Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,067)

Search Parameters:
Keywords = pollution removal efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2618 KiB  
Article
Advanced Oxidation of Dexamethasone by Activated Peroxo Compounds in Water Matrices: A Comparative Study
by Liina Onga, Niina Dulova and Eneliis Kattel-Salusoo
Water 2025, 17(15), 2303; https://doi.org/10.3390/w17152303 (registering DOI) - 3 Aug 2025
Abstract
The continuous occurrence of steroidal pharmaceutical dexamethasone (DXM) in aqueous environments indicates the need for an efficient removal technology. The frequent detection of DXM in surface water could be substantially reduced by the application of photo-induced advanced oxidation technology. In the present study, [...] Read more.
The continuous occurrence of steroidal pharmaceutical dexamethasone (DXM) in aqueous environments indicates the need for an efficient removal technology. The frequent detection of DXM in surface water could be substantially reduced by the application of photo-induced advanced oxidation technology. In the present study, Fe2+ and UVA-light activated peroxo compounds were applied for the degradation and mineralization of a glucocorticoid, 25.5 µM DXM, in ultrapure water (UPW). The treatment efficacies were validated in real spring water (SW). A 120 min target pollutant degradation followed pseudo first-order reaction kinetics when an oxidant/Fe2+ dose 10/1 or/and UVA irradiation were applied. Acidic conditions (a pH of 3) were found to be more favorable for DXM oxidation (≥99%) regardless of the activated peroxo compound. Full conversion of DXM was not achieved, as the maximum TOC removal reached 70% in UPW by the UVA/H2O2/Fe2+ system (molar ratio of 10/1) at a pH of 3. The higher efficacy of peroxymonosulfate-based oxidation in SW could be induced by chlorine, bicarbonate, and carbonate ions; however, it is not applicable for peroxydisulfate and hydrogen peroxide. Overall, consistently higher efficacies for HO-dominated oxidation systems were observed. The findings from the current paper could complement the knowledge of oxidative removal of low-level DXM in real water matrices. Full article
Show Figures

