Enhanced Removal of Refractory Organic Compounds from Coking Wastewater Using Polyaluminum Chloride with Coagulant Aids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater Characteristics
2.2. Preparation and Characterization of PACl
2.3. Coagulation Process
2.4. GC-MS
2.5. 3D-EEM
2.6. Floc Size, Strength, and Fractal Structure Analysis
2.7. Other Measurements
3. Results
3.1. Coagulation with PACl
3.2. Effect of Coagulation Aid Addition on PACl with Basicity of 0.5 and 2.5
3.2.1. Effect of CPAM on CODCr and Color Removal
3.2.2. Effect of Iron Ions on CODCr and Color Removal
3.3. Organic Compound Removal
3.3.1. GC-MS Analysis
3.3.2. EEM Analysis
3.3.3. UV Spectra Analysis
3.4. Floc Characteristics
3.5. Floc Settleability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Wei, T.; Pan, J.; Liang, Y.; Ban, Z.; Ke, X.; Kong, Q.; Qiu, G.; Hu, Y.; Preis, S.; et al. Physicochemical pre- and post-treatment of coking wastewater combined for energy recovery and reduced environmental risk. J. Hazard. Mater. 2023, 447, 130802. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Ni, J.; Lai, P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes. Water Res. 2009, 43, 4347–4355. [Google Scholar] [CrossRef]
- Mishra, L.; Paul, K.K.; Jena, S. Coke wastewater treatment methods: Mini review. J. Indian Chem. Soc. 2021, 98, 100133. [Google Scholar] [CrossRef]
- Wei, G.; Wei, T.; Li, Z.; Wei, C.; Kong, Q.; Guan, X.; Qiu, G.; Hu, Y.; Wei, C.; Zhu, S.; et al. BOD/COD ratio as a probing index in the O/H/O process for coking wastewater treatment. Chem. Eng. J. 2023, 466, 143257. [Google Scholar] [CrossRef]
- Ren, G.; Zhou, M.; Zhang, Q.; Xu, X.; Li, Y.; Su, P.; Paidar, M.; Bouzek, K. Cost-efficient improvement of coking wastewater biodegradability by multi-stages flow through peroxi-coagulation under low current load. Water Res. 2019, 154, 336–348. [Google Scholar] [CrossRef]
- Gao, J.M.; Wang, B.; Li, W.; Cui, L.; Guo, Y.; Cheng, F. High-efficiency leaching of Al and Fe from fly ash for preparation of polymeric aluminum ferric chloride sulfate coagulant for wastewater treatment. Sep. Purif. Technol. 2023, 306, 122545. [Google Scholar] [CrossRef]
- Mao, Y.; Hu, Z.; Li, H.; Zheng, H.; Yang, S.; Yu, W.; Tang, B.; Yang, H.; He, R.; Guo, W.; et al. Recent advances in microplastic removal from drinking water by coagulation: Removal mechanisms and influencing factors. Environ. Pollut. 2024, 349, 123863. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Li, M.; Zhang, G.H.; Liu, W.; Xu, J.Y.; Tian, Y.S.; Wang, Y.F.; Xie, X.Y.; Peng, Z.Q.; Li, A.M.; et al. Efficient treatment of the starch wastewater by enhanced flocculation-coagulation of environmentally benign materials. Sep. Purif. Technol. 2023, 307, 122788. [Google Scholar] [CrossRef]
- Du, Z.P.; Gong, Z.P.; Qi, W.H.; Li, E.Z.; Shen, J.; Li, J.F.; Zhao, H.Z. Coagulation performance and floc characteristics of poly-ferric-titanium-silicate-chloride in coking wastewater treatment. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128413. [Google Scholar] [CrossRef]
- Lai, P.; Zhao, H.Z.; Wang, C.; Ni, J.R. Advanced treatment of coking wastewater by coagulation and zero-valent iron processes. J. Hazard. Mater. 2007, 147, 232–239. [Google Scholar] [CrossRef]
