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Abstract: 1H-Pyrrole-2,3-diones, fused at [e]-side with a heterocycle, are suitable platforms for
the synthesis of various angular polycyclic alkaloid-like spiroheterocycles. Recently discovered
sulfur-containing [e]-fused 1H-pyrrole-2,3-diones (aroylpyrrolobenzothiazinetriones) tend to exhibit
unusual reactivity. Based on these peculiar representatives of [e]-fused 1H-pyrrole-2,3-diones, we
have developed an approach to an unprecedented 6/5/5/5-tetracyclic alkaloid-like spiroheterocyclic
system of benzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole via their reaction with Schiff bases and car-
bodiimides. The experimental results have been supplemented with DFT computational studies. The
synthesized alkaloid-like 6/5/5/5-tetracyclic compounds have been tested for their biotechnological
potential as growth stimulants in the green algae Chlorella vulgaris.

Keywords: carbodiimide; Chlorella; DFT calculations; nitrogen heterocycle; 1H-pyrrole-2,3-dione;
Schiff base; sulfur heterocycle

1. Introduction

To improve the clinical success, reduce the undesirable side effects caused by the
binding promiscuity of drug candidates, and speed up the lead optimization process, it is
necessary to look for ways to expand the medicinal chemistry synthetic toolbox to be able
to target more complex three-dimensional (3D) chemical space [1–4]. The 3D shape of a
molecule is the most important factor determining its biological activity [5–7]. Due to these,
angular polycyclic alkaloid-like spirocycles are attractive objects for drug discovery and
related studies [8].

[e]-Fused 1H-pyrrole-2,3-diones (FPDs) (Figure 1) are versatile starting materials
for the synthesis of various heterocyclic systems [9–12], including angular polycyclic
alkaloid-like spiroheterocycles (for example, 6/6/5/5- [13], 6/6/5/6- [14], 6/6/5/6/6- [15],
6/6/5/6/5- [15], 6/5/7/5- [16], 6/5/7/6- [17], 6/6/5/7/6- [18], 6/7/5/6- [19], 5/6/5/6-
systems [20] and some others (Figure 1)).

Exploring the scope of the recently discovered by us nucleophile-induced ring contrac-
tion reaction in FPDs [21], we unexpectedly found an approach to an unprecedented angu-
lar 6/5/5/5-tetracyclic alkaloid-like spiroheterocyclic system of benzo[d]pyrrolo[3′,4′:2,3]
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pyrrolo[2,1-b]thiazole (Figure 2). Such a 6/5/5/5-tetracyclic framework is a quite inter-
esting one, since it is present in natural products (retigeranic acid, a sesterterpene from
Himalayan lichens Lobaria retigera and Lobaria subretigeria [22]) and synthetic biologically
active molecules [23,24] (Figure 2).
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Thus, herein, we report the first synthetic approach to an unprecedented 6/5/5/5-
tetracyclic alkaloid-like spiroheterocyclic system of benzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-
b]thiazole (Figure 2) via the reaction of pyrrolobenzothiazines (FPDs incorporating 1,4-
benzothiazine moiety) with Schiff bases and carbodiimides. The experimental results were
supplemented with DFT computational studies to elucidate the mechanism and stereoselec-
tivity of the reaction. The biotechnological potential of the reported benzo[d]pyrrolo[3′,4′:2,3]
pyrrolo[2,1-b]thiazoles as growth stimulants and promoters of pigments accumulation in
the green algae Chlorella vulgaris was demonstrated.

2. Results and Discussion
2.1. Chemistry

Recently, we reported [25] a new class of FPDs, aroylpyrrolobenzothiazinetriones
(APBTTs) 1 (Scheme 1). APBTTs 1 were found to react as oxadienes in a hetero-Diels–Alder
reaction with electron-rich dienophiles (alkoxyolefins, styrene) (Scheme 1) [25], which is a
quite common reactivity for other known types of FPDs and monocyclic 1H-pyrrole-2,3-
diones [9,10,14,15]. However, under the action of mononucleophiles (amines and alcohols),
APBTTs 1 were found to undergo a ring-contraction reaction (Scheme 1) [21], which greatly
distinguished their reactivity from the reactivity of their 5-oxa- and 5-aza-analogues [10].
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Scheme 1. Reactivity APBTTs 1 in the reactions with electron-rich dienophiles and mononucleophiles.

5-Oxa- and 5-aza-analogues of APBTTs 1 seem not to react with Schiff bases and
carbodiimides (C=N reagents) without thermal decomposition (for such reactions under
thermal decomposition conditions, see the work presented in [12]). At the same time, mono-
cyclic 1H-pyrrole-2,3-diones are known to react with carbodiimides as oxadienes in formal
hetero-Diels–Alder reactions to produce the corresponding cycloadducts (Scheme 2) [26].
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Scheme 2. Reaction of monocyclic 1H-pyrrole-2,3-diones with carbodiimides.

Considering the tendency for the unusual reactivity of APBTTs 1, we studied their
reaction with Schiff bases and carbodiimides under conditions without thermal decom-
position of APBTTs 1 (for thermal decomposition of APBTTs 1, see the work presented
in [27]).

To start with, we tested the reaction of APBTT 1a with N-benzylideneaniline 2a
(Scheme 3). As a result, 6/5/5/5-tetracyclic product 3a was isolated by a simple crystalliza-
tion from the reaction mixture in the yield of 52% (Scheme 3). Compound 3a was obtained
as a single (3R*,3aS*,11aR*)-diastereomer, and its structure was unequivocally determined
by a single crystal X-ray analysis (CCDC 2341688).
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Obviously, our hypothesis of the unusual reactivity of APBTTs 1 in reactions with
C=N reagents was confirmed, which justified a more in-depth study of this transformation.

Next, we carried out a series of experiments to optimize the conditions of the reaction
of APBTT 1a with Schiff base 2a (Table 1).

Table 1. Optimization of the reaction of APBTT 1a with Schiff base 2a under various conditions 1.

Entry Solvent Time, 2 min Temperature, ◦C HPLC Yield 3 of 3a, %

1 acetone 15 56 traces
2 acetonitrile 30 85 25
3 benzene 180 85 80
4 butyl acetate 90 126 41
5 chloroform 300 65 90
6 1,4-dioxane 180 105 66
7 DMAA 5 120 traces
8 DMF 5 120 traces
9 DMSO 5 120 traces

10 NMP 5 120 traces
11 THF 30 70 42
12 toluene 30 115 69
13 o-xylene 30 120 36

1 Reaction scale: a mixture of APBTT 1a (29.8 µmol, 10 mg), Schiff base 2a (29.8 µmol, 5.4 mg), and an anhydrous
solvent (500 µL) was stirred in an oven-dried closed microreaction V-vial. 2 The reaction progress was monitored
visually by the disappearance of the dark violet color characteristic of APBTT 1a. 3 Biphenyl was used as an
internal standard; each entry was carried out in duplicate, and the yields are given as mean values.

According to Table 1, APBTT 1a and Schiff base 2a reacted most quickly in polar
solvents (acetone, DMAA, DMSO, DMF, NMP (entries 1, 7–10, Table 1)), but the reaction
proceeded unselectively (a difficult to identify mixture of products was observed), and only
trace amounts of the target product 3a were formed. Interestingly, in acetonitrile (entry
2, Table 1), which is a polar solvent too, the reaction yield was much higher, which could
indicate that the low yields of the product 3a in polar solvents were caused not only by
the polarity of these solvents, but also by their specific solvation effects and their ability to
react with the reaction intermediates. In nonpolar solvents (entries 3–6, 12, 13 Table 1), the
reaction proceeded much slower and was more selective towards the product 3a. The best
yield of the product 3a (HPLC yield of 90%) was observed in chloroform when heated for
5 h (entry 5, Table 1).

It should be mentioned that, during the optimization of the reaction of APBTT 1a
with the Schiff base 2a at room temperature in anhydrous butyl acetate, acetonitrile, and
acetone, we observed the formation of product 4a in significant amounts (Scheme 4). Under
these conditions, the reaction proceeded very slowly (about a month), and obviously, side
reactions took place. Since the reaction vials were not sealed, it could be assumed that
atmospheric moisture affected the reaction (Scheme 4). Moreover, the reaction of APBTT
1a with the Schiff base 2a at room temperature in acetic acid, containing traces of water,
produced compound 4a in 24 h in a very good isolated yield (86%) (Scheme 4).
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moisture at room temperature.

To prove our hypothesis of the formation of compound 4a, we carried out a reaction
of APBTTs 1a,b with aniline 5a and benzylamine 5b (Scheme 5). As a result, we isolated
target products 4a,b in yields of 95% and 46%, respectively. The structure of compound 4b
was unequivocally confirmed by a single crystal X-ray analysis (CCDC 2341690).
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Then, we performed reactions of APBTTs 1a–f with Schiff bases 2a–g and azine 2h to
determine the reactant scope (Table 2).

As a result, we found that the reaction of APBTTs 1 with Schiff bases 2 performed under
optimized conditions (chloroform as the solvent) produced target products 3 in poor to very
good HPLC yields (Conditions A, Table 2). However, our attempts to isolate products 3 from
such reaction mixtures (in scale of 298 µmol) were unsuccessful. Moreover, we observed
that compounds 3 underwent unfavorable transformations during our attempts to isolate
and purify them by column chromatography. For these reasons, we replaced chloroform
with benzene in these reactions. As a result, we noticed a decreasing tendency in the HPLC
yields of products 3 (Conditions B, Table 2), which correlated with the optimization data
for the test reaction of APBTT 1a with Schiff base 2a (Table 1). However, products 3 were
easily isolated and purified by simple crystallization directly from the reaction mixtures (in
scale of 298 µmol, benzene).