Figure 1

26 pages, 7374 KiB  
Article
Copper-Enhanced NiMo/TiO2 Catalysts for Bifunctional Green Hydrogen Production and Pharmaceutical Pollutant Removal
by Nicolás Alejandro Sacco, Fernanda Albana Marchesini, Ilaria Gamba and Gonzalo García
Catalysts 2025, 15(8), 737; https://doi.org/10.3390/catal15080737 (registering DOI) - 1 Aug 2025
Viewed by 48
Abstract
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at [...] Read more.
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at 400 °C and 900 °C to investigate structural transformations and catalytic performance. Comprehensive characterization (XRD, BET, SEM, XPS) revealed phase transitions, enhanced crystallinity, and redistribution of redox states upon Cu incorporation, particularly the formation of NiTiO3 and an increase in oxygen vacancies. Crystallite sizes for anatase, rutile, and brookite ranged from 21 to 47 nm at NiMoCu400, while NiMoCu900 exhibited only the rutile phase with 55 nm crystallites. BET analysis showed a surface area of 44.4 m2·g−1 for NiMoCu400, and electrochemical measurements confirmed its higher electrochemically active surface area (ECSA, 2.4 cm2), indicating enhanced surface accessibility. In contrast, NiMoCu900 exhibited a much lower BET surface area (1.4 m2·g−1) and ECSA (1.4 cm2), consistent with its inferior photoelectrocatalytic performance. Compared to previously reported binary NiMo/TiO2 systems, the ternary NiMoCu/TiO2 catalysts demonstrated significantly improved hydrogen production activity and more efficient photoelectrochemical degradation of paracetamol. Specifically, NiMoCu400 showed an anodic peak current of 0.24 mA·cm−2 for paracetamol oxidation, representing a 60% increase over NiMo400 and a cathodic current of –0.46 mA·cm−2 at –0.1 V vs. RHE under illumination, nearly six times higher than the undoped counterpart (–0.08 mA·cm−2). Mott–Schottky analysis further revealed that NiMoCu400 retained n-type behavior, while NiMoCu900 exhibited an unusual inversion to p-type, likely due to Cu migration and rutile-phase-induced realignment of donor states. Despite its higher photosensitivity, NiMoCu900 showed negligible photocurrent, confirming that structural preservation and surface redox activity are critical for photoelectrochemical performance. This work provides mechanistic insight into Cu-mediated photoelectrocatalysis and identifies NiMoCu/TiO2 as a promising bifunctional platform for integrated solar-driven water treatment and sustainable hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
22 pages, 7156 KiB  
Communication
Water Management, Environmental Challenges, and Rehabilitation Strategies in the Khyargas Lake–Zavkhan River Basin, Western Mongolia: A Case Study of Ereen Lake
by Tseren Ochir Soyol-Erdene, Ganbat Munguntsetseg, Zambuu Burmaa, Ulziibat Bilguun, Shagijav Oyungerel, Soninkhishig Nergui, Nyam-Osor Nandintsetseg, Michael Walther and Ulrich Kamp
Geographies 2025, 5(3), 38; https://doi.org/10.3390/geographies5030038 (registering DOI) - 1 Aug 2025
Viewed by 233
Abstract
The depletion of water resources caused by climate change and human activities is a pressing global issue. Lake Ereen is one of the ten natural landmarks of the Gobi-Altai of western Mongolia is included in the list of “important areas for birds” recognized [...] Read more.
The depletion of water resources caused by climate change and human activities is a pressing global issue. Lake Ereen is one of the ten natural landmarks of the Gobi-Altai of western Mongolia is included in the list of “important areas for birds” recognized by the international organization Birdlife. However, the construction of the Taishir Hydroelectric Power Station, aimed at supplying electricity to the western provinces of Mongolia, had a detrimental effect on the flow of the Zavkhan River, resulting in a drying-up and pollution of Lake Ereen, which relies on the river as its water source. This study assesses the pollution levels in Ereen Lake and determines the feasibility of its rehabilitation by redirecting the flow of the Zavkhan River. Field studies included the analysis of water quality, sediment contamination, and the composition of flora. The results show that the concentrations of ammonium, chlorine, fluorine, and sulfate in the lake water exceed the permissible levels set by the Mongolian standard. Analyses of elements from sediments revealed elevated levels of arsenic, chromium, and copper, exceeding international sediment quality guidelines and posing risks to biological organisms. Furthermore, several species of diatoms indicative of polluted water were discovered. Lake Ereen is currently in a eutrophic state and, based on a water quality index (WQI) of 49.4, also in a “polluted” state. Mass balance calculations and box model analysis determined the period of pollutant replacement for two restoration options: drying-up and complete removal of contaminated sediments and plants vs. dilution-flushing without direct interventions in the lake. We recommend the latter being the most efficient, eco-friendly, and cost-effective approach to rehabilitate Lake Ereen. Full article
Show Figures

Figure 1

34 pages, 4196 KiB  
Review
Surface Interface Modulation and Photocatalytic Membrane Technology for Degradation of Oily Wastewater
by Yulin Zhao, Yang Xu, Chunling Yu, Yufan Feng, Geng Chen and Yingying Zhu
Catalysts 2025, 15(8), 730; https://doi.org/10.3390/catal15080730 (registering DOI) - 31 Jul 2025
Viewed by 156
Abstract
The discharge of oily wastewater threatens the ecosystem and human health, and the efficient treatment of oily wastewater is confronted with problems of high mass transfer resistance at the oil-water-solid multiphase interface, significant light shielding effect, and easy deactivation of photocatalysts. Although traditional [...] Read more.
The discharge of oily wastewater threatens the ecosystem and human health, and the efficient treatment of oily wastewater is confronted with problems of high mass transfer resistance at the oil-water-solid multiphase interface, significant light shielding effect, and easy deactivation of photocatalysts. Although traditional physical separation methods avoid secondary pollution by chemicals and can effectively separate floating oil and dispersed oil, they are ineffective in removing emulsified oil with small particle sizes. To address these complex challenges, photocatalytic technology and photocatalysis-based improved technologies have emerged, offering significant application prospects in degrading organic pollutants in oily wastewater as an environmentally friendly oxidation technology. In this paper, the degradation mechanism, kinetic mechanism, and limitations of conventional photocatalysis technology are briefly discussed. Subsequently, the surface interface modulation functions of metal doping and heterojunction energy band engineering, along with their applications in enhancing the light absorption range and carrier separation efficiency, are reviewed. Focus on typical studies on the separation and degradation of aqueous and oily phases using photocatalytic membrane technology, and illustrate the advantages and mechanisms of photocatalysts loaded on the membranes. Finally, other new approaches and converging technologies in the field are outlined, and the challenges and prospects for the future treatment of oily wastewater are presented. Full article
Show Figures

