Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (550)

Search Parameters:
Keywords = poly-ether-ether-ketone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10057 KiB  
Article
Investigations of the Sulfonated Poly(ether ether ketone) Membranes with Various Degrees of Sulfonation by Considering Durability for the Proton Exchange Membrane Fuel Cell (PEMFC) Applications
by Yinfeng Song, Zhenshuo Guo, Jiayi Yin, Mengjie Liu, Ivan Tolj, Sergey A. Grigoriev, Mingming Ge and Chuanyu Sun
Polymers 2025, 17(16), 2181; https://doi.org/10.3390/polym17162181 - 9 Aug 2025
Viewed by 336
Abstract
The optimum degree of sulfonation (DS) for sulfonated poly(ether ether ketone) (SPEEK) membranes is determined by comprehensive characterization results, including proton conductivity, swelling ratio, water uptake, chemical stability, thermal stability, mechanical indicators, and proton exchange membrane fuel cell (PEMFC) performance. The PEMFC with [...] Read more.
The optimum degree of sulfonation (DS) for sulfonated poly(ether ether ketone) (SPEEK) membranes is determined by comprehensive characterization results, including proton conductivity, swelling ratio, water uptake, chemical stability, thermal stability, mechanical indicators, and proton exchange membrane fuel cell (PEMFC) performance. The PEMFC with a membrane electrode assembly containing a SPEEK-62 (DS = 62%) membrane realizes the power density of 482.08 mW/cm2, surpassing that of commercial Nafion-212 under identical conditions. In the crucial Fenton test for durability, the SPEEK-51 membrane demonstrated outstanding dimensional and chemical stability, with a decomposition time of up to 137 min, far surpassing the durability of SPEEK-62 or other membranes with a higher DS. The results indicate that in comparison to the SPEEK-67 membrane as reported in the literature, SPEEK membranes with a DS = 51~62% hold great potential for future applications in PEMFC, and further modifications of these membranes can be a promising approach to enhance the conductivity while maintaining good chemical stability. Full article
(This article belongs to the Special Issue Polymer Electrolyte Membrane Fuel Cells: Technology and Applications)
Show Figures

Figure 1

21 pages, 5785 KiB  
Article
Retrofitting of a High-Performance Aerospace Component via Topology Optimization and Additive Manufacturing
by Jorge Crespo-Sánchez, Claudia Solek, Sergio Fuentes del Toro, Ana M. Camacho and Alvaro Rodríguez-Prieto
Machines 2025, 13(8), 700; https://doi.org/10.3390/machines13080700 - 8 Aug 2025
Viewed by 177
Abstract
This research presents a novel methodology for lightweighting and cost reduction of components with high structural demands by integrating advanced design and manufacturing techniques. Specifically, it combines topology optimization (TO) with additive manufacturing (AM), also known as 3D printing. Unlike conventional approaches, the [...] Read more.
This research presents a novel methodology for lightweighting and cost reduction of components with high structural demands by integrating advanced design and manufacturing techniques. Specifically, it combines topology optimization (TO) with additive manufacturing (AM), also known as 3D printing. Unlike conventional approaches, the proposed method first determines the optimal geometry using an artificially stiff material, and only then evaluates real materials for structural and manufacturing feasibility. This design-first, material-second strategy enables broader material screening and maximizes weight reduction without compromising performance. The proposed workflow is applied to the design of a turbofan air intake—an aeronautical component operating under supersonic conditions—addressing both structural integrity and manufacturing feasibility. Three materials from distinct classes are assessed: two metallic alloys (aluminum alloy 6061 and titanium alloy, Ti6Al4V) and a high-performance polymer (polyetheretherketone, PEEK). This last option is preliminarily discarded after being analyzed for this specific application. Finite element (FE) simulations are used to evaluate the mechanical behavior of the optimized geometries, including bird-strike conditions. Among the evaluated manufacturing techniques, Selective Laser Melting (SLM) is identified as the most suitable for the metallic materials selected, providing an effective balance between performance, manufacturability, and aerospace compliance. This study illustrates the potential of TO–AM synergy as a sustainable and efficient design approach for next-generation aerospace components. Simulation results demonstrate a weight reduction of up to 71% while preserving critical functional regions and maintaining structural integrity in Al 6061 and Ti6Al4V cases, under the diverse loading conditions typical of real flight scenarios, while PEEK remains an attractive option for uses where mechanical demands are less stringent. Full article
Show Figures