We also observed that the nature of the aryl substituents in the examined (Table 2)
APBTTs 1 and Schiff bases 2 did not significantly affect the yields of the corresponding prod-
ucts 3. However, the reactions of APBTT 1a with 1-phenyl-N-(pyridin-2-yl)methanimine
2i, 1-((phenylimino)methyl)naphthalen-2-ol 2j, N-(4-nitrophenyl)-1-phenylmethanimine,
N-mesityl-1-(4-nitrophenyl)methanimine 2k, N-(2-chlorophenyl)-1-phenylmethanimine
2l, and N,N-dimethyl-4-((phenylimino)methyl)aniline 2m did not produce the desired
products 3, which was possibly caused by the presence of additional nucleophilic centers,
o-substituents, or strong electron-withdrawing groups in the molecules of these Schiff bases.
Moreover, the reaction with N-benzylmethanimine 2n did not give the corresponding



Molecules 2024, 29, 2089 6 of 23

product 3 too, possibly due to the absence of aromatic substituent at the CH part of this
Schiff base, which could stabilize reaction intermediates.

Table 2. The reaction of APBTTs 1a–f with Schiff bases 2a–g and azine 2h.
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Entry Ar R1 R2
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3e 2-furyl Ph Ph n/d 72 47
3f 2-thienyl Ph Ph n/d 47 45
3g Ph C6H4NO2-3 trans-CH=CHPh 22 14 12
3h Ph Ph C6H4I-4 33 36 28
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3k Ph Ph C6H3(OMe)2-3,4 43 44 23 5

3l Ph Bn C6H4Br-4 37 34 33
3m Ph N=CHPh Ph n/d n/d 26

1 Conditions A: a mixture of APBTT 1 (29.8 µmol), Schiff base 2 (29.8 µmol), and anhydrous chloroform (500 µL)
was stirred in an oven-dried closed microreaction V-vial at 65 ◦C, until a clear orange or yellow solution formed.
2 Conditions B: a mixture of APBTT 1 (29.8 µmol), Schiff base 2 (29.8 µmol) and anhydrous benzene (2.5 mL)
was stirred in an oven-dried closed microreaction V-vial at 85 ◦C, until a clear orange or yellow solution formed.
3 Reaction conditions are given in Section 3.1.2. 4 n/d = this was not done. 5 Data only for (3R*,3aS*,11aR*)-
diastereomer is given.

Noteworthy, when synthesizing product 3d, we succeeded in isolating by-product
6d from the reaction mixture in the isolated yield of 2% (Scheme 6). The structure of
compound 6d was unequivocally confirmed by a single crystal X-ray analysis (CCDC
2341691). Apparently, the formation of product 6d proceeded through an intermediate A
(conditions for formation of compounds A were discussed in the work presented in [21])
and the hydrolysis of Schiff base 2a (Scheme 6).
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Moreover, in cases of compounds 3j and 3k, we succeeded in isolating their stereoiso-
mers, compounds 3′j and 3′k (isolated yields of 7 and 28%, respectively). Indeed, for
structures of compounds 3, there are four possible diastereomers with (3R*,3aS*,11aR*),
(3S*,3aS*,11aR*), (3S*,3aR*,11aR*), and (3R*,3aR*,11aR*) relative configurations (Figure 3).
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In our scope studies (Table 2), we isolated exclusively (3R*,3aS*,11aR*) diastereomers for
compounds 3a–i,l,m. In our scope studies (Table 2), we were unable to detect and de-
termine any other diastereomers by HPLC due to the absence of their reference samples;
NMR spectra of crude reaction mixtures were also not suitable for these purposes. But, in
cases of compounds 3j and 3k, we isolated both (3R*,3aS*,11aR*) diastereomers 3j,k and
their stereoisomers 3′j,k with unknown relative configurations. Diastereomers 3′j,k were
found to be unstable in HPLC studies, long NMR experiments in solutions and during our
attempts to grow a crystal suitable for a single crystal X-ray analysis, which was possibly
caused by their reaction with water.
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Figure 3. Possible diastereomers of compounds 3.

The 1H NMR and IR spectra of compounds 3j,k and compounds 3′j,k are very similar
and cannot be used for their identification relative to each other. But their 13C NMR spectra
are quite different in the region of 62–82 ppm (where sp3 atoms—C3, C3a, C11a—appear),
which is enough to distinguish them from each other. Fragments of their 13C NMR spectra
in these regions look as follows:

13C NMR of 3j (100 MHz, DMSO-d6): δ = 79.3, 66.0, 65.2 ppm;

13C NMR of 3′j (100 MHz, DMSO-d6): δ = 79.2, 70.6, 64.2 ppm;
13C NMR of 3k (100 MHz, DMSO-d6): δ = 79.6, 65.7, 65.5 ppm;
13C NMR of 3′k (100 MHz, DMSO-d6): δ = 79.3, 70.8, 64.5 ppm.

However, this information is not enough to determine the relative configuration of
compounds 3′.

Then, to elucidate the possible mechanism of the reaction and compare the thermo-
dynamics and kinetics of possible stereoisomers formation, we performed computational
DFT studies of a model reaction between the APBTT 1a and Schiff base 2a (Scheme 7). We
proposed several reaction pathways for 1a → 3a transformation (Scheme 7), but the results
of DFT calculations revealed only one, very energetically unprofitable, intermediate I2
on the potential energy surface and indicated that the formation of product 3a occurred
directly from the orientation complex OC. The hypothetical transformation OC → 3a (via
transition state TS (Figure 4)) is less thermodynamically profitable (by 4.7 kcal/mol in
terms of Gibbs-free energies of reaction, Table 3, Figure 5) compared to the alternative
hypothetical transformation OC → 3′a (via transition state TS’ (Figure 4)) but more ki-
netically favorable (by 1.6 kcal/mol in terms of Gibbs-free energies of activation, Table 3,
Figure 5). Thus, diastereomer 3a is a kinetically controlled product, and diastereomer 3′a is
a thermodynamically controlled one (Figure 5).
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Table 3. Calculated values of the total electronic energies, enthalpies, and Gibbs-free energies of
reaction (∆E, ∆H, and ∆G in kcal/mol) for elementary stages of 1a → 3a (or 3′a) transformation 1.

Elementary Stage ∆E ∆H ∆G

1a + 2a → OC −7.2 −5.6 6.7
OC → I2 12.1 12.4 16.4
OC → TS 4.3 4.2 9.8
OC → TS′ 5.3 4.7 11.4
OC → 3a −32.1 −30.5 −24.7
OC → 3′a −37.1 −35.4 −29.4

1 The DFT calculations were carried out at the M06-2X/6-31G* level of theory.
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transformation.

Since our computational studies revealed only intermediate-I2-like transition states TS
and TS′ (their 3D structures are available in Supplementary Materials) in the reaction, and
these transition states could afford only diastereomers (3R*,3aS*,11aR*) and (3S*,3aS*,11aR*)
(Scheme 7), we suggest that compounds 3′j,k had (3S*,3aS*,11aR*) a relative configuration
(Figure 3).

Then, in order to expand the reagent scope of the reaction, we studied the reactions of
APBTTs 1 with carbodiimides 7.

First, we tested the reaction of APBTT 1a with N,N′-dicyclohexylcarbodiimide (DCC)
7a (Scheme 8). As we expected, 6/5/5/5-tetracyclic product 8a was isolated by a simple
crystallization from the reaction mixture in the yield of 44% (Scheme 8). Compound 8a was
obtained as a single diastereomer, and its structure was unequivocally determined by a
single crystal X-ray analysis (CCDC 2341689).
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Next, we performed the optimization of the reaction conditions (Table 4). As a result,
we did not observe any correlation between the polarity of the solvent and the yield of
the product 8a. The best yield of the product 8a (HPLC yield of 96%) was observed in
1,4-dioxane when heated for 40 min (entry 6, Table 4). Our optimization studies at room
temperature, as expected, revealed that reactions took place over 14 days, during which
time both APBTT 1a and DCC 7a underwent side reactions with water.

Table 4. Optimization of the reaction of APBTT 1a with DCC 7a under various conditions 1.

Entry Solvent Time, 2 min Temperature, ◦C HPLC Yield 3 of 8a, %

1 acetone 60 56 31
2 acetonitrile 30 85 74
3 benzene 60 85 50
4 butyl acetate 10 126 44
5 chloroform 180 65 35
6 1,4-dioxane 40 105 96
7 DMAA 5 120 16
8 DMF 5 120 0
9 NMP 5 120 0
10 THF 180 70 49
11 toluene 20 115 56
12 p-xylene 40 120 36

1 Reaction scale: a mixture of APBTT 1a (29.8 µmol, 10 mg), DCC 7a (31.3 µmol, 6.5 mg) and anhydrous solvent
(500 µL) was stirred in an oven-dried closed microreaction V-vial. 2 The reaction progress was monitored visually
by the disappearance of the dark violet color characteristic of APBTT 1a. 3 Biphenyl was used as an internal
standard, each entry was carried out in duplicate, and the yields are given as mean values.

Then, we performed reactions of APBTTs 1a–g with carbodiimides 7a,b to determine
the reactant scope (Table 5). Initially, we tried to perform the scope examination under
optimal conditions in 1,4-dioxane (entry 6, Table 4). But under these conditions, our
attempts to isolate products 8 from such reaction mixtures (in scale of 298 µmol) were
unsuccessful, and we observed that compounds 8 underwent unfavorable transformations
during our attempts to isolate and purify them by column chromatography. A similar
situation was observed when we tried to apply acetonitrile as the reaction solvent (entry 2,
Table 4). Thus, we had to carry out these reactions in toluene (entry 11, Table 4). In toluene,
products 8 were easily isolated by simple crystallization from the reaction mixtures.