Figure 1

17 pages, 2736 KiB  
Article
Controlled Formation of α- and β-Bi2O3 with Tunable Morphologies for Visible-Light-Driven Photocatalysis
by Thomas Cadenbach, María Isabel Loyola-Plúa, Freddy Quijano Carrasco, Maria J. Benitez, Alexis Debut and Karla Vizuete
Molecules 2025, 30(15), 3190; https://doi.org/10.3390/molecules30153190 - 30 Jul 2025
Viewed by 181
Abstract
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3 [...] Read more.
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3) there is still a limited understanding of how structural and morphological features influence photocatalytic performance. In this work, a straightforward hydrothermal synthesis method followed by controlled calcination was developed to produce phase-pure α- and β-Bi2O3 with tunable morphologies. By varying the hydrothermal temperature and reaction time, distinct structures were successfully obtained, including flower-like, broccoli-like, and fused morphologies. XRD analyses showed that the final crystal phase depends solely on the calcination temperature, with β-Bi2O3 forming at 350 °C and α-Bi2O3 at 500 °C. SEM and BET analyses confirmed that morphology and surface area are strongly influenced by the hydrothermal conditions, with the flower-like β-Bi2O3 exhibiting the highest surface area. UV–Vis spectroscopy revealed that β-Bi2O3 also has a lower bandgap than its α counterpart, making it more responsive to visible light. Photocatalytic tests using Rhodamine B showed that the flower-like β-Bi2O3 achieved the highest degradation efficiency (81% in 4 h). Kinetic analysis followed pseudo-first-order behavior, and radical scavenging experiments identified hydroxyl radicals, superoxide radicals, and holes as key active species. The catalyst also demonstrated excellent stability and reusability. Additionally, Methyl Orange (MO), a more stable and persistent azo dye, was selected as a second model pollutant. The flower-like β-Bi2O3 catalyst achieved 73% degradation of MO at pH = 7 and complete removal under acidic conditions (pH = 2) in less than 3 h. These findings underscore the importance of both phase and morphology in designing high-performance Bi2O3 photocatalysts for environmental remediation. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Figure 1

21 pages, 1562 KiB  
Review
Electrospun Molecularly Imprinted Polymers for Environmental Remediation: A Mini Review
by Sisonke Sigonya, Bakang Mo Mothudi, Olayemi J. Fakayode, Teboho C. Mokhena, Paul Mayer, Thabang H. Mokhothu, Talent R. Makhanya and Katekani Shingange
Polymers 2025, 17(15), 2082; https://doi.org/10.3390/polym17152082 - 30 Jul 2025
Viewed by 219
Abstract
This review critically examines the recent advancements in the development and application of electrospun molecularly imprinted polymer (MIP) nanofiber membranes for environmental remediation. Emphasizing the significance of these materials, the discussion highlights the mechanisms by which electrospun MIPs achieve high selectivity and efficiency [...] Read more.
This review critically examines the recent advancements in the development and application of electrospun molecularly imprinted polymer (MIP) nanofiber membranes for environmental remediation. Emphasizing the significance of these materials, the discussion highlights the mechanisms by which electrospun MIPs achieve high selectivity and efficiency in removing various pollutants, including dyes, heavy metals, and pharmaceutical residues such as NSAIDs and antiretroviral drugs. The synthesis methodologies are explored in detail, focusing on the choice of monomers, templates, and polymerization conditions that influence the structural and functional properties of the membranes. Characterization techniques used to assess morphology, surface area, porosity, and imprinting efficacy are also examined, providing insights into how these parameters affect adsorption performance. Furthermore, the review evaluates the performance metrics of electrospun MIPs, including adsorption capacities, selectivity, reusability, and stability in complex environmental matrices. Practical considerations, such as scalability, regeneration, and long-term operational stability, are discussed to assess their potential for real-world applications. The article concludes with an outline of future research directions, emphasizing the need for multi-template imprinting, integration with existing treatment technologies, and field-scale validation to address current limitations. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