- Wang, S.; Li, E.; Li, J.; Du, Z.; Cheng, F. Preparation and coagulation-flocculation performance of covalently bound organic hybrid coagulant with excellent stability. Colloids Surf. A. 2020, 600, 124966. [Google Scholar] [CrossRef]
- Park, D.; Kim, Y.M.; Lee, D.S.; Park, J.M. Chemical treatment for treating cyanides-containing effluent from biological cokes wastewater treatment process. Chem. Eng. J. 2008, 143, 141–146. [Google Scholar] [CrossRef]
- Yu, X.B.; Xu, R.H.; Wei, C.H.; Wu, H.Z. Removal of cyanide compounds from coking wastewater by ferrous sulfate: Improvement of biodegradability. J. Hazard. Mater. 2016, 302, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Zouboulis, A.I.; Tzoupanos, N. Alternative cost-effective preparation method of polyaluminium chloride (PAC) coagulant agent: Characterization and comparative application for water/wastewater treatment. Desalination 2010, 250, 339–344. [Google Scholar] [CrossRef]
- Song, W.J.; Xie, Y.; Chen, Q.H.; Wang, W.X.; Li, X. Investigation of polyaluminum chloride (PACl) coagulation to remove cyanobacteria from maintenance to decay stage: Performance and mechanism. J. Environ. Chem. Eng. 2022, 10, 108395. [Google Scholar] [CrossRef]
- Mccurdy, K.; Carlson, K.; Gregory, D. Floc morphology and cyclic shearing recovery: Comparison of alum and polyaluminum chloride coagulants. Water Res. 2004, 38, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.L.; Zhou, J.Y.; Yan, Y.; Yang, L.W.; Xing, G.H.; Li, H.Y.; Wu, P.; Wang, M.Y.; Zheng, H.L. Application of coagulation/flocculation in oily wastewater treatment: A review. Sci. Total Environ. 2021, 765, 142795. [Google Scholar] [CrossRef]
- Lin, R.; Li, Y.; Yong, T.; Cao, W.; Wu, J.; Shen, Y. Synergistic effects of oxidation, coagulation and adsorption in the integrated fenton-based process for wastewater treatment: A review. J. Environ. Manag. 2022, 306, 114460. [Google Scholar] [CrossRef]
- Yan, M.Q.; Wang, D.S.; Yu, J.F.; Ni, J.R.; Edwards, M.; Qu, J.H. Enhanced coagulation with polyaluminum chlorides: Role of pH/Alkalinity and speciation. Chemosphere 2008, 71, 1665–1673. [Google Scholar] [CrossRef]
- Sillanpää, M.; Ncibi, M.C.; Matilainen, A.; Vepslainend, M. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere 2018, 190, 54–71. [Google Scholar] [CrossRef]
- Yu, H.L.; Zhang, H.L.; Liu, G.; Chen, X.Y.; Yang, Y.H.; Sun, Z.N.; Tang, L.; Dong, L.; Wang, Y.J.; Liu, H.S. Preparation of microencapsulated coagulants and application to oil–water separation under gravity coagulation conditions. Fuel 2024, 363, 131022. [Google Scholar] [CrossRef]
- Li, C.; Song, Z.; Zhang, W.; Li, L.; Liao, G.; Wang, D. Impact of hydroxyl aluminum speciation on dewaterability and pollutants release of dredged sludge using polymeric aluminum chloride. J. Water Process Eng. 2022, 49, 103051. [Google Scholar] [CrossRef]
- Yang, J.W.; Shi, L.L.; Chen, X.; Huang, X.Y.; Wang, X.K.; Chen, S.X.; Hua, Y.; Gong, H.; Dong, H.; Liu, H.L.; et al. Systematic review on the residual chemicals in wastewater treatment sludge: Specifically focusing on the occurrence state and anaerobic bioprocess. Chem. Eng. J. 2024, 151563. [Google Scholar] [CrossRef]
