Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,094)

Search Parameters:
Keywords = pollutant gases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6370 KiB  
Article
Emissions of Conventional and Electric Vehicles: A Comparative Sustainability Assessment
by Esra’a Alrashydah, Thaar Alqahtani and Abdulnaser Al-Sabaeei
Sustainability 2025, 17(15), 6839; https://doi.org/10.3390/su17156839 - 28 Jul 2025
Viewed by 330
Abstract
Vehicle emissions, as a source of air pollution and greenhouse gases, have a significant impact on the environment and climate change. Battery electric vehicles (BEVs) have the potential to reduce air pollution and GHGs. However, BEVs often attract the criticism that their benefits [...] Read more.
Vehicle emissions, as a source of air pollution and greenhouse gases, have a significant impact on the environment and climate change. Battery electric vehicles (BEVs) have the potential to reduce air pollution and GHGs. However, BEVs often attract the criticism that their benefits are minimal as the power plant emissions compensate for emissions from the tailpipes of vehicles. This study compared two scenarios: scenario A considers all vehicles as internal combustion engine vehicles (ICEVs), and scenario B considers all vehicles as BEVs. The study used the City of San Antonio, Texas, as the study area. The study also focused on the seasonal and spatial variation in ICEV emissions. The results indicate that scenario A has a considerably higher volume of emissions than scenario B. For ICEVs, PM2.5 emissions were up to 50% higher in rural areas than urban areas, but 45% lower for unrestricted versus restricted conditions. CO2 emissions were highly affected by seasonal variations, with a 51% decrease from winter to summer. The full adoption of BEVs could reduce CO2 and N2O emissions by 99% and 58% per km, especially for natural gas power resources. Therefore, BEVs play a significant role in reducing emissions from the transportation sector. Full article
Show Figures

Figure 1

30 pages, 964 KiB  
Review
Impact of Biodegradable Plastics on Soil Health: Influence of Global Warming and Vice Versa
by Pavlos Tziourrou, John Bethanis, Dimitrios Alexiadis, Eleni Triantafyllidou, Sotiria G. Papadimou, Edoardo Barbieri and Evangelia E. Golia
Microplastics 2025, 4(3), 43; https://doi.org/10.3390/microplastics4030043 - 23 Jul 2025
Viewed by 342
Abstract
The presence of plastics in the soil environment is an undeniable global reality. Biodegradable plastics (BPs) possess several key properties that make them more environmentally sustainable compared to other categories of plastics. However, their presence induces significant changes in soil systems health where [...] Read more.
The presence of plastics in the soil environment is an undeniable global reality. Biodegradable plastics (BPs) possess several key properties that make them more environmentally sustainable compared to other categories of plastics. However, their presence induces significant changes in soil systems health where they are found, due to a combination of environmental, soil, and climatic factors, as well as the simultaneous presence of other pollutants, both inorganic and organic. In the present work, a review has been conducted on published research findings regarding the impact of various types of BPs on the parameters that regulate and determine soil health. In particular, the study examined the effects of BPs on physical, chemical, and biological indices of soil quality, leading to several important conclusions. It was observed that silty and loamy soils were significantly affected, as their physical properties were altered. Moreover, significant changes in both chemical and microbiological indicators were observed with increasing environmental temperatures. The presence of all types of biodegradable microplastics led to a significant reduction in soil nitrogen content as temperature increased. This study highlights the profound effects of the climate crisis on the properties of soils already contaminated with plastics, as the effects of rising temperatures on soil properties appear to be amplified in the presence of plastics. On the other hand, higher temperatures also trigger a series of chemical reactions that accelerate the degradation of BPs, thereby reducing their volume and mass in the soil environment. These processes lead to increased emissions of gases and higher ambient temperatures, leading to global warming. The types and quantities of plastics present, along with the environmental changes in a study area, are critical factors that must be taken into account by policymakers in order to mitigate the impacts of climate change on soil health and productivity. Full article
Show Figures