20 pages, 4676 KiB  
Article
Adsorption of Pb2+ and Cd2+ from Aqueous Solutions by Porous Carbon Foam Derived from Biomass Phenolic Resin
by Jianwei Ling, Yu Gao, Ruiling Wang, Shiyu Lu, Xuemei Li, Shouqing Liu and Jianxiang Liu
Int. J. Mol. Sci. 2025, 26(15), 7302; https://doi.org/10.3390/ijms26157302 - 28 Jul 2025
Viewed by 185
Abstract
Due to its lightweight and superior adsorption properties, carbon foam is frequently employed for the removal of heavy metal pollutants from aqueous solutions. In this study, a novel modified carbon foam (M-CF) was successfully synthesized for the effective removal of Pb2+ and [...] Read more.
Due to its lightweight and superior adsorption properties, carbon foam is frequently employed for the removal of heavy metal pollutants from aqueous solutions. In this study, a novel modified carbon foam (M-CF) was successfully synthesized for the effective removal of Pb2+ and Cd2+ from water. The synthesis involved partially substituting phenol with the liquefaction product of bamboo powder, followed by modification with a silane coupling agent (KH560) and foaming with n-hexane-loaded activated carbon (H/AC). The prepared carbon foam was comprehensively characterized, and its adsorption performance and mechanism for Pb2+ and Cd2+ in aqueous solution were investigated. The results showed that M-CF possessed a uniform and well-developed spherical pore structure and demonstrated excellent removal capacity for Cd2+ and Pb2+. The adsorption process conformed to the Sips isotherm model and the pseudo-second-order kinetic equation, with maximum adsorption capacities of 22.15 mg·g−1 and 61.59 mg·g−1 for Cd2+ and Pb2+, respectively. Mechanistic analysis revealed that the removal of Cd2+ and Pb2+ was a result of the synergistic effect of physisorption and chemisorption, accompanied by complexation. Furthermore, precipitates formed during the adsorption process were found to be mainly composed of hydroxides, carbonates, and PbS. This research demonstrates the efficacy of carbon foam prepared from bamboo powder waste as a partial phenol substitute for the efficient removal of Pb2+ and Cd2+ from water, thus expanding the preparation pathways for novel heavy metal adsorption materials. Full article
Show Figures

