 9, 806692. [Google Scholar] [CrossRef]
- D’Alessandro, E.B.; Antoniosi Filho, N.R. Concepts and studies on lipid and pigments of microalgae: A review. Renew. Sustain. Energ. Rev. 2016, 58, 832–841. [Google Scholar] [CrossRef]
- Wang, S.K.; Stiles, A.R.; Guo, C.; Liu, C.Z. Microalgae cultivation in photobioreactors: An overview of light characteristics. Eng. Life Sci. 2014, 14, 550–559. [Google Scholar] [CrossRef]
- Sun, D.; Wu, S.; Li, X.; Ge, B.; Zhou, C.; Yan, X.; Ruan, R.; Cheng, P. The Structure, Functions and Potential Medicinal Effects of Chlorophylls Derived from Microalgae. Mar. Drugs 2024, 22, 65. [Google Scholar] [CrossRef] [PubMed]
- Ru, I.T.K.; Sung, Y.Y.; Jusoh, M.; Wahid, M.E.A.; Nagappan, T. Chlorella vulgaris: A perspective on its potential for combining high biomass with high value bioproducts. Appl. Phycol. 2020, 1, 2–11. [Google Scholar] [CrossRef]
- Varela, J.C.; Pereira, H.; Vila, M.; León, R. Production of carotenoids by microalgae: Achievements and challenges. Photosyn. Res. 2015, 125, 423–436. [Google Scholar] [CrossRef]
- Gong, M.; Bassi, A. Carotenoids from microalgae: A review of recent developments. Biotechnol. Adv. 2016, 34, 1396–1412. [Google Scholar] [CrossRef] [PubMed]
- Wichuk, K.; Brynjólfsson, S.; Fu, W. Biotechnological production of value-added carotenoids from microalgae: Emerging technology and prospects. Bioengineered 2014, 5, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Wase, N.; Tu, B.; Rasineni, G.K.; Cerny, R.; Grove, R.; Adamec, J.; Black, P.; DiRusso, C.C. Remodeling of Chlamydomonas metabolism using synthetic inducers results in lipid storage during growth. Plant Physiol. 2019, 181, 1029–1049. [Google Scholar] [CrossRef] [PubMed]
- Mutaf-Kılıç, T.; Demir, A.; Elibol, M.; Oncel, S.Ş. Microalgae pigments as a sustainable approach to textile dyeing: A critical review. Algal Res. 2023, 76, 103291. [Google Scholar] [CrossRef]
- Silva, S.C.; Ferreira, I.C.F.R.; Dias, M.M.; Barreiro, M.F. Microalgae-Derived Pigments: A 10-Year Bibliometric Review and Industry and Market Trend Analysis. Molecules 2020, 25, 3406. [Google Scholar] [CrossRef]
- CrysAlisPro, Version 1.171.42.74a; Rigaku Oxford Diffraction: Wroclaw, Poland, 2022.
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Palatinus, L.; Chapuis, G. SUPERFLIP–a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 2007, 40, 786–790. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- da Silva-Filho, L.C.; Lacerda Júnior, V.; Constantino, M.G.; da Silva, G.V.J. Fast and Efficient Synthesis of Pyrano[3,2-c]quinolines Catalyzed by Niobium(V) Chloride. Synthesis 2008, 2008, 2527–2536. [Google Scholar] [CrossRef]
- Singal, K.K.; Singh, B.; Rehalia, K.S. Studies in 1-aza-1,3-butadienes: A novel synthesis of substituted thiadiazine 1-oxides through Diels-Alder cycloaddition of N-sulfinylanilines and open-chain conjugated azomethines. Indian J. Chem. Sect. B Org. Chem. Incl. Med. Chem. 1988, 27B, 843–845. [Google Scholar] [CrossRef]