Figure 1

18 pages, 4106 KiB  
Article
Assessment of Ammonia Adsorption Capacity on Activated Banana Peel Biochars
by Katarzyna Jedynak and Barbara Charmas
Materials 2025, 18(14), 3395; https://doi.org/10.3390/ma18143395 - 20 Jul 2025
Viewed by 398
Abstract
This paper presents the assessment of the possibility of ammonia adsorption on biochars from banana peels, chemically activated with potassium hydroxide (KOH) at different temperatures. The obtained materials were characterized in detail using a number of analytical techniques, including nitrogen adsorption (BET), scanning [...] Read more.
This paper presents the assessment of the possibility of ammonia adsorption on biochars from banana peels, chemically activated with potassium hydroxide (KOH) at different temperatures. The obtained materials were characterized in detail using a number of analytical techniques, including nitrogen adsorption (BET), scanning electron microscopy (SEM), elemental analysis (CHNS), thermal analysis (TG, DTG, DTA), Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, Boehm titration method and biochar surface pH. They revealed a largely developed microporous structure and a large specific surface area, ranging from 1134 to 2332 m2 g−1. The adsorption tests against ammonia in the gas phase showed a large adsorption capacity of the materials, up to 5.94 mmol g−1 at 0 °C and 3.83 mmol g−1 at 20 °C. The adsorption properties of the obtained biochars were confirmed to be significantly influenced by the surface chemistry (presence of the acidic functional groups). The research results indicate that the waste-based biomass, such as banana peels, can be an ecological and economical raw material for the production of highly effective adsorbents, useful in the removal of ammonia and other toxic gases polluting the environment. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

19 pages, 3249 KiB  
Article
Method and Optimization of Key Parameters of Soil Organic Matter Detection Based on Pyrolysis Coupled with Artificial Olfaction
by Mingwei Li, Xiao Li, Xuexun Li, Wenjun Wang, Yulong Chen, Long Zhou and Xiaomeng Xia
Agronomy 2025, 15(7), 1740; https://doi.org/10.3390/agronomy15071740 - 19 Jul 2025
Viewed by 316
Abstract
Accurate quantification of soil organic matter (SOM) is crucial for improving soil fertility and maintaining ecosystem health. The content of SOM affects soil nutrient availability and is closely linked to the global carbon cycle. The use of an electronic nose to detect SOM [...] Read more.
Accurate quantification of soil organic matter (SOM) is crucial for improving soil fertility and maintaining ecosystem health. The content of SOM affects soil nutrient availability and is closely linked to the global carbon cycle. The use of an electronic nose to detect SOM contents has the advantages of rapidity, accuracy, and low pollution to the environment. This study proposes a method for obtaining SOM contents via pyrolysis coupled with an artificial olfaction system. To improve the accuracy of SOM content determination, the effects of three parameters (pyrolysis temperature, pyrolysis time, and soil sample mass) related to the pyrolysis process on the distinguishability of pyrolysis gases were investigated. Firstly, single-factor experiments were conducted to determine the optimal values of three parameters that can improve the differentiation of pyrolysis gases. Secondly, a regression model based on the Box–Behnken experiment was established to analyze the interrelationships between the three parameters and the discrete ratio. The experimental results showed that the three parameters exerted significant influences on the discrete ratio, with pyrolysis time having the greatest impact, followed by soil sample mass and pyrolysis temperature. The optimal discrimination and minimal dispersion ratio of the pyrolysis gases were achieved at a pyrolysis temperature of 384 °C, with a pyrolysis time of 2 min 41 s and a soil sample mass of 1.68 g. Finally, the Back-Propagation Neural Network (BPNN) and Partial Least-Squares Regression (PLSR) algorithms were used to establish an SOM prediction model after obtaining soil pyrolysis gases under the optimal combination of pyrolysis parameters. The experimental results demonstrated that the SOM prediction model based on PLSR achieved the best accuracy and the highest generalization capability, with R2 > 0.85 and RMSE < 7.21. This study could provide a theoretical basis for the prediction of SOM contents via pyrolysis coupled with an artificial olfaction system. Full article
Show Figures