Figure 1

17 pages, 7151 KiB  
Article
A Recycling-Oriented Approach to Rare Earth Element Recovery Using Low-Cost Agricultural Waste
by Nicole Ferreira, Daniela S. Tavares, Inês Baptista, Thainara Viana, Jéssica Jacinto, Thiago S. C. Silva, Eduarda Pereira and Bruno Henriques
Metals 2025, 15(8), 842; https://doi.org/10.3390/met15080842 - 28 Jul 2025
Viewed by 148
Abstract
The exponential increase in electronic waste (e-waste) from end-of-life electrical and electronic equipment presents a growing environmental challenge. E-waste contains high concentrations of rare earth elements (REEs), which are classified as critical raw materials (CRMs). Their removal and recovery from contaminated systems not [...] Read more.
The exponential increase in electronic waste (e-waste) from end-of-life electrical and electronic equipment presents a growing environmental challenge. E-waste contains high concentrations of rare earth elements (REEs), which are classified as critical raw materials (CRMs). Their removal and recovery from contaminated systems not only mitigate pollution but also support resource sustainability within a circular economy framework. The present study proposed the use of hazelnut shells as a biosorbent to reduce water contamination and recover REEs. The sorption capabilities of this lignocellulosic material were assessed and optimized using the response surface methodology (RSM) combined with a Box–Behnken Design (three factors, three levels). Factors such as pH (4 to 8), salinity (0 to 30), and biosorbent dose (0.25 to 0.75 g/L) were evaluated in a complex mixture containing 9 REEs (Y, La, Ce, Pr, Nd, Eu, Gd, Tb and Dy; equimolar concentration of 1 µmol/L). Salinity was found to be the factor with greater significance for REEs sorption efficiency, followed by water pH and biosorbent dose. At a pH of 7, salinity of 0, biosorbent dose of 0.75 g/L, and a contact time of 48 h, optimal conditions were observed, achieving removals of 100% for Gd and Eu and between 81 and 99% for other REEs. Optimized conditions were also predicted to maximize the REEs concentration in the biosorbent, which allowed us to obtain values (total REEs content of 2.69 mg/g) higher than those in some ores. These results underscore the high potential of this agricultural waste with no relevant commercial value to improve water quality while providing an alternative source of elements of interest for reuse (circular economy). Full article
Show Figures

Figure 1

13 pages, 1563 KiB  
Article
Activation of Peracetic Acid by Ozone for Recalcitrant Pollutant Degradation: Accelerated Kinetics, Byproduct Mitigation, and Microbial Inactivation
by Dihao Bai, Cong Liu, Siqing Zhang, Huiyu Dong, Lei Sun and Xiangjuan Yuan
Water 2025, 17(15), 2240; https://doi.org/10.3390/w17152240 - 28 Jul 2025
Viewed by 267
Abstract
Iopamidol (IPM), as a typical recalcitrant emerging pollutant and precursor of iodinated disinfection by-products (I-DBPs), is unsuccessfully removed by conventional wastewater treatment processes. This study comprehensively evaluated the ozone/peracetic acid (O3/PAA) process for IPM degradation, focusing on degradation kinetics, environmental impacts, [...] Read more.
Iopamidol (IPM), as a typical recalcitrant emerging pollutant and precursor of iodinated disinfection by-products (I-DBPs), is unsuccessfully removed by conventional wastewater treatment processes. This study comprehensively evaluated the ozone/peracetic acid (O3/PAA) process for IPM degradation, focusing on degradation kinetics, environmental impacts, transformation products, ecotoxicity, disinfection byproducts (DBPs), and microbial inactivation. The O3/PAA system synergistically activates PAA via O3 to generate hydroxyl radicals (OH) and organic radicals (CH3COO and CH3CO(O)O), achieving an IPM degradation rate constant of 0.10 min−1, which was significantly higher than individual O3 or PAA treatments. The degradation efficiency of IPM in the O3/PAA system exhibited a positive correlation with solution pH, achieving a maximum degradation rate constant of 0.23 min−1 under alkaline conditions (pH 9.0). Furthermore, the process demonstrated strong resistance to interference from coexisting anions, maintaining robust IPM removal efficiency in the presence of common aqueous matrix constituents. Furthermore, quenching experiments revealed OH dominated IPM degradation in O3/PAA system, while the direct oxidation by O3 and R-O played secondary roles. Additionally, based on transformation products (TPs) identification and ECOSAR predictions, the primary degradation pathways were elucidated and the potential ecotoxicity of TPs was systematically assessed. DBPs analysis after chlorination revealed that the O3/PAA (2.5:3) system achieved the lowest total DBPs concentration (99.88 μg/L), representing a 71.5% reduction compared to PAA alone. Amongst, dichloroacetamide (DCAM) dominated the DBPs profile, comprising > 60% of total species. Furthermore, the O3/PAA process achieved rapid 5–6 log reductions of E. coli. and S. aureus within 3 min. These results highlight the dual advantages of O3/PAA in effective disinfection and byproduct control, supporting its application in sustainable wastewater treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