- Tang, H.X.; Xiao, F.; Wang, D.S. Speciation, stability, and coagulation mechanisms of hydroxyl aluminum clusters formed by PACl and alum: A critical review. Adv. Colloid Interf. Sci. 2015, 226, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.M.; Meng, Y.J.; Ma, D.F.; Wang, Y.; Li, F.L.; Xu, X.; Xia, C.F.; Gao, B.Y. Integration of coagulation and adsorption for removal of N-nitrosodimethylamine (NDMA) precursors from biologically treated municipal wastewater. Environ. Sci. Pollut. Res. 2017, 24, 12426–12436. [Google Scholar] [CrossRef]
- Li, R.H.; Gao, B.Y.; Sun, J.Z.; Yue, Q.Y. Coagulation behavior of kaolin-anionic surfactant simulative wastewater by polyaluminum chloride-polymer dual coagulants. Environ. Sci. Pollut. Res. 2018, 25, 7382–7390. [Google Scholar] [CrossRef]
- Li, R.H.; Qi, X.H.; Wang, W.Y.; Cheng, M.; Wang, Y.J.; Zhang, P.; Song, G.F. Floc Kinetics in Dual-coagulation for the Treatment of High-concentration Surfactant-kaolin Wastewater. J. Polym. Environ. 2024, 32, 1706–1716. [Google Scholar] [CrossRef]
- Huang, L.; Tang, H.X.; Wang, D.S.; Wang, S.F.; Deng, Z.J. Al (III) speciation distribution and transformation in high concentration PACl solutions. J. Environ. Sci. 2006, 18, 872–879. [Google Scholar] [CrossRef]
- Yuan, H.Z.; Ke, S.Z.; Tu, J.Y.; Zhu, J.; Wei, W.; Gao, J.S. Influences of pH on polyaluminium chloride species distribution and coagulation effect. Ind. Water Treat. 2016, 36, 50–53. (In Chinese) [Google Scholar]
- Xue, S.; Wen, Y.; Tie, M.; Zhao, Q.L.; Wei, L.L.; Zhang, Z.H.; Jin, W.; Zhang, L.N. Effect of enhanced coagulation on the characteristics of dissolved organic matter in secondary treated effluents. Acta Sci. Circumstantiae 2013, 33, 2199–2208. (In Chinese) [Google Scholar]
- Xu, H.; Xiao, F.; Wang, D.S. Effects of Al2O3 and TiO2 on the coagulation process by Al2(SO4)3 (AS) and poly-aluminum chloride (PACl) in kaolin suspension. Sep. Purif. Technol. 2014, 124, 9–17. [Google Scholar] [CrossRef]
- Shen, X.; Gao, B.Y.; Guo, K.Y.; Yue, Q.Y. Characterization and influence of floc under different coagulation systems on ultrafltration membrane fouling. Chemosphere 2020, 238, 124659. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Gao, B.; Liu, X.; Wang, M.; Yang, Z.; Yue, Q. The impact of pH on floc structure characteristic of polyferric chloride in a low DOC and high alkalinity surface water treatment. Water Res. 2011, 45, 6181–6188. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Gao, B.Y.; Wang, Y.; Yang, Z.; Xu, W.; Yue, Q. Effect of pH on humic acid removal performance in coagulation-ultrafiltration process and the subsequent effects on chlorine decay. Sep. Purif. 2011, 80, 549–555. [Google Scholar] [CrossRef]
- Ghosh, S.; Sen, G.; Jha, U.; Pal, S. Novel biodegradable polymeric flocculant based on polyacrylamide-grafted tamarind kernel polysaccharide. Bioresour. Technol. 2010, 101, 9638–9644. [Google Scholar] [CrossRef]
- Ngadi, N.; Yahya, N.Y.; Muhamad, N. Treatment of industrial textile wastewater using polyarcrylamide (PAM) and polyaluminium chloride (PAC). J. Teknol. 2012, 60, 41–44. [Google Scholar] [CrossRef]
- Jarvis, P.; Jefferson, B.; Parsons, S.A. Breakage, regrowth, and fractal nature of natural organic matter flocs. Environ. Sci. Technol. 2005, 39, 2307–2314. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.L.; Zhang, Y.J.; Li, L.H.; Li, G.B. Characteristic of natural organic matter removal by ferric and aluminium coagulation. Environ. Sci. 2008, 29, 1187–1191. (In Chinese) [Google Scholar]