- Ye, J.-H.; Bellotti, P.; Paulisch, T.O.; Daniliuc, C.G.; Glorius, F. Visible-Light-Induced Cycloaddition of α-Ketoacylsilanes with Imines: Facile Access to β-Lactams. Angew. Chem. Int. Ed. 2021, 60, 13671. [Google Scholar] [CrossRef]
- Subashini, A.; Veeramani, V.; Thamaraiselvi, K.; Crochet, A.; Rose, P.; Philip, R.; Babu, R.R.; Ramamurthi, K. Synthesis, growth and characterization of benzylideneaniline compounds: N-(4-bromobenzylidene)-4-fluoroaniline and N-(4-bromobenzylidene)-4-methoxyaniline. Opt. Mater. 2021, 117, 111081. [Google Scholar] [CrossRef]
- Dave, M.A.; Mahabal, N.B. Synthesis of 3-amino-1,4-diarylazetidin-2-ones. Part I J. Indian. Chem. Soc. 1993, 70, 172–173. [Google Scholar]
- Giraud, L.; Grelier, S.; Grau, E.; Garel, L.; Hadziioannou, G.; Kauffmann, B.; Cloutet, É.; Cramail, H.; Brochon, C. Synthesis and Characterization of Vanillin-Based π-Conjugated Polyazomethines and Their Oligomer Model Compounds. Molecules 2022, 27, 4138. [Google Scholar] [CrossRef]
- Karami, K.; Alinaghi, M.; Amirghofran, Z.; Lipkowski, J.; Momtazi-borojeni, A.A. A saccharinate-bridged palladacyclic dimer with a Pd–Pd bond: Experimental and molecular docking studies of the interaction with DNA and BSA and in vitro cytotoxicity against human cancer cell lines. New J. Chem. 2018, 42, 574–586. [Google Scholar] [CrossRef]
- Pradhan, S.; Thiyagarajan, S.; Gunanathan, C. Ruthenium(ii)-catalysed 1,2-selective hydroboration of aldazines. Org. Biomol. Chem. 2021, 19, 7147–7151. [Google Scholar] [CrossRef] [PubMed]
- Confair, D.N.; Greenwood, N.S.; Mercado, B.Q.; Ellman, J.A. Rh(III)-Catalyzed Imidoyl C–H Carbamylation and Cyclization to Bicyclic [1,3,5]Triazinones. Org. Lett. 2020, 22, 8993–8997. [Google Scholar] [CrossRef] [PubMed]
- Hisaindee, S.; Al-Kaabi, L.; Ajeb, S.; Torky, Y.; Iratni, R.; Saleh, N.; AbuQamar, S.F. Antipathogenic effects of structurally-related Schiff base derivatives: Structure–activity relationship. Arab. J. Chem. 2015, 8, 828–836. [Google Scholar] [CrossRef]
- Porai-Koshits, B.A.; Remizov, A.L. Synthesis and properties of azomethines from weakly basic aromatic amines. Zhurn. Obshch. Khim. 1954, 24, 372–375. (In Russian) [Google Scholar]
- Zhizhko, P.A.; Zhizhin, A.A.; Zarubin, D.N.; Ustynyuk, N.A.; Lemenovskii, D.A.; Shelimov, B.N.; Kustov, L.M.; Tkachenko, O.P.; Kirakosyan, G.A. Oxo/imido heterometathesis of N-sulfinylamines and carbonyl compounds catalyzed by silica-supported vanadium oxochloride. J. Catal. 2011, 283, 108–118. [Google Scholar] [CrossRef]
- Zhou, C.; Xu, J. Synthesis of New C2-Symmetric Chiral Bisamides from (1S,2S)-Cyclohexane-1,2-dicarboxylic Acid. HCA 2014, 97, 1396–1405. [Google Scholar] [CrossRef]
- Benbouguerra, K.; Chafaa, S.; Chafai, N.; Mehri, M.; Moumeni, O.; Hellal, A. Synthesis, spectroscopic characterization and a comparative study of the corrosion inhibitive efficiency of an α-aminophosphonate and Schiff base derivatives: Experimental and theoretical investigations. J. Mol. Struct. 2018, 1157, 165–176. [Google Scholar] [CrossRef]