21 pages, 3300 KiB  
Article
Catalytic Ozonation of Nitrite in Denitrification Wastewater Based on Mn/ZSM-5 Zeolites: Catalytic Performance and Mechanism
by Yiwei Zhang, Yulin Sun, Yanqun Zhu, Wubin Weng, Yong He and Zhihua Wang
Processes 2025, 13(8), 2387; https://doi.org/10.3390/pr13082387 - 27 Jul 2025
Viewed by 325
Abstract
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 [...] Read more.
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 + Mn/ZSM-5 catalytic system. Mn/ZSM-5 catalysts with varying SiO2/Al2O3 ratios (prepared by wet impregnation) were characterized by BET, XRD, and XPS. Experimental results demonstrated that Mn/ZSM-5 (SiO2/Al2O3 = 400) exhibited a larger specific surface area, enhanced adsorption capacity, abundant surface Mn3+/Mn4+ species, hydroxyl oxygen species, and chemisorbed oxygen, leading to superior oxidation capability and catalytic activity. Under the optimized conditions of reaction temperature = 40 °C, initial pH = 4, Mn/ZSM-5 dosage = 1 g/L, and O3 concentration = 100 ppm, the NO2 oxidation efficiency reached 94.33%. Repeated tests confirmed that the Mn/ZSM-5 catalyst exhibited excellent stability and wide operational adaptability. The synergistic effect between Mn species and the zeolite support significantly improved ozone utilization efficiency. The O3 + Mn/ZSM-5 system required less ozone while maintaining high oxidation efficiency, demonstrating better cost-effectiveness. Mechanism studies revealed that the conversion pathway of NO2 followed a dual-path catalytic mechanism combining direct ozonation and free radical chain reactions. Practical spray tests confirmed that coupling the Mn/ZSM-5 system with ozone oxidation flue gas denitrification achieved over 95% removal of liquid-phase NO2 byproducts without compromising the synergistic removal efficiency of NOx/SO2. This study provided an efficient catalytic solution for industrial wastewater treatment and the resource utilization of flue gas denitrification byproducts. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

12 pages, 978 KiB  
Article
Bioprocess Integration of Candida ethanolica and Chlorella vulgaris for Sustainable Treatment of Organic Effluents in the Honey Industry
by Juan Gabriel Sánchez Novoa, Natalia Rodriguez, Tomás Debandi, Juana María Navarro Llorens, Laura Isabel de Cabo and Patricia Laura Marconi
Sustainability 2025, 17(15), 6809; https://doi.org/10.3390/su17156809 - 27 Jul 2025
Viewed by 306
Abstract
Honey processing is closely linked to water pollution due to the lack of a specific wastewater treatment. This study proposes a sustainable and innovative solution based on two sequential bioprocesses using a real effluent from an Argentine honey-exporting facility. In the initial stage, [...] Read more.
Honey processing is closely linked to water pollution due to the lack of a specific wastewater treatment. This study proposes a sustainable and innovative solution based on two sequential bioprocesses using a real effluent from an Argentine honey-exporting facility. In the initial stage, the honey wastewater was enriched with a non-Saccharomyces yeast (Candida ethanolica), isolated from the same effluent. Treatment with this yeast in a bioreactor nearly doubled the total sugar removal efficiency compared to the control (native flora). Subsequent clarification with diatomaceous earth reduced the optical density (91.6%) and COD (30.9%). In the second stage, secondary sewage effluent was added to the clarified effluent and inoculated with Chlorella vulgaris under different culture conditions. The best microalgae performance was observed under high light intensity and high inoculum concentration, achieving a fivefold increase in cell density, a specific growth rate of 0.752 d−1, and a doubling time of 0.921 d. Although total sugar removal in this stage remained below 28%, cumulative COD removal reached 90% after nine days under both lighting conditions. This study presents the first integrated treatment approach for honey industry effluents using a native yeast–microalgae system, incorporating in situ effluent recycling and the potential for dual waste valorization. Full article
(This article belongs to the Special Issue Research on Sustainable Wastewater Treatment)
Show Figures