Table 5. The reaction of APBTTs 1a–g with carbodiimides 7a,b.
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was stirred in an oven-dried closed microreaction V-vial. 2 Reaction conditions are given in Section 3.1.3.
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As a result, we found that the reaction of APBTTs 1 with carbodiimides 7 performed
in toluene produced target products 8 in fair to good HPLC yields (Table 5). We observed
that the nature of the aryl substituents in examined (Table 5) APBTTs 1 did not significantly
affect the yields of the corresponding products 8.

2.2. Biology

The green unicellular algae Chlorella vulgaris serves as a source of valuable metabo-
lites for the food industry [28–30], agriculture [22–34], cosmetics [35–37], and biodiesel
production [38–42]. There is a significant demand for chemical stimulants that promote the
growth of this algae, as well as the accumulation of lipids [43–45], proteins [46,47], carbo-
hydrates [48–50], and pigments [51] such as chlorophylls [52,53] and carotenoids [54–58].
We selected several synthesized compounds with favorable characteristics, such as high
synthesis yield and improved solubility in polar solvents. These compounds were added
in varying concentrations to C. vulgaris cultures, which were then cultivated, followed by
the measurement of algae growth (cell concentration) and the accumulation of pigments.

The bioactivity study was conducted in two stages. Initially, a screening experiment in
small volumes of algal cultures (96-well plates) was performed (Table 6). Two compounds
(3a and 8j) that promoted the growth of C. vulgaris were further analyzed in a subsequent
experiment. Algae were grown in 50-mL Erlenmeyer flasks in the presence of the tested
compounds at concentrations ranging from 1 × 10−7 mol/L to 1 × 10−4 mol/L. Glucose
served as a positive control due to its ability to enhance algae growth, while the negative
control was culture fluid containing 1% DMSO, which was used for the dilution of the
tested compounds.

Table 6. The difference in algae cell concentration between cultures containing the compounds under
study and the control cultures.

Entry

Difference 1 in Algae Cell Concentration between Cultures
Containing the Compounds under Study and Control Cultures

Concentration of Compounds in Culture Medium

1 × 10−5 mol/L 1 × 10−6 mol/L 1 × 10−7 mol/L

3a 13.7 2 −2.7 −9.1
8a −21.5 −18.7 3.2
8h −5.8 −0.5 −5.7
8i −7.4 −8.3 −3.3
8j −12.7 6.3 15.1 2

Glucose (2 g/L) 102.6
1 Expressed as a percentage of the negative control. 2 Bold indicates conditions that result in cell concentrations
exceeding the established threshold (mean of control plus three standard deviations).

Both 3a and 8j increased the chlorophyll content in cells and/or algae growth at
specific concentrations (Tables 7 and 8). The most notable effect was the nearly 30% increase
in chlorophyll content in cells in the presence of 1 × 10−4 mol/L 3a, although this was
accompanied by a 17.8% decrease in cell growth. Chlorophylls are utilized as natural
colorants in the food, cosmetics, and textile industries [59]. As C. vulgaris cells are enriched
with chlorophyll (up to 4.5% of dry weight), it can be considered one of the most prominent
natural sources of these pigments with substantial commercial potential [60]. Therefore,
the synthesized compounds can be utilized to enhance the efficiency of algal chlorophyll
production for industrial applications.

Table 7. The impact of adding compound 3a on the concentration of Chlorella cells and the cellular
content of pigments.

Parameter Negative Control 1 Positive Control 2 1 × 10−4 mol/L 1 × 10−5 mol/L 1 × 10−6 mol/L 1 × 10−7 mol/L

Concentration of cells, 106 cell/mL 20.73 ± 1.05 3 75.00 ± 1.08 17.01 ± 0.32 20.56 ± 0.91 23.93 ± 0.71 22.86 ± 0.85
Chlorophyll a, µg/107 cells 1.713 ± 0.064 1.873 ± 0.002 2.310 ± 0.094 1.842 ± 0.004 1.546 ± 0.066 1.520 ± 0.150
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Table 7. Cont.

Parameter Negative Control 1 Positive Control 2 1 × 10−4 mol/L 1 × 10−5 mol/L 1 × 10−6 mol/L 1 × 10−7 mol/L

Chlorophyll b, µg/107 cells 1.723 ± 0.046 1.994 ± 0.015 2.223 ± 0.089 1.797 ± 0.029 1.512 ± 0.047 1.540 ± 0.130
Carotenoids, µg/107 cells 0.203 ± 0.015 n/d 4 0.235 ± 0.010 0.210 ± 0.018 0.173 ± 0.016 0.169 ± 0.007

1 Culture medium with 1% of DMSO. 2 Culture medium with 1% of DMSO and 2 g/L of glucose. 3 Mean of three
flasks ± standard deviation. 4 n/d = this was not done.

Table 8. The impact of adding compound 8j on the concentration of Chlorella cells and the cellular
content of pigments.

Parameter Negative Control 1 Positive Control 2 1 × 10−4 mol/L 1 × 10−5 mol/L 1 × 10−6 mol/L 1 × 10−7 mol/L

Concentration of cells, 106 cell/mL 19.10 ± 2.00 3 70.13 ± 0.50 20.50 ± 0.62 18.40 ± 2.67 17.60 ± 0.36 18.93 ± 1.83
Chlorophyll a, µg/107 cells 1.795 ± 0.041 1.818 ± 0.082 1.631 ± 0.066 1.904 ± 0.106 2.033 ± 0.053 1.807 ± 0.041
Chlorophyll b, µg/107 cells 1.738 ± 0.060 1.787 ± 0.077 1.609 ± 0.097 1.859 ± 0.116 2.043 ± 0.096 1.729 ± 0.047
Carotenoids, µg/107 cells 0.207 ± 0.021 n/d 4 0.187 ± 0.011 0.213 ± 0.029 0.222 + 0.014 0.215 + 0.025

1 Culture medium with 1% of DMSO. 2 Culture medium with 1% of DMSO and 2 g/L of glucose. 3 Mean of three
flasks ± standard deviation. 4 n/d = this was not done.

3. Materials and Methods
3.1. Synthetic Methods and Analytic Data of Compounds
3.1.1. General Information

1H and 13C NMR spectra (Supplementary Materials) were acquired on a Bruker
Avance III 400 HD spectrometer (Bruker BioSpin AG, Faellanden, Switzerland) (at 400
and 100 MHz, respectively) in CDCl3 or DMSO-d6, using solvent residual signals (in 13C
NMR, 77.00 for CDCl3, 39.52 for DMSO-d6; in 1H NMR, 7.26 for CDCl3, 2.50 for DMSO-d6)
as internal standards. 19F NMR spectra (Supplementary Materials) were acquired on a
Bruker Avance III 400 HD spectrometer (Bruker BioSpin AG, Faellanden, Switzerland) (at
376 MHz) in CDCl3 or DMSO-d6 using no internal standard. IR spectra were recorded on a
Perkin–Elmer Spectrum Two spectrometer (PerkinElmer Inc., Waltham, MA, USA) from
mulls in mineral oil. Melting points were measured on a Mettler Toledo MP70 apparatus
(Mettler-Toledo (MTADA), Schwerzenbach, Switzerland). Elemental analyses were carried
out on a Vario MICRO Cube analyzer (Elementar Analysensysteme GmbH, Langenselbold,
Germany). The reaction conditions were optimized using HPLC-UV on Hitachi Chromaster
(Hitachi High-Tech, Tokyo, Japan) [NUCLEODUR C18 Gravity column (particle size 3 µm;
eluent acetonitrile–water, flow rate 1.5 mL/min); Hitachi Chromaster 5430 diode array
detector (λ 210–750 nm)]. The single crystal X-ray analyses of compounds 3a, 4b, 6d,
8a were performed on an Xcalibur Ruby diffractometer (Agilent Technologies, Wroclaw,
Poland). The empirical absorption correction was introduced by a multi-scan method
using the SCALE3 ABSPACK algorithm [61]. Using OLEX2 [62], the structures were solved
with the SHELXT [63] or SUPERFLIP [64] program and refined by the full-matrix least-
squares minimization in the anisotropic approximation for all non-hydrogen atoms with the
SHELXL [65] program. Hydrogen atoms bound to carbon were positioned geometrically
and refined using a riding model. The hydrogen atoms of NH and OH groups were refined
independently with isotropic displacement parameters. The APBTTs 1a–g were obtained
according to reported procedures [21,25]. The compounds 2a–n were obtained according
to the reported procedures [66–80]. Benzene, toluene, o-xylene, p-xylene, 1,4-dioxane, and
THF for procedures with compounds 1 were distilled over Na before use. Acetone, butyl
acetate, and chloroform for procedures with compounds 1 were distilled over P2O5 before
the use. DMAA, DMF, DMSO, NMP, and acetonitrile for procedures with compounds 1
were dried over molecular sieves 4Å before the use. All procedures with APBTTs 1 were
performed in an oven-dried glassware. All other solvents and reagents were purchased
from commercial vendors and were used as received. Thin-layer chromatography (TLC)
was performed on ALUGRAM Xtra SIL G/UV254 silica gel 60 plates (Macherey-Nagel,
Düren, Germany) using EtOAC/toluene, 1:5 v/v, EtOAc, toluene as eluents; spots were
visualized with iodine vapor and/or UV light (254, 365 nm) in the light of a TLC viewing
cabinet Petrolaser TLC-254/365 Thin Layer Chromatography Dark Room (Petrolaser, St.
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Petersburg, Russia). In 13C NMR spectra of compounds 3a,c–g,i, 3′j, 8d–f,i,j, signals of
some aromatic carbons could not be found.

3.1.2. Procedure to Compounds 3a–m

A mixture of APBTT 1 (0.298 mmol) and Schiff base 2 (0.298 mmol) in benzene (5 mL)
was heated for 3–24 h at 85 ◦C (until the dark violet color characteristic of APBTT 1
disappeared and a transparent yellow solution formed). Then, the reaction mixture was
cooled to room temperature.