- Miiller, E.; Kettler, R.; Wiessler, M. Synthesen von α-C-funktionellen N-Nitrosodialkylaminen: Ester und Ether von 1-[(Alkyl)(nitroso)amino]alkoholen. Liebigs Ann. Chem. 1984, 1984, 1468–1493. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision, C.01; Gaussian, Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Xiong, J.-Q.; Kurade, M.B.; Abou-Shanab, R.A.I.; Ji, M.-K.; Choi, J.; Kim, J.O.; Jeon, B.-H. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresour. Technol. 2016, 205, 183–190. [Google Scholar] [CrossRef]
- Lichtenthaler, H. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. [Google Scholar] [CrossRef]
- Maslivets, A.N.; Khramtsova, E.E.; Lystsova, E.A. Method of Preparing 3a-aroyl-2-isopropyl-3-(isopropylimino)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-triones Exhibiting Antioxidant Activity. Russia Patent RU2810075C1, 21 December 2023. [Google Scholar]
Entry | Solvent | Time, 2 min | Temperature, °C | HPLC Yield 3 of 3a, % |
---|---|---|---|---|
1 | acetone | 15 | 56 | traces |
2 | acetonitrile | 30 | 85 | 25 |
3 | benzene | 180 | 85 | 80 |
4 | butyl acetate | 90 | 126 | 41 |
5 | chloroform | 300 | 65 | 90 |
6 | 1,4-dioxane | 180 | 105 | 66 |
7 | DMAA | 5 | 120 | traces |
8 | DMF | 5 | 120 | traces |
9 | DMSO | 5 | 120 | traces |
10 | NMP | 5 | 120 | traces |
11 | THF | 30 | 70 | 42 |
12 | toluene | 30 | 115 | 69 |
13 | o-xylene | 30 | 120 | 36 |
Entry | Ar | R1 | R2 | HPLC Yield of 3, % | Isolated Yield 3 of 3, % | |
---|---|---|---|---|---|---|
Conditions A 1 | Conditions B 2 | |||||
3a | Ph | Ph | Ph | 90 | 80 | 52 |
3b | C6H4Me-4 | Ph | Ph | 81 | 48 | 18 |
3c | C6H4F-4 | Ph | Ph | n/d 4 | 29 | 25 |
3d | C6H4Br-4 | Ph | Ph | n/d | 18 | 17 |
3e | 2-furyl | Ph | Ph | n/d | 72 | 47 |
3f | 2-thienyl | Ph | Ph | n/d | 47 | 45 |
3g | Ph | C6H4NO2-3 | trans-CH=CHPh | 22 | 14 | 12 |
3h | Ph | Ph | C6H4I-4 | 33 | 36 | 28 |
3i | Ph | C6H4OMe-4 | C6H4Br-4 | 53 | 63 | 28 |
3j | Ph | C6H4Cl-4 | C6H3(OMe)2-3,4 | n/d | 42 | 32 5 |
3k | Ph | Ph | C6H3(OMe)2-3,4 | 43 | 44 | 23 5 |
3l | Ph | Bn | C6H4Br-4 | 37 | 34 | 33 |
3m | Ph | N=CHPh | Ph | n/d | n/d | 26 |
Elementary Stage | ΔE | ΔH | ΔG |
---|---|---|---|
1a + 2a → OC | −7.2 | −5.6 | 6.7 |
OC → I2 | 12.1 | 12.4 | 16.4 |
OC → TS | 4.3 | 4.2 | 9.8 |
OC → TS′ | 5.3 | 4.7 | 11.4 |
OC → 3a | −32.1 | −30.5 | −24.7 |
OC → 3′a | −37.1 | −35.4 | −29.4 |
Entry | Solvent | Time, 2 min | Temperature, °C | HPLC Yield 3 of 8a, % |
---|---|---|---|---|
1 | acetone | 60 | 56 | 31 |
2 | acetonitrile | 30 | 85 | 74 |
3 | benzene | 60 | 85 | 50 |
4 | butyl acetate | 10 | 126 | 44 |
5 | chloroform | 180 | 65 | 35 |
6 | 1,4-dioxane | 40 | 105 | 96 |
7 | DMAA | 5 | 120 | 16 |
8 | DMF | 5 | 120 | 0 |
9 | NMP | 5 | 120 | 0 |
10 | THF | 180 | 70 | 49 |
11 | toluene | 20 | 115 | 56 |
12 | p-xylene | 40 | 120 | 36 |
Entry | Ar | Alk | HPLC Yield 1 of 8, % | Isolated Yield 2 of 8, % |
---|---|---|---|---|
8a | Ph | Cy | 56 | 44 |
8b | C6H4Me-4 | Cy | 65 | 15 |
8c | C6H4F-4 | Cy | 68 | 11 |
8d | C6H4Br-4 | Cy | 52 | 31 |
8e | 2-furyl | Cy | 62 | 45 |
8f | 2-thienyl | Cy | 59 | 59 |
8g | C6H4Cl-4 | Cy | 58 | 25 |
8h | Ph | Pr-i | 71 | 65 |
8i | C6H4Me-4 | Pr-i | 75 | 75 |
8j | C6H4Cl-4 | Pr-i | 73 | 72 |