Figure 1

16 pages, 1192 KiB  
Review
The Use of Non-Degradable Polymer (Polyetheretherketone) in Personalized Orthopedics—Review Article
by Gabriela Wielgus, Wojciech Kajzer and Anita Kajzer
Polymers 2025, 17(15), 2158; https://doi.org/10.3390/polym17152158 - 7 Aug 2025
Viewed by 345
Abstract
Polyetheretherketone (PEEK) is a semi-crystalline thermoplastic polymer which, due to its very high mechanical properties and high chemical resistance, has found application in the automotive, aerospace, chemical, food and medical (biomedical engineering) industries. Owing to the use of additive technologies, particularly the Fused [...] Read more.
Polyetheretherketone (PEEK) is a semi-crystalline thermoplastic polymer which, due to its very high mechanical properties and high chemical resistance, has found application in the automotive, aerospace, chemical, food and medical (biomedical engineering) industries. Owing to the use of additive technologies, particularly the Fused Filament Fabrication (FFF) method, this material is the most widely used plastic to produce skull reconstruction implants, parts of dental implants and orthopedic implants, including spinal, knee and hip implants. PEEK enables the creation of personalized implants, which not only have greater elasticity compared to implants made of metal alloys but also resemble the physical properties of the cortical layer of human bone in terms of their mechanical properties. Therefore, the aim of this article is to characterize polyether ether ketone as an alternative material used in the manufacturing of implants in orthopedics and dentistry. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

11 pages, 598 KiB  
Systematic Review
Clinical Assessment of Flexible and Non-Metal Clasp Dentures: A Systematic Review
by Plinio Mendes Senna, Carlos Fernando Mourão, Carlos Roberto Teixeira Rodrigues, Laila Zarranz, Mônica Zacharias Jorge, Tea Romasco and Wayne José Batista Cordeiro
Prosthesis 2025, 7(4), 91; https://doi.org/10.3390/prosthesis7040091 - 1 Aug 2025
Viewed by 248
Abstract
Background/Objectives: The present study aimed to evaluate the oral health and patient satisfaction of flexible and non-metal clasp dentures (NMCD) compared to removable partial dentures (RPD) using a systematic review. Methods: The PICOS framework of this review was as follows: Do rehabilitations involving [...] Read more.
Background/Objectives: The present study aimed to evaluate the oral health and patient satisfaction of flexible and non-metal clasp dentures (NMCD) compared to removable partial dentures (RPD) using a systematic review. Methods: The PICOS framework of this review was as follows: Do rehabilitations involving flexible dentures or NMCD have a similar success rate to those using RPD? Thus, the PICOS approach involves the following topics: (P) Population/Problem: partial edentulous adult patients; (I) Intervention: patients rehabilitated with flexible dentures or NMCD; (C) Comparison: patients rehabilitated with standard RPD; (O) Outcome: clinical parameters such as oral health, masticatory function, and patient satisfaction; and (S) Study Type: clinical trials and observational studies (cohort, case–control, and cross-sectional). No language restrictions were applied to the studies. The search strategy consisted of the following keywords in different databases: ((flexible) OR (nonmetal) OR (non-metal) OR (thermoplastic)) AND (denture). Only clinical trials and observational studies (cohort, case–control, and cross-sectional studies) from the last 15 years were included, and no language restrictions were applied. Studies that did not describe the denture material were excluded. Results: Of the 2197 potentially relevant records, 14 studies were included in the present review. Two studies reported retrospective results, while twelve reported a prospective evaluation. Considering the thermoplastic materials, five studies evaluated polyester, five polyamides, three polyacetals, and only one study evaluated polyetheretherketone (PEEK). Flexible dentures and NMCD demonstrated similar periodontal status and bone levels on abutment teeth to RPD after up to 12 months. Flexible dentures exhibited a higher degree of redness of the mucosa after 12 months. One study showed a lower maximum bite force for flexible dentures compared to RPD. No study has performed a clinical evaluation of mastication and chewing ability. Conclusions: Despite increased short-term patient satisfaction for flexible dentures and NMCD, there is weak evidence to support a similar clinical performance of flexible dentures and NMCD to RPD. Full article
Show Figures