(3R*,3aS*,11aR*)-3a-Benzoyl-2,3-diphenyl-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]
thiazole-1,4,5(2H)-trione (3a). The formed precipitate was filtered off. Then, the precip-
itate was stirred for 30 min at 40–45 ◦C in a mixture of toluene and ethanol (6:1 v/v, 3 mL).
After that, the precipitate was filtered off and washed with a small amount of toluene
(1 mL) and ethanol (1 mL) to produce compound 3a. Yield: 80.1 mg (52%); yellow solid;
mp 133–135 ◦C. 1H NMR (400 MHz, DMSO-d6): δ = 7.84 (m, 1H), 7.62 (m, 1H), 7.54–7.47
(m, 7H), 7.37 (m, 1H), 7.34 (m, 2H), 7.29 (m, 2H), 7.23 (m, 4H), 7.13 (m, 1H), 6.65 (s, 1H)
ppm. 13C NMR (100 MHz, DMSO-d6): δ = 192.8, 191.3, 165.1, 155.6, 136.2, 135.4, 134.9, 134.0,
133.7, 130.3, 128.9 (2C), 128.7 (2C), 128.6 (2C), 128.5 (2C), 128.3 (2C), 128.3, 126.5, 126.2, 124.4
(2C), 123.1, 117.4, 79.5, 66.0, 65.5 ppm. IR (mineral oil): 1763, 1716, 1678 cm−1. Anal. Calcd
(%) for C31H20N2O4S: C 72.08; H 3.90; N 5.42. Found: C 72.23; H 3.98; N 5.43.
(3R*,3aS*,11aR*)-3a-(4-Methylbenzoyl)-2,3-diphenyl-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo
[2,1-b]thiazole-1,4,5(2H)-trione (3b). The solvent was evaporated to 1 mL. The resulting pre-
cipitate was filtered off, washed with benzene (0.5 mL), and recrystallized from benzene
(2 mL) to produce compound 3b. Yield: 28 mg (18%); yellow solid; mp 180–182 ◦C. 1H
NMR (400 MHz, DMSO-d6): δ = 7.85 (m, 1 H), 7.52 (m, 3H), 7.43 (m, 2H), 7.34 (m, 2H), 7.30
(m, 3H), 7.27–7.17 (m, 6H), 7.13 (m, 1H), 6.67 (s, 1H), 2.33 (s, 3H) ppm. 13C NMR (100 MHz,
DMSO-d6): δ = 191.7, 191.4, 170.2, 165.1, 155.6, 144.7, 136.2, 134.8, 134.0, 132.5, 130.3, 129.5
(2C), 128.9 (2C), 128.7, 128.6 (2C), 128.5 (2C), 128.3, 126.5, 126.3, 124.4 (2C), 123.2, 117.4,
114.5, 79.4, 65.9, 65.4, 21.0 ppm. IR (mineral oil): 1785, 1716, 1672 cm−1. Anal. Calcd (%) for
C32H22N2O4S: C 72.44; H 4.18; N 5.28. Found: C 72.67; H 4.28; N 5.32.
(3R*,3aS*,11aR*)-3a-(4-Fluorobenzoyl)-2,3-diphenyl-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo
[2,1-b]thiazole-1,4,5(2H)-trione (3c). The solvent was evaporated to 2.5 mL. The obtained mix-
ture was frozen. The resulting precipitate was filtered off, washed with benzene (0.5 mL),
and recrystallized from toluene (2 mL) to produce compound 3c. Yield: 40 mg (25%); yellow
solid; mp 111–113 ◦C. 1H NMR (400 MHz, DMSO-d6): δ = 7.82 (m, 1H), 7.67 (m, 2H), 7.52
(m, 3H), 7.39 (m, 2H), 7.33 (m, 2H), 7.29 (m, 1H), 7.25 (m, 4H), 7.22 (m, 2H), 7.18–7.11 (m,
3H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 191.6, 190.7, 165.2, 164.9 (d, J = 254.5 Hz),
155.8, 136.2, 134.8, 134.1, 132.0 (d, J = 10.1 Hz, 2C), 131.8 (d, J = 3.0 Hz), 130.7, 128.6 (2C),
128.6 (2C), 126.6, 126.1, 125.3, 124.4 (2C), 123.0, 117.6, 116.0 (d, J = 22.2 Hz, 2C), 79.9, 65.7,
65.5 ppm. 19F NMR (376 MHz, DMSO-d6): δ = −104.24 ppm. IR (mineral oil): 1735, 1697,
1658 cm−1. Anal. Calcd (%) for 2C31H19FN2O4S·C7H8: C 71.37; H 3.99; N 4.82. Found: C
71.51; H 4.08; N 4.99.
(3R*,3aS*,11aR*)-3a-(4-Bromobenzoyl)-2,3-diphenyl-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo
[2,1-b]thiazole-1,4,5(2H)-trione (3d). The solvent was evaporated to 2.5 mL, the reaction mass
was frozen. The resulting precipitate was filtered off, washed with benzene (0.5 mL), and
recrystallized from toluene (2 mL) to produce compound 3d. Yield: 30 mg (17%); yellow
solid; mp 207–209 ◦C. 1H NMR (400 MHz, DMSO-d6): δ = 7.81 (m, 1H), 7.75 (m, 2H), 7.53
(m, 5H), 7.33 (m, 1H), 7.29 (m, 2H), 7.26 (m, 4H), 7.22 (m, 2H), 7.13 (m, 1H), 6.57 (s, 1H)
ppm. 13C NMR (100 MHz, DMSO-d6): δ = 192.2, 190.5, 165.08, 155.6, 136.1, 134.8, 134.2,
133.9, 131.8 (2C), 130.6 (2C), 128.8, 128.6 (2C), 128.5 (2C), 128.1, 127.7, 126.4, 126.0, 124.2
(2C), 122.8, 117.5, 79.8, 65.7, 65.4 ppm. IR (mineral oil): 1757, 1728, 1701 cm−1. Anal. Calcd
(%) for C31H19BrN2O4S: C 62.53; H 3.22; N 4.70. Found: C 62.64; H 3.35; N 4.60.
(3R*,3aS*,11aR*)-3a-(Furan-2-carbonyl)-2,3-diphenyl-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo
[2,1-b]thiazole-1,4,5(2H)-trione (3e). The resulting precipitate was filtered off, washed with
benzene (1 mL) and recrystallized from toluene (2–3 mL). Then, the obtained crystals were
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stirred in a mixture of toluene and ethanol (5:1 v/v, 3 mL) at 50 ◦C for 10 min. Then, the
precipitate was filtered off to produce compound 3e. Yield: 71 mg (47%); yellow solid; mp
147–149 ◦C. 1H NMR (400 MHz, DMSO-d6): δ = 7.88 (m, 1H), 7.64 (m, 1H), 7.49 (m, 2H),
7.43 (m, 1H), 7.32 (m, 3H), 7.26 (m, 4H), 7.18 (m, 4H), 7.11 (m, 1H), 6.80 (s, 1H), 6.71 (m,
1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 191.3, 176.5, 165.4, 156.0, 149.7, 149.4, 136.4,
135.1, 133.9, 129.9, 129.3 (2C), 128.4, 128.3, 128.1, 127.7, 126.3, 126.1, 125.3, 124.7 (2C), 122.8,
121.8, 116.6, 114.3, 78.7, 65.5, 62.8 ppm. IR (mineral oil): 1770, 1732, 1716, 1674 cm−1. Anal.
Calcd (%) for 2C29H18N2O5S·C7H8: C 70.64; H 4.01; N 5.07. Found: C 70.82; H 4.11; N 5.00.
(3R*,3aS*,11aR*)-2,3-Diphenyl-3a-(thiophene-2-carbonyl)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]
pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3f). The resulting precipitate was filtered off, washed
with benzene (1 mL), and recrystallized from toluene (2–3 mL) to produce compound 3f.
Yield: 70 mg (45%); yellow solid; mp 169–171 ◦C. 1H NMR (400 MHz, DMSO-d6): δ = 8.15
(m, 1H), 7.87 (m, 1H), 7.51 (m, 3H), 7.40 (m, 1H), 7.35 (m, 1H), 7.31 (m, 4H), 7.26 (m, 2H),
7.23 (m, 2H), 7.21 (m, 2H), 7.17 (m, 1H), 7.12 (m, 1H), 6.75 (s, 1H) ppm. 13C NMR (100 MHz,
DMSO-d6): δ = 191.2, 182.1, 165.0, 155.2, 140.7, 137.9, 136.2, 134.7, 133.8, 130.3, 129.2, 128.9,
128.5, 128.4 (2C), 128.1 (2C), 126.3, 126.1, 125.2, 124.4 (2C), 123.0, 117.1, 79.1, 65.9, 64.6 ppm.
IR (mineral oil): 1762, 1715, 1650 cm−1. Anal. Calcd (%) for 2C29H18N2O4S2·C7H8: C 68.64;
H 3.90; N 4.93. Found: C 68.83; H 4.11; N 4.99.
(3R*,3aS*,11aR*)-3a-Benzoyl-2-(3-nitrophenyl)-3-((E)-styryl)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:
2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3g). The solvent was evaporated to 1 mL. The
resulting precipitate was filtered off, washed with benzene (0.5 mL), and recrystallized
from acetonitrile (1 mL) to produce compound 3g. Yield: 20 mg (12%); yellow solid; mp
212–214 ◦C. 1H NMR (400 MHz, DMSO-d6): δ = 8.51 (m, 1H), 8.07 (m, 1H), 7.96 (m, 1H),
7.87 (m, 1H), 7.69 (m, 1H), 7.62 (m, 1H), 7.50 (m, 5H), 7.36 (m, 2H), 7.29 (m, 2H), 7.24 (m,
3H), 6.73 (d, J 15.7 Hz, 1H), 6.18 (d, J 9.3 Hz, 1H), 6.02 (dd, J 15.7 Hz, J 9.8 Hz, 1H) ppm. 13C
NMR (100 MHz, DMSO-d6): δ = 193.3, 191.7, 165.4, 156.1, 147.9, 137.5, 137.4, 136.5, 136.0,
135.3, 134.1, 132.5, 130.4, 129.6 (2C), 129.2 (2C), 129.0, 128.6 (2C), 127.1 (2C), 126.9, 124.2,
123.6, 122.1, 121.6, 117.1, 78.9, 66.8, 64.2 ppm. IR (mineral oil): 1756, 1721, 1677 cm−1. Anal.
Calcd (%) for C33H21N3O6S: C 67.45; H 3.60; N 7.15. Found: C 67.62; H 3.71; N 7.10.
(3R*,3aS*,11aR*)-3a-Benzoyl-3-(4-iodophenyl)-2-phenyl-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]
pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3h). The solvent was evaporated to 2.5 mL. The
resulting precipitate was filtered off, washed with benzene (1 mL), and recrystallized