Figure 1

7 pages, 4461 KiB  
Data Descriptor
Dataset on Environmental Parameters and Greenhouse Gases in Port and Harbor Seawaters of Jeju Island, Korea
by Jae-Hyun Lim, Ju-Hyoung Kim, Hyo-Ryeon Kim, Seo-Young Kim and Il-Nam Kim
Data 2025, 10(7), 118; https://doi.org/10.3390/data10070118 - 19 Jul 2025
Viewed by 329
Abstract
This dataset presents environmental observations collected in August 2021 from 18 port and harbor sites located around Jeju Island, Korea. It includes physical, biogeochemical, and greenhouse gas (GHG) variables measured in surface seawater, such as temperature, salinity, dissolved oxygen, nutrients, chlorophyll-a, [...] Read more.
This dataset presents environmental observations collected in August 2021 from 18 port and harbor sites located around Jeju Island, Korea. It includes physical, biogeochemical, and greenhouse gas (GHG) variables measured in surface seawater, such as temperature, salinity, dissolved oxygen, nutrients, chlorophyll-a, pH, total alkalinity, and dissolved inorganic carbon. Concentrations and air–sea fluxes of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) were also quantified. All measurements were conducted following standardized analytical protocols, and certified reference materials and duplicate analyses were used to ensure data accuracy. Consequently, the dataset revealed that elevated nutrient accumulation in port and harbor waters and GHG concentrations tended to be higher at sites with stronger land-based influence. During August 2021, most sites functioned as sources of N2O, CH4, and CO2 to the atmosphere. This integrated dataset offers valuable insights into the influence of anthropogenic and hydrological factors on coastal GHG dynamics and provides a foundation for future studies across diverse semi-enclosed marine systems. Full article
Show Figures

Figure 1

19 pages, 4519 KiB  
Article
Kinetics of the Process DAF-Culture Nannochloropsis oculata Remove Nutrients, Improve Water Quality, and Evaluate Rheological Parameters, Providing an Ecological Method for Treating Complex Wastewater
by Solmaría Mandi Pérez-Guzmán, Alejandro Alvarado-Lassman, Eduardo Hernández-Aguilar, Roger Emmanuel Sales-Pérez and Juan Manuel Méndez-Contreras
Water 2025, 17(14), 2113; https://doi.org/10.3390/w17142113 - 16 Jul 2025
Viewed by 382
Abstract
Population growth has led to an increased volume of wastewater from industrial, domestic, and municipal sources, contaminating aquatic bodies in the state of Veracruz. This study aimed to assess the efficacy of a water treatment system incorporating a DAF stage, followed by the [...] Read more.
Population growth has led to an increased volume of wastewater from industrial, domestic, and municipal sources, contaminating aquatic bodies in the state of Veracruz. This study aimed to assess the efficacy of a water treatment system incorporating a DAF stage, followed by the cultivation of a microalgal consortium to eliminate pollutants from the blended effluent. The cultivation of Nannochloropsis oculata in wastewater entailed the assessment of a single variable (operating pressure) within the DAF system, in conjunction with two supplementary variables (residence time and F:M ratio), resulting in removal efficiencies of 70% for CODt, 77.24% for CODs, 78.34% for nitrogen, and 77% for total organic carbon. The water sample was found to contain elevated levels of organic matter and pollutants, beyond the permitted limits set forth in NOM-001-SEMARNAT-2021. The obtained removal percentages indicate that the suggested physicochemical–biological process (DAF-microalgae) is a suitable method for treating mixed wastewater. This approach reduces atmospheric pollution by sequestering greenhouse gases such as carbon dioxide through the photosynthetic activity of N. oculata cells, so facilitating the production of oxygen and biomass while limiting their accumulation in the atmosphere. Full article
(This article belongs to the Topic Advances in Organic Solid Waste and Wastewater Management)
Show Figures

Graphical abstract

24 pages, 2639 KiB  
Review
Cement Industry Pollution and Its Impact on the Environment and Population Health: A Review
by Alina Bărbulescu and Kamal Hosen
Toxics 2025, 13(7), 587; https://doi.org/10.3390/toxics13070587 - 14 Jul 2025
Viewed by 1276
Abstract
The cement industry, a foundation of global infrastructure development, significantly contributes to environmental pollution. Key sources of pollution include dust emissions; greenhouse gases, particularly carbon dioxide; and the release of toxic substances such as heavy metals and particulate matter. These pollutants contribute to [...] Read more.
The cement industry, a foundation of global infrastructure development, significantly contributes to environmental pollution. Key sources of pollution include dust emissions; greenhouse gases, particularly carbon dioxide; and the release of toxic substances such as heavy metals and particulate matter. These pollutants contribute to air, water, and soil degradation and are linked to severe health conditions in nearby populations, including respiratory disorders, cardiovascular diseases, and increased mortality rates. Noise pollution is also a significant issue, inducing auditory diseases that affect most workers in cement plants, and disturbing the population living in the neighborhoods and fauna behavior. This review explores the pollution paths and the multifaceted impacts of cement production on the environment. It also highlights the social challenges faced by communities, underscoring the urgent need for stricter environmental policies and the adoption of greener technologies to mitigate the adverse effects of cement production on both the environment and human health. Full article
Show Figures