- Wan, J.L.; Wang, X.C.; Jin, P.K. Comparison of the properties of coagulation between alum sulfate and ferric chloride thhumic acids. Water Purif. Technol. 2008, 27, 16–19. (In Chinese) [Google Scholar]
- Yu, H.B.; Song, Y.H.; Tu, X.; Du, E.D.; Liu, R.X.; Peng, J.F. Assessing removal efficiency of dissolved organic matter in wastewater treatment using fluorescence excitation emission matrices with parallel factor analysis and second derivative synchronous fluorescence. Bioresour. Technol. 2013, 144, 595–601. [Google Scholar] [CrossRef]
- Xu, L.L.; Wang, J.; Zhang, X.H.; Hou, D.Y.; Yu, Y. Development of a novel integrated membrane system incorporated with an activated coke adsorption unit for advanced coal gasification wastewater treatment. Colloid. Surf. A 2015, 484, 99–107. [Google Scholar] [CrossRef]
- Elkins, K.M.; Nelson, D.J. Spectroscopic approaches to the study of the interaction of aluminum with humic substances. Coordin. Chem. Rev. 2002, 228, 205–225. [Google Scholar] [CrossRef]
- Carstea, E.M.; Bridgeman, J.; Baker, A.; Reynolds, D.M. Fluorescence spectroscopy for wastewater monitoring: A review. Water Res. 2016, 95, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Li, J.F.; Liu, X.Y.; Cheng, F.Q. Bio-refractory organics removal and floc characteristics of poly-siliciccation coagulants in tertiary-treatment of coking wastewater. Chem. Eng. J. 2017, 324, 10–18. [Google Scholar] [CrossRef]
- Gone, D.L.; Seidel, J.L.; Batiot, C.; Bamory, K.; Ligban, R.; Biemi, J. Using fluorescence spectroscopy EEM to evaluate the efficiency of organic matter removal during coagulation–flocculation of a tropical surface water (Agbo reservoir). J. Hazard. Mater. 2009, 172, 693–699. [Google Scholar] [CrossRef]
- Zhang, W.H.; Wei, C.H.; Yan, B.; Ren, M.; Peng, P.A. Composition characterization of dissolved organic matters in coking wastewater. Environ. Chem. 2012, 31, 702–707. (In Chinese) [Google Scholar]
- Kim, H.C.; Lee, S. Pump diffusion flash mixing (PDFM) for improving coagulation process in drinking water treatment. Sep. Purif. Technol. 2006, 52, 117–125. [Google Scholar] [CrossRef]
- O’Melia, C.R. Coagulation and sedimentation in lakes, reservoirs and water treatment plants. Water Sci. Technol. 1998, 37, 129–135. [Google Scholar] [CrossRef]
- Xu, W.Y.; Gao, B.Y.; Yue, Q.Y.; Wang, Q. Effect of preformed and non-preformed Al13 species on evolution of floc size, strength and fractal nature of humic acid flocs in coagulation process. Sep. Purif. Technol. 2011, 78, 83–90. [Google Scholar] [CrossRef]
- Su, H.; Xu, H.; Wang, D.S.; Duan, J.M. Effects of Pam on coagulation process in kaolin system using composite coagulants. Chin. J. Environ. Eng. 2017, 11, 1431–1436. (In Chinese) [Google Scholar]
- Jarvis, P.; Jefferson, B.; Gregory, J.; Parsons, S.A. A review of floc strength and breakage. Water Res. 2005, 39, 3121–3137. [Google Scholar] [CrossRef] [PubMed]
pH | Color (°) | Turbidity (NTU) | UV254 (cm−1) | CODCr (mg/L) | TOC (mg/L) |
---|---|---|---|---|---|
7.80 ± 0.3 | 130 ± 5 | 28.9 ± 0.5 | 1.22 ± 0.05 | 126 ± 4 | 30 ± 0.8 |