from toluene (2–3 mL) to produce compound 3h. Yield: 54 mg (28%); yellow solid; mp
170–172 ◦C. 1H NMR (400 MHz, DMSO-d6): δ = 7.85 (m, 1H), 7.59 (m, 3H), 7.51 (m, 3H),
7.47 (m, 4H), 7.36 (m, 1H), 7.30 (m, 3H), 7.14 (m, 3H), 6.68 (s, 1H) ppm. 13C NMR (100 MHz,
DMSO-d6): δ = 192.4, 191.5, 165.0, 155.3, 137.0 (2C), 136.0, 135.6, 134.7, 133.8, 133.5, 131.0,
130.0, 128.9 (2C), 128.5 (2C), 128.2 (2C), 128.2, 127.8, 126.5, 126.2, 124.4 (2C), 123.0, 117.1,
95.2, 79.1, 66.3, 64.7 ppm. IR (mineral oil): 1762, 1715, 1691 cm−1. Anal. Calcd (%) for
C31H19IN2O4S: C 57.95; H 2.98; N 4.36. Found: C 58.16; H 3.10; N 4.28.
(3R*,3aS*,11aR*)-3a-Benzoyl-3-(4-bromophenyl)-2-(4-methoxyphenyl)-3,3a-dihydrobenzo[d]pyrrolo
[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3i). The reaction mixture was evaporated to
dryness. Then, the residue was recrystallized from benzene (2–3 mL) to produce compound
3i. Yield: 52 mg (28%); yellow solid; mp 221–223 ◦C. 1H NMR (400 MHz, DMSO-d6):
δ = 7.84 (m, 1H), 7.61 (m, 1H), 7.52 (m, 1H), 7.46 (m, 4H), 7.42 (m, 4H), 7.33 (m, 2H), 7.25 (m,
2H), 6.84 (m, 2H), 6.61 (s, 1H), 3.69 (s, 3H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 192.5,
191.7, 165.0, 157.5, 155.4, 135.7, 134.8, 133.7 (2C), 133.5, 131.3, 131.2 (2C), 130.1, 129.0 (2C),
128.8, 128.3 (2C), 126.3, 126.2 (2C), 123.1, 122.0, 117.1, 113.8 (2C), 79.1, 66.5, 64.9, 55.1 ppm.
IR (mineral oil): 1761, 1729, 1710, 1689 cm−1. Anal. Calcd (%) for C32H21BrN2O5S: C 61.45;
H 3.38; N 4.48. Found: C 61.63; H 3.50; N 4.40.
(3R*,3aS*,11aR*)-3a-Benzoyl-2-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)-3,3a-dihydrobenzo[d]
pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3j) and (3S*,3aS*,11aR*)-3a-benzoyl-2-(4-
chlorophenyl)-3-(3,4-dimethoxyphenyl)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-
1,4,5(2H)-trione (3′j). The reaction mixture was cooled to 10 ◦C. The resulting precipitate
was filtered off (a mixture of products 3j and 3′j, 1:1). The mother liquor was evaporated
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to dryness. Then, the residue was recrystallized from ethanol (2–3 mL) at 60–65 ◦C to
afform product 3j. Product 3j: Yield: 50 mg (28%); yellow solid; mp 238–240 ◦C. 1H NMR
(400 MHz, DMSO-d6): δ = 7.84 (m, 1H), 7.62 (m, 1H), 7.58 (m, 2H), 7.50 (m, 5H), 7.34 (m, 4H),
6.80 (m, 3H), 6.56 (s, 1H), 3.69 (s, 3H), 3.60 (s, 3H) ppm. 13C NMR (100 MHz, DMSO-d6):
δ = 193.0, 190.7, 165.0, 155.8, 148.9, 148.4, 135.6, 135.2, 134.8, 133.4, 130.6, 130.2, 128.7 (2C),
128.4 (2C), 128.4 (2C), 128.1, 126.2 (2C), 126.1, 125.5, 123.0, 121.4, 117.2, 112.5, 111.3, 79.4,
66.0, 65.2, 55.5, 55.2 ppm. IR (mineral oil): 1761, 1726, 1713, 1682 cm−1. Anal. Calcd (%) for
C33H23ClN2O6S: C 64.86; H 3.79; N 4.58. Found: C 64.93; H 3.85; N 4.60. Product 3′j: Yield:
24 mg (13%, the mixture 3j:3′j, 1:1), orange solid; mp 224–226 ◦C (mixture 3j:3′j, 1:1). 1H
NMR (400 MHz, DMSO-d6): δ = 7.80 (m, 1H), 7.62 (m, 2H), 7.56 (m, 2H), 7.36 (m, 5H), 7.30
(m, 2H), 6.77 (m, 1H), 6.71 (m, 3H), 6.47 (s, 1H), 3.59 (s, 3H), 3.54 (s, 3H) ppm. 13C NMR
(100 MHz, DMSO-d6): δ = 191.0, 168.1, 165.7, 154.4, 148.7, 148.1, 135.7, 134.9, 134.4, 132.7,
130.7, 130.1, 129.0 (2C), 128.6 (2C), 127.7 (2C), 127.6, 125.9, 125.7 (2C), 122.43, 121.0, 115.8,
112.8, 111.4, 79.2, 70.6, 65.2, 55.3, 55.2 ppm. IR (mineral oil): 1761, 1713, 1680 cm−1. Anal.
Calcd. (%) for C33H23ClN2O6S: C 64.86; H 3.79; N 4.58. Found: C 64.12; H 3.94; N 4.71.
(3R*,3aS*,11aR*)-3a-Benzoyl-3-(3,4-dimethoxyphenyl)-2-phenyl-3,3a-dihydrobenzo[d]pyrrolo
[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3k) and (3S*,3aS*,11aR*)-3a-benzoyl-3-(3,4-
dimethoxyphenyl)-2-phenyl-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-
trione (3′k). The reaction mixture was cooled to 10 ◦C. The resulting precipitate was filtered
off and recrystallized from benzene (2–3 mL) to give product 3’k. The mother liquor
was evaporated to dryness, and the residue was recrystallized from toluene (2–3 mL) to
produce product 3k. Product 3k: Yield: 40 mg (23%); yellow solid; mp 217–219 ◦C. 1H
NMR (400 MHz, DMSO-d6): δ = 7.84 (m, 1H), 7.64 (m, 1H), 7.54 (m, 7H), 7.33 (m, 4H),
7.16 (m, 1H), 6.86 (s, 1H), 6.81 (m, 2H), 6.54 (s, 1H), 3.68 (s, 3H), 3.61 (s, 3H) ppm. 13C
NMR (100 MHz, DMSO-d6): δ = 193.1, 190.6, 165.0, 155.9, 148.9, 148.5, 136.3, 135.4, 134.9,
133.5, 130.3, 128.7 (2C), 128.6 (2C), 128.5 (2C), 128.1, 126.4, 126.1, 125.8, 124.3 (2C), 123.0,
121.1, 117.3, 112.2, 111.3, 79.6, 65.7, 65.5, 55.5, 55.2 ppm. IR (mineral oil): 1759, 1728, 1715,
1689 cm−1. Anal. Calcd (%) for C33H24N2O6S: C 68.74; H 4.20; N 4.86. Found: C 68.90;
H 4.27; N 4.79. Product 3′k: Yield: 48 mg (28%); orange solid; mp 247–249 ◦C. 1H NMR
(400 MHz, DMSO-d6): δ = 7.82 (m, 3H), 7.62 (m, 1H), 7.52 (m, 3H), 7.40 (m, 2H), 7.32 (m,
4H), 7.16 (m, 1H), 6.73 (m, 2H), 6.67 (m, 1H), 6.46 (s, 1H), 3.59 (s, 3H), 3.52 (s, 3H) ppm.
13C NMR (100 MHz, DMSO-d6): δ = 191.4, 188.0, 165.8, 154.5, 148.7, 148.0, 136.0, 135.8,
134.5, 132.9, 130.3, 129.2 (2C), 128.7 (2C), 127.9 (2C), 126.6, 126.1, 125.8, 124.1 (2C), 123.0,
122.5, 121.0, 115.9, 112.7, 111.2, 79.3, 70.8, 64.5, 55.3, 55.2 ppm. IR (mineral oil): 1762, 1709,
1669 cm−1. Anal. Calcd (%) for C33H24N2O6S: C 68.74; H 4.20; N 4.86. Found: C 68.86; H
4.31; N 4.93.
(3R*,3aS*,11aR*)-3a-Benzoyl-2-benzyl-3-(4-bromophenyl)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]
pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3l). The solvent was evaporated. The resulting mass
was stirred in acetonitrile (2 mL) at 80 ◦C for 5 min. Then, the obtained mixture was cooled
to room temperature, and the formed precipitate was filtered off to produce compound 3l.
Yield: 60 mg (33%); yellow solid; mp 204–206 ◦C. 1H NMR (400 MHz, DMSO-d6): δ = 7.79
(m, 1H), 7.59 (m, 3H), 7.54 (m, 1H), 7.37 (m, 9H), 7.16 (m, 2H), 7.09 (m, 2H), 5.58 (s, 1H), 4.95
(d, J 15.2 Hz, 1H), 3.71 (d, J 14.7 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 192.7,
191.2, 166.1, 155.1, 134.7, 134.6, 134.0, 133.8, 132.6, 131.9 (2C), 130.7, 129.8, 128.8 (2C), 128.7
(2C), 128.3 (2C), 128.3, 128.1 (2C), 128.0, 127.6, 126.3, 123.2, 122.6, 117.3, 78.9, 65.6, 63.9,
45.4 ppm. IR (mineral oil): 1760, 1719, 1672 cm−1. Anal. Calcd (%) for C32H21BrN2O4S: C
63.06; H 3.47; N 4.60. Found: C 63.14; H 3.58; N 4.63.
(3R*,3aS*,11aR*)-3a-Benzoyl-2-(benzylideneamino)-3-phenyl-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:
2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (3m). The solvent was evaporated to 1 mL. The
resulting precipitate was filtered off, stirred in benzene (2–3 mL) at 85 ◦C for 10 min, and
then filtered off to produce compound 3m. Yield: 42 mg (26%); yellow solid; mp 224–226 ◦C.
1H NMR (400 MHz, DMSO-d6): δ = 8.63 (s, 1H), 7.81 (m, 1H), 7.65 (m, 1H), 7.55 (m, 7H),
7.43 (m, 3H), 7.35 (m, 5H), 7.29 (2H), 6.54 (s, 1H) ppm. 13C NMR (100 MHz, DMSO-d6):
δ = 192.4, 190.4, 162.3, 156.6, 155.5, 134.9, 134.6, 133.7, 133.5, 132.9, 131.3, 130.4, 129.0, 128.9
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(2C), 128.8 (2C), 128.8 (2C), 128.7 (2C), 128.3, 128.0 (2C), 127.5 (2C), 126.1, 123.0, 117.5, 78.3,
65.3, 64.7 ppm. IR (mineral oil): 1757, 1725, 1686 cm−1. Anal. Calcd (%) for C32H21N3O4S:
C 70.71; H 3.89; N 7.73. Found: C 70.93; H 3.97; N 7.81.