Graphical abstract

18 pages, 1650 KiB  
Article
Biomonitoring of Inorganic Pollutants in Blood Samples of Population Affected by the Tajogaite Eruption: The ISVOLCAN Study in Spain
by Katherine Simbaña-Rivera, María Cristo Rodríguez-Pérez, Manuel Enrique Fuentes-Ferrer, Manuel Zumbado Peña, Ángel Rodríguez Hernández, Julia Eychenne, Lucie Sauzéat, Damary S. Jaramillo-Aguilar, Ana Rodríguez Chamorro and Luis D. Boada
Toxics 2025, 13(7), 581; https://doi.org/10.3390/toxics13070581 - 10 Jul 2025
Viewed by 325
Abstract
Volcanic eruptions release gases and particulates that may adversely affect human health. The Tajogaite eruption on La Palma provided a unique opportunity to evaluate inorganic pollutant exposure in a directly affected population. As part of the ISVOLCAN study, blood samples from 393 adults [...] Read more.
Volcanic eruptions release gases and particulates that may adversely affect human health. The Tajogaite eruption on La Palma provided a unique opportunity to evaluate inorganic pollutant exposure in a directly affected population. As part of the ISVOLCAN study, blood samples from 393 adults residing in the island’s western region were analyzed for 43 inorganic elements using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), including 20 toxic elements identified by the Agency for Toxic Substances and Disease Registry (ATSDR). The median age of participants was 51 years, and 56.7% were female. Higher levels of Hg and Mn were associated with long-term occupational exposure, while smoking was linked to elevated Cd, Pb, and Sr levels. Participants living within 6.5 km of the volcano had significantly higher concentrations of Al and Ti. Ash cleanup activities were associated with increased levels of Ni and Cu, and those spending over five hours outdoors daily showed elevated Se and Pb. This is the first biomonitoring study to assess blood concentrations of inorganic pollutants in a population exposed to volcanic emissions. The findings highlight key exposure factors and underscore the need for continued research to assess long-term health effects and inform public health measures. Full article
(This article belongs to the Special Issue Human Biomonitoring in Health Risk Assessment of Emerging Chemicals)
Show Figures

Graphical abstract

35 pages, 1595 KiB  
Article
Analysis of the Synergies of Air Pollutant and Greenhouse Gas Emission Reduction in Typical Chemical Enterprises
by Qi Gong, Yatfei Chan, Yijia Xia, Weiqi Tang and Weichun Ma
Sustainability 2025, 17(14), 6263; https://doi.org/10.3390/su17146263 - 8 Jul 2025
Viewed by 295
Abstract
In this study, we selected the production processes and main products of three typical chemical enterprises in Shanghai, namely SH Petrochemical (part of the oil-refining sector), SK Ethylene, and HS Chlor-Alkali, to quantitatively assess the synergistic effects across technology, policy, and emission mechanisms. [...] Read more.
In this study, we selected the production processes and main products of three typical chemical enterprises in Shanghai, namely SH Petrochemical (part of the oil-refining sector), SK Ethylene, and HS Chlor-Alkali, to quantitatively assess the synergistic effects across technology, policy, and emission mechanisms. The localized air pollutant levels and greenhouse gas emissions of the three enterprises were calculated. The synergistic effects between the end-of-pipe emission reductions for air pollutants and greenhouse gas emissions were analyzed using the pollutant reduction synergistic and cross-elasticity coefficients, including technology comparisons (e.g., acrylonitrile gas incineration (AOGI) technology vs. traditional flare). Based on these data, we used the SimaPro software and the CML-IA model to conduct a life cycle environmental impact assessment regarding the production and upstream processes of their unit products. By combining the life cycle method and the scenario simulation method, we predicted the trends in the environmental impacts of the three chemical enterprises after the implementation of low-carbon development policies in the chemical industry in 2030. We also quantified the synergistic effects of localized air pollutant and greenhouse gas (GHG) emission reductions within the low-carbon development scenario by using cross-elasticity coefficients based on life cycle environmental impacts. The research results show that, for every ton of air pollutant reduced through end-of-pipe treatment measures, the HS Chlor-Alkali enterprise would increase its maximum CO2 emissions, amounting to about 80 tons. For SK Ethylene, the synergistic coefficient for VOC reduction and CO2 emissions when using AOGI thermal incineration technology is superior to that for traditional flare thermal incineration. The activities of the three enterprises had an impact on several environmental indicators, particularly the fossil fuel resource depletion potential, accounting for 69.48%, 53.94%, and 34.23% of their total environmental impact loads, respectively. The scenario simulations indicate that, in a low-carbon development scenario, the overall environmental impact loads of SH Petrochemical (refining sector), SK Ethylene, and HS Chlor-Alkali would decrease by 3~5%. This result suggests that optimizing the upstream power structure, using “green hydrogen” instead of “grey hydrogen” in hydrogenation units within refining enterprises, and reducing the consumption of electricity and steam in the production processes of ethylene and chlor-alkali are effective measures in reducing carbon emissions in the chemical industry. The quantification of the synergies based on life cycle environmental impacts revealed that there are relatively strong synergies for air pollutant and GHG emission reductions in the oil-refining industry, while the chlor-alkali industry has the weakest synergies. Full article
Show Figures