Organic Compound Variety | Organic Compound | Coking Wastewater Samples | |||
---|---|---|---|---|---|
Biochemical Effluent | After Coagulation with PACl (B = 2.5) | After Coagulation with PACl (B = 2.5) + CPAM | After Coagulation with PACl (B = 2.5) + Iron Ions | ||
R-X | 1,3-Dichloropropane | ND | 5597.82 | 3152.53 | 5808.21 |
R-OH and R-COOH | Amylene hydrate | 5910.14 | 5289.26 | 5315.9 | 4910.14 |
1-Decanecarboxylic acid | 10,922.78 | 6095.30 | 3840.77 | 2421.2 | |
Heptaethylene glycol | 56,661.19 | 41,512.45 | 39,652.8 | 32,273.82 | |
R-COO-R’ | Methyl butyrate | 4914.37 | 4069.29 | 2939.00 | 3957.02 |
1,2,4-Benzenetricarboxylic acid, 1,2-dimethyl ester | 4354.44 | ND | ND | ND | |
Diallyl succinate | 4058.85 | 2805.85 | 1680.37 | 2513.27 | |
ArOH | 2-Naphthalenol | 2395.09 | 1528.02 | ND | 895.09 |
2,2′-Methylenebis [6-(1,1-dimethylethyl)-4-methyl-phenol | 36,093.93 | 22,888.4 | 20,186.2 | 18,150.3 | |
BTEX | Methylbenzene | 56,683.65 | 34,543.72 | 30,216.07 | 29,765.81 |
1-Ethynyl-4-methyl benzene | 893.48 | ND | ND | ND | |
Methylthio-benzene | 33,342.6 | 26,514.8 | 156,758.3 | 19,322.48 | |
Benzoic acid, 4-nitroso-,methyl ester | 975.01 | ND | ND | ND | |
NOSs | 7-Methylthieno[3,2-b] pyridine | 4898.57 | ND | ND | ND |
1-Benzenesulfonyl-1H-pyrrole | 2205.97 | ND | ND | ND | |
2-(3-Methyl-2(3H)-thiazolylidene) hydrazide methanesulfonic acid | 2918.53 | 1124.22 | 990.14 | ND | |
1-Methyl-4-nitro- pyrazole | 4767.72 | 3396.36 | 2576.09 | 1591.79 | |
LCAs | 4,4-DiMethyl-1-pentene | 5040.31 | 2562.24 | 1685.49 | 2040.31 |
Di-n-decylsulfone | 12,180.92 | 6486.38 | 2194.44 | 4486.38 | |
1,3-Dicyclohexyl-2- methylpropane | 8961.86 | 5447.16 | 2875.31 | 4944.52 | |
PAHs | 3-(2-phenylethyl) cyanide | 5680.21 | ND | ND | ND |
2,3-Dehydro-3-hydroxy-2-(4- dimethylaminophenyl) chroman-4-one | 1543.87 | ND | ND | ND | |
Naphthalene | 23,825.9 | 18,636.2 | 12,803.6 | 9873.97 | |
1-Ethylidene-1H-indene | 4033.33 | 2669.27 | 2247.12 | 2272.96 | |
1,4-Dihydro-1,4- methanonaphthalene | 28,004.41 | 15,358.6 | 14,943.2 | 10,177.9 | |
3,3-Diphenyl-5-methyl-3H- pyrazole | 8541.44 | 1589.55 | 1516.63 | 1475.64 | |
9,10-Diethyl-9,10-dihydro- anthracene | 5266.92 | 2543.61 | 2100.53 | 1843.36 | |
Dibenzofuran | 9063.75 | 5598.25 | 4084.80 | 4883.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Zhou, Y.; Du, M.; Du, Z. Enhanced Removal of Refractory Organic Compounds from Coking Wastewater Using Polyaluminum Chloride with Coagulant Aids. Water 2024, 16, 2662. https://doi.org/10.3390/w16182662
Sun H, Zhou Y, Du M, Du Z. Enhanced Removal of Refractory Organic Compounds from Coking Wastewater Using Polyaluminum Chloride with Coagulant Aids. Water. 2024; 16(18):2662. https://doi.org/10.3390/w16182662
Chicago/Turabian StyleSun, Huifang, Yifan Zhou, Mengfan Du, and Zhiping Du. 2024. "Enhanced Removal of Refractory Organic Compounds from Coking Wastewater Using Polyaluminum Chloride with Coagulant Aids" Water 16, no. 18: 2662. https://doi.org/10.3390/w16182662
APA StyleSun, H., Zhou, Y., Du, M., & Du, Z. (2024). Enhanced Removal of Refractory Organic Compounds from Coking Wastewater Using Polyaluminum Chloride with Coagulant Aids. Water, 16(18), 2662. https://doi.org/10.3390/w16182662