Graphical abstract

16 pages, 1640 KiB  
Article
Polydroxyalkanoates Production from Simulated Food Waste Condensate Using Mixed Microbial Cultures
by Konstantina Filippou, Evaggelia Bouzani, Elianta Kora, Ioanna Ntaikou, Konstantina Papadopoulou and Gerasimos Lyberatos
Polymers 2025, 17(15), 2042; https://doi.org/10.3390/polym17152042 - 26 Jul 2025
Viewed by 361
Abstract
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use [...] Read more.
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use of synthetic condensate, mimicking the liquid fraction from drying and shredding of household food waste, as a viable substrate for PHA production using mixed microbial cultures. Two draw-fill reactors (DFRs) were operated under different feed organic concentrations (2.0 ± 0.5 and 3.8 ± 0.6 g COD/L), maintaining a consistent carbon-to-nitrogen ratio to selectively enrich microorganisms capable of accumulating PHAs through alternating nutrient availability and deficiency. Both reactors achieved efficient organic pollutant removal (>95% soluble COD removal), stable biomass growth, and optimal pH levels. Notably, the reactor with the higher organic load (DFR-2) demonstrated a modest increase in PHA accumulation (19.05 ± 7.18%) compared to the lower-loaded reactor (DFR-1; 15.19 ± 6.00%), alongside significantly enhanced biomass productivity. Polymer characterization revealed the formation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), influenced by the substrate composition. Microbial community analysis showed an adaptive shift towards Proteobacteria dominance, signifying successful enrichment of effective PHA producers. Full article
(This article belongs to the Special Issue Bioplastics)
Show Figures

Figure 1

15 pages, 2725 KiB  
Article
Varying Effects of Straw-Returning Methods on Soil Microbial Diversity and Community Composition in Northeast China
by Yitao Zhang, Yuxian Wang and Zhanbin Sun
Microorganisms 2025, 13(8), 1749; https://doi.org/10.3390/microorganisms13081749 - 26 Jul 2025
Viewed by 250
Abstract
Straw-returning is an effective way to improve straw utilization efficiency and reduce environmental pollution. Various straw-returning methods exist; however, their effects on soil microbial diversity and community composition in cool regions have been little studied. This study investigated the changes of soil microbial [...] Read more.
Straw-returning is an effective way to improve straw utilization efficiency and reduce environmental pollution. Various straw-returning methods exist; however, their effects on soil microbial diversity and community composition in cool regions have been little studied. This study investigated the changes of soil microbial diversity and community composition under three straw-returning methods, i.e., straw mulching, straw mulching and overturning, straw crushed and mixed, as compared to straw removal as control. The results showed that straw-returning could alter the soil microbial community composition and abundance compared with straw removal. Alpha diversity analysis showed that straw mulching treatment, and straw crushed and mixed treatment significantly increased the diversity of both soil bacteria and fungi compared with straw mulching and overturning treatment. Moreover, this study preliminarily screened Trichoderma, Chaetomium and Streptomyces as potential straw-degrading microorganisms. This study provides basis for further enhancement of straw degradation by using soil microorganisms and sheds light on future work for improving straw degradation efficiency. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