Figure 1

28 pages, 10447 KiB  
Review
Regenerative Oxidation Technology for VOC Treatment: A Review
by Peng Yang, Tao Zhang, Zhongqian Ling, Maosheng Liu and Xianyang Zeng
Energies 2025, 18(13), 3430; https://doi.org/10.3390/en18133430 - 30 Jun 2025
Viewed by 344
Abstract
Regenerative combustion represents an efficient and energy-saving combustion technology that significantly enhances thermal efficiency, reduces energy consumption, and minimizes pollutant emissions by recovering and reusing heat energy. This technology has found extensive applications in traditional industries, such as chemical engineering, coating, and printing, [...] Read more.
Regenerative combustion represents an efficient and energy-saving combustion technology that significantly enhances thermal efficiency, reduces energy consumption, and minimizes pollutant emissions by recovering and reusing heat energy. This technology has found extensive applications in traditional industries, such as chemical engineering, coating, and printing, as well as in contemporary fields, including food processing and pharmaceuticals. In recent years, advancements in the optimization of combustion devices and the development of efficient catalysts have successfully reduced the combustion temperature for treating organic waste gases while simultaneously improving pollutant removal efficiency. This paper reviews the current status of regenerative combustion technology, summarizes key achievements, analyzes the challenges faced in industrial applications, and anticipates future research directions. Full article
(This article belongs to the Special Issue Experiments and Simulations of Combustion Process II)
Show Figures

Figure 1

23 pages, 1703 KiB  
Article
Assessing and Projecting Long-Term Trends in Global Environmental Air Quality
by Yongtao Jin
Sustainability 2025, 17(13), 5981; https://doi.org/10.3390/su17135981 - 29 Jun 2025
Viewed by 478
Abstract
Air quality and environmental issues have gained attention from countries and organizations worldwide over the past several decades. In recent years, carbon peak and carbon neutrality have been mentioned at many international conferences and meetings aimed at reducing and controlling environmental challenges. This [...] Read more.
Air quality and environmental issues have gained attention from countries and organizations worldwide over the past several decades. In recent years, carbon peak and carbon neutrality have been mentioned at many international conferences and meetings aimed at reducing and controlling environmental challenges. This study focuses on trend analysis and expectations for the duration of control for environmental air quality (EAQ) indicators, assesses the current EAQ conditions across global countries, and presents reasonable suggestions for environmental control. The study begins by examining the annual, per capita, and per square meter (m2) carbon dioxide (CO2) emission peak and standardizations, where carbon standardization is a replacement for carbon neutrality. A similar quantitative methodology was employed to assess classical air quality factors such as sulfur dioxide (SO2) and nitrogen oxides (NOx). The findings suggest that the average control year length (ACYL) of NOx is longer than that of SO2, and the ACYL of SO2 is, in turn, longer than that of CO2. From an energy structure perspective, regressions results indicate that biofuel and wind power contribute to improvements in EAQ, while coal, oil, and gas power exert negative impacts. Moreover, a long-term EAQ model utilizing an adjusted max–min normalization method is proposed to integrate various EAQ indicators. This study also presents an EAQ ranking for global countries and recommends countries with critical EAQ challenges. The results demonstrate that it is plausible to control EAQ factors at an excellent level with advances in control technologies and effective measures by government, industries, and individuals. Full article
Show Figures