Figure 1

17 pages, 3494 KiB  
Article
Characterization of Expulsion, Cell Viability, and Bacterial Attachment of Enhanced Sulfonated Hydrothermally Treated PEEK Surfaces for Implant Applications
by Kadie Nobles, Amol V. Janorkar, Michael D. Roach, Mary E. Marquart and Randall Scott Williamson
Appl. Sci. 2025, 15(15), 8541; https://doi.org/10.3390/app15158541 - 31 Jul 2025
Viewed by 297
Abstract
Porosity and roughened surfaces of implant materials have been shown to lead to improved cellular attachment and enhanced osseointegration. These topography changes in the surface also aid in the mechanical interlocking of the material to the bone. Polyetheretherketone (PEEK) has emerged as a [...] Read more.
Porosity and roughened surfaces of implant materials have been shown to lead to improved cellular attachment and enhanced osseointegration. These topography changes in the surface also aid in the mechanical interlocking of the material to the bone. Polyetheretherketone (PEEK) has emerged as a popular alternative to titanium-based implants due to its lack of stress-shielding effect, radiolucency, and high chemical resistance. However, PEEK is bioinert, thus requiring surface modifications to elicit appropriate cellular responses that lead to successful osteointegration of the material in vivo. Sulfonation is a process used to modify the surface of PEEK, which can be controlled by varying parameters such as soak time and soak temperature, thereby fabricating a porous surface on the material. This work aimed to ensure the repeatability of a previously optimized sulfonated and hydrothermally treated PEEK surface and subsequently observe the mechanical properties, bacterial attachment, and cellular response of pre-osteoblast MC3T3-E1 cells on the surface. This study found that while all PEEK surfaces had similar cell and Staphylococcus aureus attachment, the sulfonated and hydrothermally treated PEEK (peak mean load of 605 N, p ≤ 0.0001) and the sulfonated only PEEK (peak mean load of 495 N, p = 0.0240) had a higher level of performance in expulsion testing than smooth PEEK due to its mechanical interlocking ability. Imaging and contact angle analysis confirm that a surface with repeatable porosity can be achieved. Full article
Show Figures

Figure 1

26 pages, 2731 KiB  
Review
Recent Advances in PEEK for Biomedical Applications: A Comprehensive Review of Material Properties, Processing, and Additive Manufacturing
by Samreen Dallal, Babak Eslami and Saeed Tiari
Polymers 2025, 17(14), 1968; https://doi.org/10.3390/polym17141968 - 17 Jul 2025
Viewed by 1033
Abstract
Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer widely recognized for its distinct mechanical strength, chemical resistance, and biocompatibility. These characteristics make it suitable for a wide range of applications, particularly in medical, aerospace, chemical, and electronics fields. Conventional processing techniques, such as 3D [...] Read more.
Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer widely recognized for its distinct mechanical strength, chemical resistance, and biocompatibility. These characteristics make it suitable for a wide range of applications, particularly in medical, aerospace, chemical, and electronics fields. Conventional processing techniques, such as 3D printing, molding, and extrusion, are widely employed for PEEK fabrication. This review critically examines recent advancements in PEEK research, with an emphasis on additive manufacturing techniques that are expanding its applications in the medical field. We provide an in-depth analysis of PEEK’s intrinsic properties, diverse processing methods, and current challenges that hinder its wider adoption. In addition to evaluating PEEK’s performance, this review compares it with alternative biomaterials—such as titanium and ultra-high molecular weight polyethylene (UHMWPE)—to explore its advantages and limitations in biomedical applications. Furthermore, this review discusses cost considerations, regulatory constraints, long-term clinical performance challenges, and failure modes that are essential for validating and ensuring the reliability of PEEK in clinical use. By synthesizing the recent literature, particularly from the last decade, this review highlights the significant potential of PEEK and underscores ongoing research efforts aimed at overcoming its limitations, paving the way for its broader implementation in advanced technological applications. Full article
Show Figures