Entry | Difference 1 in Algae Cell Concentration between Cultures Containing the Compounds under Study and Control Cultures | ||
---|---|---|---|
Concentration of Compounds in Culture Medium | |||
1 × 10−5 mol/L | 1 × 10−6 mol/L | 1 × 10−7 mol/L | |
3a | 13.7 2 | −2.7 | −9.1 |
8a | −21.5 | −18.7 | 3.2 |
8h | −5.8 | −0.5 | −5.7 |
8i | −7.4 | −8.3 | −3.3 |
8j | −12.7 | 6.3 | 15.1 2 |
Glucose (2 g/L) | 102.6 |
Parameter | Negative Control 1 | Positive Control 2 | 1 × 10−4 mol/L | 1 × 10−5 mol/L | 1 × 10−6 mol/L | 1 × 10−7 mol/L |
---|---|---|---|---|---|---|
Concentration of cells, 106 cell/mL | 20.73 ± 1.05 3 | 75.00 ± 1.08 | 17.01 ± 0.32 | 20.56 ± 0.91 | 23.93 ± 0.71 | 22.86 ± 0.85 |
Chlorophyll a, μg/107 cells | 1.713 ± 0.064 | 1.873 ± 0.002 | 2.310 ± 0.094 | 1.842 ± 0.004 | 1.546 ± 0.066 | 1.520 ± 0.150 |
Chlorophyll b, μg/107 cells | 1.723 ± 0.046 | 1.994 ± 0.015 | 2.223 ± 0.089 | 1.797 ± 0.029 | 1.512 ± 0.047 | 1.540 ± 0.130 |
Carotenoids, μg/107 cells | 0.203 ± 0.015 | n/d 4 | 0.235 ± 0.010 | 0.210 ± 0.018 | 0.173 ± 0.016 | 0.169 ± 0.007 |
Parameter | Negative Control 1 | Positive Control 2 | 1 × 10−4 mol/L | 1 × 10−5 mol/L | 1 × 10−6 mol/L | 1 × 10−7 mol/L |
---|---|---|---|---|---|---|
Concentration of cells, 106 cell/mL | 19.10 ± 2.00 3 | 70.13 ± 0.50 | 20.50 ± 0.62 | 18.40 ± 2.67 | 17.60 ± 0.36 | 18.93 ± 1.83 |
Chlorophyll a, μg/107 cells | 1.795 ± 0.041 | 1.818 ± 0.082 | 1.631 ± 0.066 | 1.904 ± 0.106 | 2.033 ± 0.053 | 1.807 ± 0.041 |
Chlorophyll b, μg/107 cells | 1.738 ± 0.060 | 1.787 ± 0.077 | 1.609 ± 0.097 | 1.859 ± 0.116 | 2.043 ± 0.096 | 1.729 ± 0.047 |
Carotenoids, μg/107 cells | 0.207 ± 0.021 | n/d 4 | 0.187 ± 0.011 | 0.213 ± 0.029 | 0.222 + 0.014 | 0.215 + 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lystsova, E.A.; Novokshonova, A.D.; Khramtsov, P.V.; Novikov, A.S.; Dmitriev, M.V.; Maslivets, A.N.; Khramtsova, E.E. Reaction of Pyrrolobenzothiazines with Schiff Bases and Carbodiimides: Approach to Angular 6/5/5/5-Tetracyclic Spiroheterocycles. Molecules 2024, 29, 2089. https://doi.org/10.3390/molecules29092089
Lystsova EA, Novokshonova AD, Khramtsov PV, Novikov AS, Dmitriev MV, Maslivets AN, Khramtsova EE. Reaction of Pyrrolobenzothiazines with Schiff Bases and Carbodiimides: Approach to Angular 6/5/5/5-Tetracyclic Spiroheterocycles. Molecules. 2024; 29(9):2089. https://doi.org/10.3390/molecules29092089
Chicago/Turabian StyleLystsova, Ekaterina A., Anastasia D. Novokshonova, Pavel V. Khramtsov, Alexander S. Novikov, Maksim V. Dmitriev, Andrey N. Maslivets, and Ekaterina E. Khramtsova. 2024. "Reaction of Pyrrolobenzothiazines with Schiff Bases and Carbodiimides: Approach to Angular 6/5/5/5-Tetracyclic Spiroheterocycles" Molecules 29, no. 9: 2089. https://doi.org/10.3390/molecules29092089
APA StyleLystsova, E. A., Novokshonova, A. D., Khramtsov, P. V., Novikov, A. S., Dmitriev, M. V., Maslivets, A. N., & Khramtsova, E. E. (2024). Reaction of Pyrrolobenzothiazines with Schiff Bases and Carbodiimides: Approach to Angular 6/5/5/5-Tetracyclic Spiroheterocycles. Molecules, 29(9), 2089. https://doi.org/10.3390/molecules29092089