3.1.3. Procedure to Compounds 8a–j

A mixture of APBTT 1 (0.298 mmol) and carbodiimide 7 (0.313 mmol) in toluene
(5 mL) was heated for 1 h at 115 ◦C (until the dark violet color characteristic of APBTT 1
disappeared and a transparent yellow solution formed). Then, the reaction mixture was
cooled to room temperature. The resulting precipitate was filtered off and stirred in ethanol
(2 mL) at 45–50 ◦C for 30 min. Then, the precipitate was filtered off and recrystallized from
toluene (5 mL) to produce the corresponding compound 8.

(3aS*,11aR*)-3a-Benzoyl-2-cyclohexyl-3-(cyclohexylimino)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]
pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8a). Yield: 69 mg (44%); yellow solid; mp 264–266 ◦C.
1H NMR (400 MHz, CDCl3): δ = 7.87 (m, 1H), 7.68 (m, 3H), 7.49 (m, 2H), 7.25 (m, 3H), 4.31
(m, 1H), 3.41 (m, 1H), 2.32 (m, 2H), 1.86 (s, 3H), 1.73 (m, 4H), 1.51 (m, 1H), 1.42 (m, 3H),
1.36 (m, 2H), 1.21 (m, 2H), 0.91 (m, 2H), 0.38 (m, 1H) ppm. 13C NMR (100 MHz, CDCl3):
δ = 190.7, 187.7, 168.0, 154.1, 141.6, 135.1, 134.8, 133.8, 129.3, 129.1 (2C), 128.7 (2C), 128.5,
126.9, 122.6, 118.0, 77.6, 65.4, 60.6, 54.0, 34.1, 32.1, 28.2, 27.8, 25.9, 25.8, 25.7, 25.2, 23.9,
23.8 ppm. IR (mineral oil): 1779, 1749, 1722, 1677 cm−1. Anal. Calcd (%) for C31H31N3O4S:
C 68.74; H 5.77; N 7.76. Found: C 68.85; H 5.83; N 7.71.
(3aS*,11aR*)-2-Cyclohexyl-3-(cyclohexylimino)-3a-(4-methylbenzoyl)-3,3a-dihydrobenzo[d]pyrrolo
[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8b). Yield: 25 mg (15%); yellow solid; mp
230–232 ◦C. 1H NMR (400 MHz, CDCl3): δ = 7.87 (m, 1H), 7.59 (m, 2H), 7.29 (m, 2H), 7.24
(m, 3H), 4.33 (m, 1H), 3.45 (m, 1H), 2.46 (s, 3H), 2.31 (m, 2H), 1.86 (m, 3H), 1.75 (m, 1H), 1.69
(m, 4H), 1.53 (m, 1H), 1.44 (m, 3H), 1.39 (m, 1H), 1.35 (m, 1H), 1.29 (m, 1H), 1.20 (m, 2H),
0.93 (m, 2H), 0.47 (m, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ = 190.1, 187.8, 168.1, 154.1,
146.6, 141.8, 134.8, 131.2, 129.8, 129.4, 129.0, 128.9, 128.5, 128.2, 126.8, 125.3, 122.5, 118.0, 77.7,
60.5, 54.0, 34.1, 32.2, 28.2, 27.8, 25.9, 25.8, 25.7, 25.2, 24.0, 23.7, 21.8 ppm. IR (mineral oil):
1788, 1744, 1729, 1674 cm−1. Anal. Calcd (%) for C32H33N3O4S: C 69.17; H 5.99; N 7.56.
Found: C 69.55; H 6.12; N 7.66.
(3aS*,11aR*)-2-Cyclohexyl-3-(cyclohexylimino)-3a-(4-fluorobenzoyl)-3,3a-dihydrobenzo[d]pyrrolo
[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8c). Yield: 18 mg (11%); yellow solid; mp
228–230 ◦C. 1H NMR (400 MHz, CDCl3): δ = 7.92 (m, 1H), 7.79 (m, 2H), 7.33 (m, 2H), 7.23
(m, 3H), 4.36 (m, 1H), 3.47 (m, 1H), 2.36 (m, 2H), 1.92 (m, 3H), 1.80 (m, 1H), 1.74 (m, 3H),
1.60–1.47 (m, 4H), 1.45–1.37 (m, 2H), 1.29–1.19 (m, 2H), 1.00 (m, 2H), 0.52 (m, 1H) ppm.
13C NMR (100 MHz, CDCl3): δ = 189.1, 187.4, 168.0, 166.7 (d, J = 261.6 Hz), 154.0, 141.5,
134.7, 131.5 (d, J = 10.1 Hz, 2C), 130.2 (d, J = 3.0 Hz), 129.1, 128.6, 127.0, 122.6, 118.1, 116.5
(d, J = 24.2 Hz, 2C), 77.5, 65.3, 60.6, 54.1, 34.1, 32.3, 28.3, 27.8, 25.9, 25.8, 25.6, 25.1, 23.9,
23.8 ppm. 19F NMR (376 MHz, DMSO-d6): δ = −100.03 ppm. IR (mineral oil): 1789, 1749,
1726, 1673 cm−1. Anal. Calcd (%) for C31H30FN3O4S: C 66.53; H 5.40; N 7.51. Found: C
66.68; H 5.51; N 7.60.
(3aS*,11aR*)-3a-(4-Bromobenzoyl)-2-cyclohexyl-3-(cyclohexylimino)-3,3a-dihydrobenzo[d]pyrrolo
[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8d). Yield: 57 mg (31%); yellow solid; mp
180–182 ◦C. 1H NMR (400 MHz, CDCl3): δ = 7.92 (m, 1H), 7.71 (m, 2H), 7.61 (m, 2H), 7.32
(m, 1H), 7.26 (m, 2H), 4.35 (m, 1H), 3.46 (m, 1H), 2.36 (m, 2H), 1.91 (m, 3H), 1.80 (m, 1H),
1.74 (m, 2H), 1.60 (m, 3H), 1.48 (m, 1H), 1.46–1.31 (m, 3H), 1.25 (m, 2H), 1.02 (m, 2H), 0.55
(m, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ = 189.6, 187.3, 167.9, 153.9, 141.3, 134.7, 132.5
(2C), 130.7, 130.0 (2C), 129.0, 128.6, 127.0, 122.6, 118.1, 77.4, 65.2, 60.5, 54.1, 34.1, 32.3, 28.2,
27.8, 25.8, 25.8, 25.6, 25.1, 23.9, 23.8 ppm. IR (mineral oil): 1791, 1789, 1752, 1726, 1672 cm−1.
Anal. Calcd (%) for C31H30BrN3O4S: C 60.00; H 4.87; N 6.77. Found: C 60.14; H 4.97; N 6.65.
(3aS*,11aR*)-2-Cyclohexyl-3-(cyclohexylimino)-3a-(furan-2-carbonyl)-3,3a-dihydrobenzo[d]pyrrolo
[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8e). Yield: 71 mg (45%); yellow solid; mp
251–253 ◦C. 1H NMR (400 MHz, CDCl3): δ = 7.91 (m, 1H), 7.60 (s, 1H), 7.51 (m, 1H), 7.28