Figure 1

19 pages, 2374 KiB  
Article
Analysis of Opportunities to Reduce CO2 and NOX Emissions Through the Improvement of Internal Inter-Operational Transport
by Szymon Pawlak, Tomasz Małysa, Angieszka Fornalczyk, Angieszka Sobianowska-Turek and Marzena Kuczyńska-Chałada
Sustainability 2025, 17(13), 5974; https://doi.org/10.3390/su17135974 - 29 Jun 2025
Viewed by 407
Abstract
The reduction of environmental pollutant emissions—including greenhouse gases, particulate matter, and other harmful substances—represents one of the foremost challenges in climate policy, economics, and industrial management today. Excessive emissions of CO2, NOX, and suspended particulates exert significant impacts on [...] Read more.
The reduction of environmental pollutant emissions—including greenhouse gases, particulate matter, and other harmful substances—represents one of the foremost challenges in climate policy, economics, and industrial management today. Excessive emissions of CO2, NOX, and suspended particulates exert significant impacts on climate change as well as human health and welfare. Consequently, numerous studies and regulatory and technological initiatives are underway to mitigate these emissions. One critical area is intra-plant transport within manufacturing facilities, which, despite its localized scope, can substantially contribute to a company’s total emissions. This paper aims to assess the potential of computer simulation using FlexSim software as a decision-support tool for planning inter-operational transport, with a particular focus on environmental aspects. The study analyzes real operational data from a selected production plant (case study), concentrating on the optimization of the number of transport units, their routing, and the layout of workstations. It is hypothesized that reducing the number of trips, shortening transport routes, and efficiently utilizing transport resources can lead to lower emissions of carbon dioxide (CO2) and nitrogen oxides (NOX). The findings provide a basis for a broader adoption of digital tools in sustainable production planning, emphasizing the integration of environmental criteria into decision-making processes. Furthermore, the results offer a foundation for future analyses that consider the development of green transport technologies—such as electric and hydrogen-powered vehicles—in the context of their implementation in the internal logistics of manufacturing enterprises. Full article
Show Figures

Figure 1

13 pages, 1017 KiB  
Article
Separation of Exhaust Gas Pollutants from Urea Prilling Process with Gasified Biochar for Slow-Release Fertilizer: Adsorption Characteristics, Process Improvement, and Economic Assessment
by Tong Lou, Bingtao Zhao, Zixuan Zhang, Mengqi Wang, Yanli Mao, Baoming Chen, Xinwei Guo, Tuo Zhou and Fengcui Li
Separations 2025, 12(7), 173; https://doi.org/10.3390/separations12070173 - 29 Jun 2025
Viewed by 398
Abstract
To address severe ammonia gas and dust pollution coupled with resource waste in exhaust gases from urea prilling towers, a production process for gasified biochar-based slow-release fertilizer is proposed to achieve resource recovery of exhaust pollutants. Through phosphoric acid impregnation modification applied to [...] Read more.
To address severe ammonia gas and dust pollution coupled with resource waste in exhaust gases from urea prilling towers, a production process for gasified biochar-based slow-release fertilizer is proposed to achieve resource recovery of exhaust pollutants. Through phosphoric acid impregnation modification applied to gasified biochar, its ammonia gas adsorption capacity was significantly enhanced, with saturated adsorption capacity increasing from 0.61 mg/g (unmodified) to 32 mg/g. Coupled with the tower-top bag filter, the modified biochar combines with ammonia gas and urea dust in exhaust gases, subsequently forming biochar-based slow-release fertilizer through dehydration and granulation processes. Material balance analysis demonstrates that a single 400,000-ton/year urea prilling tower achieves a daily fertilizer production capacity of 55 tons, with 18% active ingredient content. The nitrogen content can be upgraded to national standards through urea supplementation. Economic analysis demonstrates a total capital investment of USD1.2 million, with an annual net profit of USD0.88 million and a static payback period of 1.36 years. This process not only achieves ammonia gas emission reduction but also converts waste biochar into high-value fertilizer. It displays dual advantages of environmental benefits and economic feasibility and provides an innovative solution for resource utilization of the exhaust gases from the urea prilling process. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Graphical abstract