Figure 1

19 pages, 1293 KiB  
Review
Customized 3D-Printed Scaffolds for Alveolar Ridge Augmentation: A Scoping Review of Workflows, Technology, and Materials
by Saeed A. Elrefaei, Lucrezia Parma-Benfenati, Rana Dabaja, Paolo Nava, Hom-Lay Wang and Muhammad H. A. Saleh
Medicina 2025, 61(7), 1269; https://doi.org/10.3390/medicina61071269 - 14 Jul 2025
Viewed by 409
Abstract
Background and Objectives: Bone regeneration (BR) is a cornerstone technique in reconstructive dental surgery, traditionally using either barrier membranes, titanium meshes, or perforated non-resorbable membranes to facilitate bone regeneration. Recent advancements in 3D technology, including CAD/CAM and additive manufacturing, have enabled the development [...] Read more.
Background and Objectives: Bone regeneration (BR) is a cornerstone technique in reconstructive dental surgery, traditionally using either barrier membranes, titanium meshes, or perforated non-resorbable membranes to facilitate bone regeneration. Recent advancements in 3D technology, including CAD/CAM and additive manufacturing, have enabled the development of customized scaffolds tailored to patient needs, potentially overcoming the limitations of conventional methods. Materials and Methods: A scoping review was conducted according to the PRISMA guidelines. Electronic searches were performed in MEDLINE (PubMed), the Cochrane Library, Scopus, and Web of Science up to January 2025 to identify studies on digital technologies applied to bone augmentation. Eligible studies encompassed randomized controlled trials, cohort studies, case series, and case reports, all published in English. Data regarding digital workflows, software, materials, printing techniques, and sterilization methods were extracted from 23 studies published between 2015 and 2024. Results: The review highlights a diverse range of digital workflows, beginning with CBCT-based DICOM to STL conversion using software such as Mimics and Btk-3D®. Customized titanium meshes and other meshes like Poly Ether-Ether Ketone (PEEK) meshes were produced via techniques including direct metal laser sintering (DMLS), selective laser melting (SLM), and five-axis milling. Although titanium remained the predominant material, studies reported variations in mesh design, thickness, and sterilization protocols. The findings underscore that digital customization enhances surgical precision and efficiency in BR, with several studies demonstrating improved bone gain and reduced operative time compared to conventional approaches. Conclusions: This scoping review confirms that 3D techniques represent a promising advancement in BR. Customized digital workflows provide superior accuracy and support for BR procedures, yet variability in protocols and limited high-quality trials underscore the need for further clinical research to standardize techniques and validate long-term outcomes. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

14 pages, 2980 KiB  
Communication
Simultaneously Promoting Proton Conductivity and Mechanical Stability of SPEEK Membrane by Incorporating Porous g–C3N4
by Xiaoyao Wang and Benbing Shi
Membranes 2025, 15(7), 194; https://doi.org/10.3390/membranes15070194 - 29 Jun 2025
Viewed by 538
Abstract
Proton exchange membranes are widely used in environmentally friendly applications such as fuel cells and electrochemical hydrogen compression. In these applications, an ideal proton exchange membrane should have both excellent proton conductivity and mechanical strength. Polymer proton exchange membranes, such as sulfonated poly(ether [...] Read more.
Proton exchange membranes are widely used in environmentally friendly applications such as fuel cells and electrochemical hydrogen compression. In these applications, an ideal proton exchange membrane should have both excellent proton conductivity and mechanical strength. Polymer proton exchange membranes, such as sulfonated poly(ether ether ketone) (SPEEK) membranes with high ion exchange capacity, can lead to higher proton conductivity. However, the ionic groups may reduce the interaction between polymer segments, lower the membrane’s mechanical strength, and even cause it to dissolve in water as the temperature exceeds 55 °C. The porous graphitic C3N4 (Pg–C3N4) nanosheet is an important two–dimensional polymeric carbon–based material and has a high content of –NH2 and –NH– groups, which can interact with the sulfonic acid groups in the sulfonated SPEEK polymer, form a more continuous proton transfer channel, and inhibit the movement of the polymer segment, leading to higher proton conductivity and mechanical strength. In this study, we found that a SPEEK membrane containing 3% Pg–C3N4 nanosheets achieves the optimized proton conductivity of 138 mS/cm (80 °C and 100% RH) and a mechanical strength of 74.1 MPa, improving both proton conductivity and mechanical strength by over 50% compared to the SPEEK membrane. Full article
(This article belongs to the Special Issue Advanced Membranes for Fuel Cells and Redox Flow Batteries)
Show Figures