28 pages, 1243 KiB  
Review
Research Progress on the Preparation of Iron-Manganese Modified Biochar and Its Application in Environmental Remediation
by Chang Liu, Xiaowei Xu, Anfei He, Yuanzheng Zhang, Ruijie Che, Lu Yang, Jing Wei, Fenghe Wang, Jing Hua and Jiaqi Shi
Toxics 2025, 13(8), 618; https://doi.org/10.3390/toxics13080618 - 25 Jul 2025
Viewed by 178
Abstract
Biochar, a porous carbonaceous material derived from the pyrolysis of biomass under oxygen-limited conditions, offers several advantages for environmental remediation, including a high specific surface area, ease of preparation, and abundant raw material sources. However, the application of pristine biochar is limited by [...] Read more.
Biochar, a porous carbonaceous material derived from the pyrolysis of biomass under oxygen-limited conditions, offers several advantages for environmental remediation, including a high specific surface area, ease of preparation, and abundant raw material sources. However, the application of pristine biochar is limited by its inherent physicochemical shortcomings, such as a lack of active functional groups and limited elemental compositions. To overcome these limitations, metal-modified biochars have garnered increasing attention. In particular, iron-manganese (Fe-Mn) modification significantly enhances the adsorption capacity, redox potential, and microbial activity of biochar, owing to the synergistic interactions between Fe and Mn. Iron-manganese-modified biochar (FM-BC) has demonstrated effective removal of heavy metals, organic matter, phosphate, and nitrate through mechanisms including mesoporous adsorption, redox reactions, complexation, electrostatic interactions, and precipitation. Moreover, FM-BC can improve soil physicochemical properties and support plant growth, highlighting its promising potential for broader environmental application. This review summarizes the preparation methods, environmental remediation mechanisms, and practical applications of FM-BC and discusses future directions in mechanism elucidation, biomass selection, and engineering implementation. Overall, FM-BC, with its tunable properties and multifunctional capabilities, emerges as a promising and efficient material for addressing complex environmental pollution challenges. Full article
(This article belongs to the Special Issue Novel Remediation Strategies for Soil Pollution)
Show Figures

Figure 1

19 pages, 6502 KiB  
Article
Facile Synthesis of β-C3N4 and Its Novel MnTeO3 Nanohybrids for Remediating Water Contaminated by Pharmaceuticals
by Mohamed R. Elamin, Nuha Y. Elamin, Tarig G. Ibrahim, Mutaz Salih, Abuzar Albadri, Rasha Ramadan and Babiker Y. Abdulkhair
Processes 2025, 13(8), 2357; https://doi.org/10.3390/pr13082357 - 24 Jul 2025
Viewed by 298
Abstract
A facile method was adopted to fabricate β-C3N4, and it was then doped with manganese and tellurium to obtain novel 10%MnTeO3@β-C3N4 (10%MnTe@β) and 20%MnTeO3@β-C3N4 (20%MnTe@β) nanohybrids. The β-C3 [...] Read more.
A facile method was adopted to fabricate β-C3N4, and it was then doped with manganese and tellurium to obtain novel 10%MnTeO3@β-C3N4 (10%MnTe@β) and 20%MnTeO3@β-C3N4 (20%MnTe@β) nanohybrids. The β-C3N4, 10%MnTe@β, and 20%MnTe@β showed surface areas of 85.86, 97.40, and 109.54 m2 g−1, respectively. Using ciprofloxacin (CIP) as a pollutant example, 10%MnTe@β and 20%MnTe@β attained equilibrium at 60 and 45 min with qt values of 48.88 and 77.41 mg g−1, respectively, and both performed better at pH = 6.0. The kinetic studies revealed a better agreement with the pseudo-second-order model for CIP sorption on 10%MnTe@β and 20%MnTe@β, indicating that the sorption was controlled by a liquid film mechanism, which suggests a high affinity of CIP toward 10%MnTe@β and 20%MnTe@β. The sorption equilibria outputs indicated better alignment with the Freundlich and Langmuir models for CIP removal by 10%MnTe@β and 20%MnTe@β, respectively. The thermodynamic analysis revealed that CIP removal by 10%MnTe@β and 20%MnTe@β was exothermic, which turned more spontaneous as the temperature decreased. Applying 20%MnTe@β as the best sorbent to groundwater and seawater spiked with CIP resulted in average efficiencies of 94.8% and 91.08%, respectively. The 20%MnTe@β regeneration–reusability average efficiency was 95.14% within four cycles, which might nominate 20%MnTe@β as an efficient and economically viable sorbent for remediating CIP-contaminated water. Full article
Show Figures

Figure 1

Back to TopTop