(m, 3H), 6.72 (s, 1H), 4.34 (m, 1H), 3.60 (br.s, 1H), 2.34 (m, 2H), 1.85 (m, 4H), 1.73 (d, J = 12,
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3H), 1.63 (m, 2H), 1.52 (m, 2H), 1.38 (m, 3H), 1.22 (m, 3H), 0.95–0.62 (m, 1H) ppm. 13C NMR
(100 MHz, CDCl3): δ = 186.6, 168.2, 149.4 (2C), 140.5, 134.9, 129.3, 128.4, 126.7, 122.6, 120.9,
118.0, 114.2, 77.7, 77.2, 54.1, 34.0, 28.3, 27.8, 25.9, 25.9, 25.7, 25.2, 24.0, 23.8 ppm. IR (mineral
oil): 1775, 1745, 1721, 1667 cm−1. Anal. Calcd (%) for C29H29N3O5S: C 65.52; H 5.50; N 7.90.
Found: C 65.71; H 5.58; N 8.03.
(3aS*,11aR*)-2-Cyclohexyl-3-(cyclohexylimino)-3a-(thiophene-2-carbonyl)-3,3a-dihydrobenzo[d]
pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8f). Yield: 96 mg (59%); yellow solid;
mp 274–276 ◦C. 1H NMR (400 MHz, CDCl3): δ = 7.91 (m, 2H), 7.55 (m, 1H), 7.32 (m, 2H),
7.23 (m, 2H), 4.39 (m, 1H), 3.70 (m, 1H), 2.38 (m, 2H), 1.94 (m, 3H), 1.83 (m, 1H), 1.76 (m,
3H), 1.60 (m, 2H), 1.54 (m, 2H), 1.42 (m, 2H), 1.29 (m, 2H), 1.13 (m, 2H), 0.75 (m, 1H) ppm.
13C NMR (100 MHz, CDCl3): δ = 170.7, 168.0, 154.0, 141.3, 137.4 (2C), 134.8, 133.1, 129.2,
128.6, 128.5, 126.9, 122.6, 118.0, 77.8, 77.2, 60.4, 54.1, 34.2, 32.3, 28.3, 27.8, 25.9, 25.8, 25.7,
25.2, 24.0, 23.8 ppm. IR (mineral oil): 1779, 1747, 1724, 1682, 1657 cm−1. Anal. Calcd (%) for
C29H29N3O4S2: C 63.60; H 5.34; N 7.67. Found: C 63.83; H 5.41; N 7.54.
(3aS*,11aR*)-3a-(4-Chlorobenzoyl)-2-cyclohexyl-3-(cyclohexylimino)-3,3a-dihydrobenzo[d]pyrrolo
[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8g). Yield: 43 mg (25%); yellow solid; mp
248–250 ◦C. 1H NMR (400 MHz, CDCl3): δ = 7.92 (m, 1H), 7.69 (m, 2H), 7.53 (m, 2H), 7.30
(m, 3H), 4.35 (m, 1H), 3.46 (m, 1H), 2.36 (m, 2H), 1.92 (m, 3H), 1.80 (m, 1H), 1.74 (m, 3H),
1.58 (m, 2H), 1.48 (m, 2H), 1.39 (m, 2H), 1.26 (m, 2H), 1.01 (m, 2H), 0.53 (m, 1H) ppm. 13C
NMR (100 MHz, CDCl3): δ = 189.4, 187.4, 167.9, 153.9, 142.0, 141.3, 134.7, 132.1, 130.0 (2C),
129.5 (2C), 129.1, 128.6, 127.0, 122.6, 118.1, 77.5, 65.3, 60.5, 54.1, 34.1, 32.3, 28.3, 27.8, 25.9,
25.8, 25.6, 25.1, 23.9, 23.8 ppm. IR (mineral oil): 1791, 1789, 1751, 1726, 1674 cm−1. Anal.
Calcd (%) for C31H30ClN3O4S: C 64.63; H 5.25; N 7.29. Found: C 64.69; H 5.19; N 7.37.
(3aS*,11aR*)-3a-Benzoyl-2-isopropyl-3-(isopropylimino)-3,3a-dihydrobenzo[d]pyrrolo[3′,4′:2,3]
pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8h). Yield: 89 mg (65%); yellow solid; mp 207–207 ◦C.
1H NMR (400 MHz, CDCl3): δ = 7.94 (m, 1H), 7.74 (m, 3H), 7.56 (m, 2H), 7.35–7.25 (m,
3H), 4.78 (m, 1H), 3.79 (m, 1H), 1.54 (m, 6H), 1.30 (m, 3H), 0.50 (d, J = 8 Hz, 3H) ppm. 13C
NMR (100 MHz, CDCl3): δ = 190.3, 187.8, 167.9, 154.1, 141.4, 135.2, 134.8, 133.8, 129.2, 129.2
(2C), 128.8 (2C), 128.5, 126.9, 122.6, 118.1, 77.6, 66.7, 52.8, 46.1, 24.4, 22.0, 18.8, 18.4 ppm. IR
(mineral oil): 1786, 1749, 1724, 1669 cm−1. Anal. Calcd (%) for C25H23N3O4S: C 65.06; H
5.02; N 9.10. Found: C 65.17; H 5.09; N 9.18.
(3aS*,11aR*)-2-Isopropyl-3-(isopropylimino)-3a-(4-methylbenzoyl)-3,3a-dihydrobenzo[d]pyrrolo
[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8i). Yield: 106 mg (75%); yellow solid; mp
216–218 ◦C. 1H NMR (400 MHz, CDCl3): δ = 7.94 (m, 1H), 7.67 (m, 2H), 7.37 (m, 2H),
7.35–7.25 (m, 3H), 4.79 (m, 1H), 3.84 (m, 1H), 2.52 (s, 3H), 1.55 (m, 6H), 1.31 (m, 3H), 0.53
(m, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ = 189.8, 187.8, 167.9, 154.1, 146.8, 141.6, 134.8,
131.2, 129.9, 129.3, 129.0, 128.5, 126.9 (2C), 122.6, 118.0 (2C), 115.0, 52.7, 46.1, 24.4, 22.1, 21.8,
18.8, 18.4 ppm. IR (mineral oil): 1786, 1751, 1727 cm−1. Anal. Calcd (%) for C26H25N3O4S:
C 65.67; H 5.30; N 8.84. Found: C 65.81; H 5.26; N 8.80.
(3aS*,11aR*)-3a-(4-Chlorobenzoyl)-2-isopropyl-3-(isopropylimino)-3,3a-dihydrobenzo[d]pyrrolo
[3′,4′:2,3]pyrrolo[2,1-b]thiazole-1,4,5(2H)-trione (8j). Yield: 106 mg (72%); yellow solid; mp
228–230 ◦C. 1H NMR (400 MHz, CDCl3): δ = 7.64 (m, 1H), 7.41 (m, 2H), 7.30 (m, 1H),
7.06–6.96 (m, 4H), 4.48 (m, 1H), 3.49 (m, 1H), 1.25 (d, J = 4 Hz, 6H), 1.02 (d, J = 8 Hz, 3H),
0.29 (d, J = 8 Hz, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ = 189.1, 187.4, 167.7, 153.9, 142.1,
141.2, 134.7, 132.0, 131.3, 130.1 (2C), 129.6, 129.0, 128.6 (2C), 127.0, 122.6, 118.1, 52.8, 46.2,
24.4, 22.2, 18.8, 18.4 ppm. IR (mineral oil): 1786, 1750, 1726, 1664 cm−1. Anal. Calcd (%) for
C25H22ClN3O4S: C 60.54; H 4.47; N 8.47. Found: C 60.76; H 4.58; N 8.55.