Figure 1

21 pages, 6776 KiB  
Article
Effects of Void Characteristics on the Mechanical Properties of Carbon Fiber Reinforced Polyetheretherketone Composites: Micromechanical Modeling and Analysis
by Yong Zhang, Yibo Li, Xi Luan, Bin Meng, Jinsong Liu and Yan Lu
Polymers 2025, 17(13), 1721; https://doi.org/10.3390/polym17131721 - 20 Jun 2025
Cited by 1 | Viewed by 619
Abstract
This study proposes a novel algorithm for generating representative volume elements which mitigate microstructural inhomogeneities in fiber-reinforced composites. The algorithm integrates void characteristics obtained from micro-computed tomography to more accurate microstructure models. Based on these models, the effects of void content, spatial distribution, [...] Read more.
This study proposes a novel algorithm for generating representative volume elements which mitigate microstructural inhomogeneities in fiber-reinforced composites. The algorithm integrates void characteristics obtained from micro-computed tomography to more accurate microstructure models. Based on these models, the effects of void content, spatial distribution, and void diameter on the mechanical behavior of CF/PEEK composites are systematically evaluated using finite element analysis and experimental validation. The results reveal that void content significantly reduces transverse tensile strength and ductility, while void size further accelerates failure and enhances brittleness. In contrast, void distribution has minimal influence on the transverse mechanical response. These findings not only offer qualitative insights into void-induced damage mechanisms but also provide a theoretical basis for optimizing microstructures to enhance the mechanical performance of CF/PEEK and similar composite systems. Finally, the limitations of this study have been discussed, and directions for future research are proposed. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

15 pages, 4783 KiB  
Article
New Modified SPEEK-Based Proton Exchange Membranes
by Fátima C. Teixeira, António P. S. Teixeira and Carmen M. Rangel
Polymers 2025, 17(12), 1646; https://doi.org/10.3390/polym17121646 - 13 Jun 2025
Cited by 1 | Viewed by 569
Abstract
A decarbonized society demands cleaner and sustainable energy sources based on well-established or emerging technologies with the potential to make a significant contribution to energy storage and conversion, such as batteries, fuel cells and water and/or CO2 electrolyzers. The performance of these [...] Read more.
A decarbonized society demands cleaner and sustainable energy sources based on well-established or emerging technologies with the potential to make a significant contribution to energy storage and conversion, such as batteries, fuel cells and water and/or CO2 electrolyzers. The performance of these electrochemical devices relies on key components such as their separators/ion-exchange membranes. The most common commercial membrane, Nafion®, has several technological limitations. In this study, it is proposed the incorporation of bisphosphonic acid (BP) dopants into membrane matrices to improve their properties. Following this strategy, we prepared new membranes based on sulfonated poly(etheretherketone) (SPEEK) polymer, a reliable and effective alternative membrane polymer, through the incorporation of the BP dopants, to obtain low-cost membranes with improved properties. These membranes were structural, thermal and morphological, characterized by AT-FTIR, TGA and SEM. Their proton conductivity was evaluated over a temperature range between 30 °C and 60 °C, using Electrochemical Impedance Spectroscopy, and their stability during this process was also observed. The best proton conductivity was observed for the SPEEK membrane doped with BP1 at 2.0 wt% load at 60 °C, with a proton conduction of 226 mS cm−1. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