15 pages, 2017 KiB  
Article
Assessment of Harmful Emissions from Multiple Binder Systems in Pilot-Scale Sand Casting
by Erika Garitaonandia, Andoni Ibarra, Angelika Kmita, Rafał Dańko and Mariusz Holtzer
Molecules 2025, 30(13), 2765; https://doi.org/10.3390/molecules30132765 - 27 Jun 2025
Viewed by 302
Abstract
This study investigates hazardous emissions from foundry binder systems, comparing organic resins (phenolic urethane, furan, and alkaline-phenolic) and clay-bonded green sand with inorganic alternatives (sodium silicate and geopolymer). The research was conducted at the Fundaciόn Azterlan pilot plant (Spain), involving controlled chamber tests [...] Read more.
This study investigates hazardous emissions from foundry binder systems, comparing organic resins (phenolic urethane, furan, and alkaline-phenolic) and clay-bonded green sand with inorganic alternatives (sodium silicate and geopolymer). The research was conducted at the Fundaciόn Azterlan pilot plant (Spain), involving controlled chamber tests for the production of 60 kg iron alloy castings in 110 kg sand molds. The molds were evaluated under two configurations: homogeneous systems, where both mold and cores were manufactured using the same binder (five trials), and heterogeneous systems, where different binders were used for mold and cores (four trials). Each mold was placed in a metallic box fitted with a lid and an integrated gas extraction duct. The lid remained open during pouring and was closed immediately afterward to enable efficient evacuation of casting gases through the extraction system. Although the box was not completely airtight, it was designed to direct most exhaust gases through the duct. Along the extraction system line, different sampling instruments were strategically located for the precise measurement of contaminants: volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), phenol, multiple forms of particulate matter (including crystalline silica content), and gases produced during pyrolysis. Across the nine trials, inorganic binders demonstrated significant reductions in gas emissions and priority pollutants, achieving decreases of over 90% in BTEX compounds (benzene, toluene, ethylbenzene, and xylene) and over 94% in PAHs compared to organic systems. Gas emissions were also substantially reduced, with CO emissions lowered by over 30%, NOx by more than 98%, and SO2 by over 75%. Conducted under the Greencasting LIFE project (LIFE 21 ENV/FI/101074439), this work provides empirical evidence supporting sodium silicate and geopolymer binders as viable, sustainable solutions for minimizing occupational and ecological risks in metal casting processes. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

32 pages, 7124 KiB  
Review
Sentinel Data for Monitoring of Pollutant Emissions by Maritime Transport—A Literature Review
by Teresa Batista, Saad Ahmed Jamal and Crismeire Isbaex
Remote Sens. 2025, 17(13), 2202; https://doi.org/10.3390/rs17132202 - 26 Jun 2025
Viewed by 747
Abstract
This research discusses the application of Sentinel satellite data for monitoring air pollution in port areas. The Scopus and Web of Science databases were comprehensively analysed to identify relevant peer-reviewed literature and assess research publications. The systematic literature review was conducted using the [...] Read more.
This research discusses the application of Sentinel satellite data for monitoring air pollution in port areas. The Scopus and Web of Science databases were comprehensively analysed to identify relevant peer-reviewed literature and assess research publications. The systematic literature review was conducted using the PRISMA methodology for inclusion and exclusion criteria. A total of 519 articles were identified from which 70 relevant articles were finally selected and discussed in detail for their relevancy to the maritime environment. Sentinel-5P was found to have several use cases in the literature that are useful for measuring maritime air pollution, while Sentinel 1 and 2 were mainly used for other applications like oil spills and water quality, respectively. Although aerial surveys, like those conducted using unmanned aerial vehicles (UAVs), offer more precise estimates of greenhouse gases (GHGs), they are only useful for certain applications because the technology is costly and impractical for daily monitoring. Satellite-based sensors are the state of the art for obtaining remote observations of emissions in open sea. Sentinel-5P measurements offer daily data for air quality monitoring, which supports ground surveys to identify and penalize major emission sources and consequently support environmental management in accordance with contemporary policies. Pollutant concentration levels for the maritime sector can be analysed both spatially and temporally using Sentinel-5P data. In the future, addressing the limitations of the Sentinel-5P data, such as underestimation and source separation, could improve air pollution assessments. Full article
Show Figures

Graphical abstract

Back to TopTop