3.1.4. Procedures to Compounds 4a,b,6d

5-Hydroxy-4-(2-oxo-2H-benzo[b][1,4]thiazin-3(4H)-ylidene)-1,5-diphenylpyrrolidine-2,3-dione (4a).
Method 1. Acetic acid (3 mL) was added to the mixture of APBTT 1a (100 mg, 0.298 mmol)
and N-benzylideneaniline 2a (54 mg, 0.298 mmol). The mixture was stirred for 24 h at room
temperature. The resulting precipitate was filtered off and washed with acetone (2 mL) to
produce compound 4a. Yield: 110 mg (86%); red solid; mp 179–181 ◦C. Method 2. Aniline
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5a (27.2 µL, 0.298 mmol) was added to the mixture of acetic acid (3 mL) and APBTT 1a
(100 mg, 0.298 mmol). The mixture was stirred for 24 h at room temperature. The resulting
precipitate was filtered off and washed with acetone (2 mL) to produce compound 4a. Yield:
121 mg (95%); red solid; mp 179–181 ◦C. 1H NMR (400 MHz, DMSO-d6): δ = 14.05 (s, 1H),
7.60 (m, 1H), 7.52 (m, 2H), 7.38 (m, 1H), 7.34 (m, 2H), 7.22 (m, 3H), 7.18 (m, 1H), 7.16 (s, 1H),
7.13 (m, 1H), 7.11 (s, 1H), 7.04 (m, 2H) ppm. IR (mineral oil): 3467, 3169, 3083, 1723, 1684,
1632 cm−1. Anal. Calcd (%) for C24H16N2O4S: C 67.28; H 3.76; N 6.54. Found: C 67.39; H
3.81; N 6.47.
1-Benzyl-5-hydroxy-4-(2-oxo-2H-benzo[b][1,4]thiazin-3(4H)-ylidene)-5-(4-methylphenyl)pyrrolidine
-2,3-dione (4b). Benzylamine 5b (15.6 µL, 0.143 mmol) was added to the mixture of acetic
acid (3 mL) and APBTT 1a (50 mg, 0.143 mmol). The mixture was stirred for 24 h at room
temperature. The resulting precipitate was filtered off and washed with acetone (1 mL)
to produce compound 4b. Yield: 63 mg (46%); orange solid; mp 162–164 ◦C. 1H NMR
(400 MHz, DMSO-d6): δ = 14.24 (s, 1H), 7.55 (m, 1H), 7.46 (m, 2H), 7.31 (m, 3H), 7.12 (m,
3H), 7.03 (m, 4H), 6.67 (s, 1H), 4.20 (dd, J 64.1 Hz, J 15.2 Hz, 2H), 2.24 (s, 3H) ppm. 13C
NMR (400 MHz, DMSO-d6): δ = 183.1, 177.4, 160.4, 138.8, 137.8, 137.0, 136.3, 129.5, 128.6,
128.1 (2C), 127.8 (2C), 127.5 (2C), 126.3, 126.1, 125.9 (2C), 125.5, 120.5, 119.4, 109.9, 88.6,
42.5, 20.5 ppm. IR (mineral oil): 3474, 3192, 3058, 1720, 1640 cm−1. Anal. Calcd (%) for
C26H20N2O4S: C 68.41; H 4.42; N 6.14. Found: C 68.56; H 4.47; N 6.20.
(Z)-3-(Benzo[d]thiazol-2(3H)-ylidene)-4-(4-bromophenyl)-2,4-dioxo-N-phenylbutanamide (6d). This
product was a by-product in the synthesis of compound 3d. Product 6d was precipitated in
the first fraction upon recrystallization of the main product from toluene. Yield: 3 mg (2%);
colorless crystals; mp 179–181 ◦C. 1H NMR (400 MHz, CDCl3): δ = 13.76 (br.s, 1H), 10.39 (s,
1H), 8.07 (m, 1H), 7.53 (m, 3H), 7.43 (m, 3H), 7.29 (m, 2H), 7.21 (m, 3H), 7.02 (m, 1H) ppm.
IR (mineral oil): 3278, 3136, 1718, 1672, 1635 cm−1. Anal. Calcd (%) for C23H15BrN2O3S: C
57.63; H 3.15; N 5.84. Found: C 57.86; H 3.24; N 5.91.

3.2. Computational Details

The DFT calculations for all model structures were carried out at the M06-2X/6-31G*
level of theory with the help of the Gaussian-09 program package [81]. No symmetry
restrictions have been applied during the geometry optimization procedure. The Hessian
matrices were calculated analytically for all optimized model structures to prove the
location of correct minima or saddle points (transition states) on the potential energy
surface. The Cartesian atomic coordinates for all model structures are presented in attached
xyz-files (Supplementary Materials).

3.3. Biology
3.3.1. Screening of Substances in 96-Well Plates

Chlorella vulgaris (strain IMBR-19, obtained from the A.O. Kovalevsky Institute of
Biology of the Southern Seas of RAS, Sevastopol, Russia) was cultivated in BG-11 medium.
BG-11 medium was prepared using following solutions: Solution #1: Na2-EDTA—20 mg
in 20 mL; Solution #2: citric acid—120 mg and iron(III) citrate—120 mg in 20 mL; Solu-
tion #3: K2HPO4·3H2O—800 mg in 20 mL; Solution #4. MgSO4·7H2O—1.5 g in 20 mL;
Solution #5: CaCl2·2H2O—720 mg in 20 mL; Solution #6: Na2CO3—400 mg in 20 mL; Solu-
tion #7: NaNO3—15 g in 100mL; Solution #8: H3BO3—57.2 mg, MnCl2·4H2O—36.2 mg,
ZnSO4·7H2O—4.4 mg, CuSO4·5H2O—1.58 mg, Na2MoO4·2H2O—7.8 mg, and 1 mL of
0.988 g/L Co(NO3)2·6H2O in 20 mL. All of the solutions were prepared using Milli-Q water.
To obtain 500 mL of BG-11 medium, 500 µL of solutions #1–6 and #8 and 5 mL of solution
#7 were added to 400 mL of water. Then, the volume was adjusted to 500 mL. A solution of
D(+)-glucose in BG-11 (6 g/L) was used for the preparation of positive controls.

Cultures of C. vulgaris were maintained and cultivated in aseptic conditions, with
the only exception being DMSO solutions of tested substances that were not sterilized
upon dilution.
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Substances to be tested were diluted to 1 × 10−3, 1 × 10−4, and 1 × 10−5 mol/L in
99% DMSO before the experiment. Poorly soluble substances were either kept for 16 h on a
rotator or treated by ultrasound using an ultrasound homogenizer equipped with a 3 mm
probe (VCX-130, Sonics and Materials, Newtown, CT, USA).

Starter cultures of C. vulgaris were prepared as follows: stock culture cells (2 mL, in
exponential growth phase) were washed two times with BG-11 medium by centrifugation
(20 min, 350 g). The cells were then diluted in 10 mL of BG-11, and the cell concentration
was measured using a hemocytometer.

In the wells of 96-well culture plates, BG-11 medium, starter culture of C. vulgaris, and
tested substances diluted in DMSO were combined, resulting in a total volume of 300 µL.
The resulting number of cells was 5 × 104 cells/well, with a resulting volume fraction of
DMSO at 1%. The resulting concentrations of tested substances were 1 × 10−5, 1 × 10−6,
and 1 × 10−7 mol/L. In negative control and positive control wells, pure DMSO was added.
BG-11 with glucose was added to the positive control wells, resulting in a concentration of
glucose of 2 g/L. All substances were tested in duplicate (2 wells for each concentration).
In the edge and corner wells of the plates, sterile distilled water was added. The plates
were sealed with a gas-permeable film.

All cultures were maintained for 5 days in a humid chamber at +28 ◦C at 150 rpm under
cyclic illumination consisting of 12 h on: 12 h off. The light intensity was 100 µmol·m−2·s−1.
The lighting unit was an array of evenly distributed white LEDs with a cooling device
preventing well heating, positioned below the culture plates (bottom illumination).

After the end of cultivation, the contents of the wells were mixed using a multichannel
pipette, and the cell concentration was assessed by measuring the absorbance at 750 nm.

3.3.2. Evaluation of Lead Substances in 50-mL Flasks

Substances to be tested were diluted to 1 × 10−2, 1 × 10−3, 1 × 10−4, and 1 × 10−5 mol/L
in 99% DMSO before the experiment. Starter cultures of C. vulgaris were prepared as follows:
stock culture cells (12 mL, in exponential growth phase) were washed twice with BG-11
medium by centrifugation (15 min, 450 g). The cells were then diluted in 10 mL of BG-11,
and the cell concentration was measured using a hemocytometer.

In the 50-mL Erlenmeyer flasks, BG-11 medium, the starter culture of C. vulgaris, and
tested substances diluted in DMSO were combined, resulting in a total volume of 30 mL.
The resulting number of cells was 1 × 107 cells/flask, with a resulting volume fraction of
DMSO at 1%. The resulting concentrations of tested substances were 1 × 10−4, 1 × 10−5,
1 × 10−6, and 1 × 10−7 mol/L. In the negative control and positive control flasks, pure
DMSO was added. BG-11 with glucose was added to the positive control flasks, resulting
in a concentration of glucose of 2 g/L. All substances were tested in triplicate (three flasks
for each concentration). The flasks were sealed with gas-permeable cellulose caps. All
cultures were maintained for 5 days in a humid chamber at +28 ◦C at 150 rpm under cyclic
illumination consisting of 12 h on: 12 h off. The light intensity was 100 µmol·m−2·s−1.
The lighting unit was an array of evenly distributed white LEDs with a cooling device
preventing overheating, positioned below the culture plates (bottom illumination).

3.3.3. Cell Count and Pigments Analysis

The flask contents were carefully mixed, and then 10 mL of cell culture was trans-
ferred into 15-mL centrifuge tubes. The cells were washed twice with 10 mL of water by
centrifugation (15 min, 450 g). The washed cells were diluted in 10 mL of water, and the
cell concentration was measured using a hemocytometer.

Pigment extraction was carried out as follows: two milliliters of cell culture were
transferred to centrifuge tubes. The cells were washed by centrifugation two times at
7000× g for 10 min and concentrated two-fold. After the second wash, the sediment was
vortexed for 1 min, and then 90% methanol was added. The tubes were heated at +60 ◦C for
30 min in a solid-state thermostat. Then, the samples were cooled to room temperature and
centrifuged at 10,000× g for 10 min. The absorbance of the supernatant containing extracted
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pigments was measured at 665, 652, and 470 nm. The concentrations of chlorophylls and
carotenoids were calculated as described in the papers [82,83]. After that, the concentration
of pigments in micrograms per 1 × 107 cells was calculated.

4. Conclusions

An approach to a new 6/5/5/5-tetracyclic alkaloid-like spiroheterocyclic system of
benzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazole 3, 8 was developed on the basis of a reaction of
3-aroylpyrrolo[2,1-c][1,4]benzothiazine-1,2,4-triones 1 with Schiff bases 2 and carbodiimides 7.
This reaction proceeded as a nucleophile-induced ring contraction—intramolecular cyclization
cascade. The formation of the benzo[d]pyrrolo[3′,4′:2,3]pyrrolo[2,1-b]thiazoles 3, 8 was
found to be diastereoselective, with the exception of compounds 3k,j, 3′k,j. Compounds 3a,
8j were found to promote the growth of Chlorella vulgaris and to increase the chlorophyll
content in its cells.

5. Patents

The method for preparing products 8 has been patented [84].

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29092089/s1, The following are available online, copies of NMR
spectra for new compounds 3a–m, 3′j,k, 4a,b, 6d, 8a–j, details of DFT calculations, Cartesian atomic
coordinates for all model structures, ORTEP images of X-ray crystal structures.
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