26 pages, 8645 KiB  
Article
Effect of the Gel Drying Method on Properties of Semicrystalline Aerogels Prepared with Different Network Morphologies
by Glenn A. Spiering, Garrett F. Godshall and Robert B. Moore
Gels 2025, 11(6), 447; https://doi.org/10.3390/gels11060447 - 10 Jun 2025
Viewed by 808
Abstract
The purpose of this study was to investigate the effect of different drying methods on the structure and properties of semicrystalline polymer aerogels. Aerogels, consisting of either globular or strut-like morphologies, were prepared from poly(ether ether ketone) (PEEK) or poly(phenylene sulfide) (PPS) and [...] Read more.
The purpose of this study was to investigate the effect of different drying methods on the structure and properties of semicrystalline polymer aerogels. Aerogels, consisting of either globular or strut-like morphologies, were prepared from poly(ether ether ketone) (PEEK) or poly(phenylene sulfide) (PPS) and dried using vacuum drying, freeze-drying, or supercritical CO2 extraction. Vacuum drying was found to result in aerogels with a higher shrinkage, smaller mesopores (with pore widths of 2–50 nm), and smaller surface areas compared to the use of supercritical extraction as the drying method. Freeze-dried aerogels tended to have properties between those of vacuum-dried aerogels and aerogels prepared with supercritical extraction. High network connectivity was found to lead to improved gel modulus, which increased the ability of aerogels to resist network deformation due to stresses induced during drying. The PEEK and PPS aerogel networks consisting of highly connected strut-like features were considerably stiffer than those composed of globular features, and thus shrank less under the forces induced by vacuum drying or freeze-drying. The aerogels prepared from PPS were found to have larger mesopores and smaller surface areas than the aerogels prepared from PEEK. The larger mesopores of the PPS aerogels induced lower capillary stresses on the aerogel network, and thus shrank less. This work demonstrates that preparing PEEK and PPS gels with strut-like features can allow aerogel processing with simpler evaporative drying methods rather than the more complex supercritical drying method. Full article
Show Figures

Graphical abstract

32 pages, 2930 KiB  
Review
3D Printing Continuous Fiber Reinforced Polymers: A Review of Material Selection, Process, and Mechanics-Function Integration for Targeted Applications
by Haoyuan Zheng, Shaowei Zhu, Liming Chen, Lianchao Wang, Hanbo Zhang, Peixu Wang, Kefan Sun, Haorui Wang and Chengtao Liu
Polymers 2025, 17(12), 1601; https://doi.org/10.3390/polym17121601 - 9 Jun 2025
Viewed by 2543
Abstract
In recent years, the rapid development of three-dimensional (3D)-printed continuous fiber-reinforced polymer (CFRP) technology has provided novel strategies for customized manufacturing of high-performance composites. This review systematically summarizes research advancements in material systems, processing methods, mechanical performance regulation, and functional applications of this [...] Read more.
In recent years, the rapid development of three-dimensional (3D)-printed continuous fiber-reinforced polymer (CFRP) technology has provided novel strategies for customized manufacturing of high-performance composites. This review systematically summarizes research advancements in material systems, processing methods, mechanical performance regulation, and functional applications of this technology. Material-wise, the analysis focuses on the performance characteristics and application scenarios of carbon fibers, glass fibers, and natural fibers, alongside discussions on the processing behaviors of thermoplastic matrices such as polyetheretherketone (PEEK). At the process level, the advantages and limitations of fused deposition modeling (FDM) and photopolymerization techniques are compared, with emphasis on their impact on fiber–matrix interfaces. The review further examines the regulatory mechanisms of fiber orientation, volume fraction, and other parameters on mechanical properties, as well as implementation pathways for functional designs, such as electrical conductivity and self-sensing capabilities. Application case studies in aerospace lightweight structures and automotive energy-absorbing components are comprehensively analyzed. Current challenges are highlighted, and future directions proposed, including artificial intelligence (AI)-driven process optimization and multi-material hybrid manufacturing. This review aims to provide a comprehensive assessment of the current achievements in 3D printing CFRP technology and a forward-looking analysis of existing challenges, offering a systematic reference for accelerating the transformation of 3D printing CFRP technology from laboratory research to industrial-scale implementation. Full article
(This article belongs to the Special Issue Polymer-Based Composite Structures and Mechanical Metamaterials)
Show Figures

Figure 1

22 pages, 3503 KiB  
Article
Advancing Compatibility and Interfacial Interaction Between PEEK and GNPs Through a Strategic Approach Using Pyrene-Functionalized PDMAEMA-b-PMMA Copolymer
by Chae-Yun Nam, Dohyun Im, Jun-Hyung Lee, Jinwon Kim, Kie-Yong Cho and Ho-Gyu Yoon
Polymers 2025, 17(12), 1599; https://doi.org/10.3390/polym17121599 - 8 Jun 2025
Viewed by 814
Abstract
Polyetheretherketone (PEEK), known for its high heat and chemical resistance and excellent mechanical properties, is extensively utilized, particularly as a metal substitute, in the automotive industry. Although PEEK exhibits outstanding properties, enhancements are essential to improve its practical performance. In this study, we [...] Read more.
Polyetheretherketone (PEEK), known for its high heat and chemical resistance and excellent mechanical properties, is extensively utilized, particularly as a metal substitute, in the automotive industry. Although PEEK exhibits outstanding properties, enhancements are essential to improve its practical performance. In this study, we aimed to improve the performance of PEEK by incorporating graphene nanoplatelets (GNPs) and optimizing their dispersion through non-covalent functionalization. We synthesized pyrene-functionalized poly(dimethylaminoethyl methacrylate)-b-poly(methyl methacrylate) (py-PDMAEMA-b-PMMA) as a compatibilizer of PEEK and GNPs and investigated the thermal, mechanical, and tribological properties of the PEEK/GNP composites—GNPs treated with py-PDMAEMA-b-PMMA (F-GNP) and untreated GNPs (pristine GNPs, P-GNP). The F-GNP composites exhibited higher crystallinity and tensile strength than the P-GNP composites, with the best performance observed at a GNP content of 0.1 wt.%. Furthermore, scanning electron microscopy analysis confirmed the enhanced tribological behavior (including a low friction coefficient and reduced abrasive wear) of the F-GNP composites. These enhancements were attributed to the improved interfacial bonding and uniform stress distribution enabled by py-PDMAEMA-b-PMMA. These findings highlight the potential of F-GNP composites to expand the application scope of PEEK to fields requiring superior mechanical performance, such as the automotive and electronics industries. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

16 pages, 498 KiB  
Review
Additive Manufacturing, Thermoplastics, CAD Technology, and Reverse Engineering in Orthopedics and Neurosurgery–Applications to Preventions and Treatment of Infections
by Gabriel Burato Ortis, Franco Camargo Zapparoli, Leticia Ramos Dantas, Paula Hansen Suss, Jamil Faissal Soni, Celso Júnio Aguiar Mendonça, Gustavo Henrique Loesch, Maíra de Mayo Oliveira Nogueira Loesch and Felipe Francisco Tuon
Antibiotics 2025, 14(6), 565; https://doi.org/10.3390/antibiotics14060565 - 31 May 2025
Viewed by 882
Abstract
The increasing demand for orthopedic and neurosurgical implants has driven advancements in biomaterials, additive manufacturing, and antimicrobial strategies. With an increasingly aging population, and a high incidence of orthopedic trauma in developing countries, the need for effective, biocompatible, and infection-resistant implants is more [...] Read more.
The increasing demand for orthopedic and neurosurgical implants has driven advancements in biomaterials, additive manufacturing, and antimicrobial strategies. With an increasingly aging population, and a high incidence of orthopedic trauma in developing countries, the need for effective, biocompatible, and infection-resistant implants is more critical than ever. This review explores the role of polymers in 3D printing for medical applications, focusing on their use in orthopedic and neurosurgical implants. Polylactic acid (PLA), polycaprolactone (PCL), and polyetheretherketone (PEEK) have gained attention due to their biocompatibility, mechanical properties, and potential for antimicrobial modifications. A major challenge in implantology is the risk of periprosthetic joint infections (PJI) and surgical site infections (SSI). Current strategies, such as antibiotic-loaded polymethylmethacrylate (PMMA) spacers and bioactive coatings, aim to reduce infection rates, but limitations remain. Additive manufacturing enables the creation of customized implants with tailored porosity for enhanced osseointegration while allowing for the incorporation of antimicrobial agents. Future perspectives include the integration of artificial intelligence for implant design, nanotechnology for smart coatings, and bioresorbable scaffolds for improved bone regeneration. Advancing these technologies will lead to more efficient, cost-effective, and patient-specific solutions, ultimately reducing infection rates and improving long-term clinical outcomes. Full article
Show Figures

Figure 1

23 pages, 5628 KiB  
Article
Optimization of Bond Strength Between Heat-Polymerized PMMA and Contemporary CAD/CAM Framework Materials: A Comparative In Vitro Study
by Başak Topdağı
Polymers 2025, 17(11), 1488; https://doi.org/10.3390/polym17111488 - 27 May 2025
Cited by 1 | Viewed by 568
Abstract
This study aimed to comparatively evaluate the effects of various surface treatment protocols on the shear bond strength (SBS) between heat-polymerized polymethyl methacrylate (PMMA) and different CAD/CAM framework materials, including cobalt–chromium (Co–Cr) alloys, ceramic particle-reinforced polyetheretherketone (PEEK), and glass fiber-reinforced composite resin (FRC). [...] Read more.
This study aimed to comparatively evaluate the effects of various surface treatment protocols on the shear bond strength (SBS) between heat-polymerized polymethyl methacrylate (PMMA) and different CAD/CAM framework materials, including cobalt–chromium (Co–Cr) alloys, ceramic particle-reinforced polyetheretherketone (PEEK), and glass fiber-reinforced composite resin (FRC). A total of 135 disc-shaped specimens were prepared from Co–Cr, PEEK, and FRC materials. Surface treatments specific to each material, including airborne-particle abrasion, sulfuric acid etching, laser irradiation, plasma activation, and primer application, were applied. PMMA cylinders were polymerized onto the treated surfaces, and all specimens were subjected to 30,000 thermal cycles. SBS values were measured using a universal testing machine, and the failure modes were classified. The normality of data distribution was assessed using the Kolmogorov–Smirnov test, and the homogeneity of variances was evaluated using Levene’s test. Group comparisons were performed using the Kruskal–Wallis test, and Dunn’s post hoc test with Bonferroni correction was applied in cases where significant differences were detected (α = 0.05). The highest SBS values (~27–28 MPa) were obtained in the Co–Cr group and in the PEEK groups treated with sulfuric acid and primer. In contrast, the PEEK group with additional laser treatment exhibited a lower SBS value. The untreated PEEK group showed significantly lower SBS (~3.9 MPa) compared to all other groups. The Trinia groups demonstrated intermediate SBS values (16.5–17.4 MPa), which exceeded the clinically acceptable threshold of 10 MPa. SEM observations revealed material- and protocol-specific surface responses; plasma-treated specimens maintained topographic integrity, whereas laser-induced surfaces showed localized degradation, particularly following dual-step protocols. Fracture mode analysis indicated that higher SBS values were associated with cohesive or mixed failures. SEM observations suggested that plasma treatment preserved surface morphology more effectively than laser treatment. This study highlights the importance of selecting material-specific surface treatments to optimize bonding between CAD/CAM frameworks and PMMA. Sulfuric acid and primer provided strong adhesion for PEEK, while the addition of laser or plasma offered no further benefit, making such steps potentially unnecessary. Trinia frameworks also showed acceptable performance with conventional treatments. These findings reinforce that simplified conditioning protocols may be clinically sufficient, and indicate that FRC materials like Trinia should be more fully considered for their broader clinical potential in modern CAD/CAM-based prosthetic planning. Full article
(This article belongs to the Special Issue Advances in Polymer Composites II)
Show Figures

Figure 1

Back to TopTop