Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,019)

Search Parameters:
Keywords = point-scale measurements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5586 KiB  
Article
Integration of Leveling and GNSS Data to Develop Relative Vertical Movements of the Earth’s Crust Using Hybrid Models
by Bartosz Naumowicz and Kamil Kowalczyk
Appl. Sci. 2025, 15(15), 8224; https://doi.org/10.3390/app15158224 - 24 Jul 2025
Abstract
This study compared two approaches to integrating leveling and GNSS data to develop relative vertical movements of the Earth’s crust. Novel approaches were tested using transformation and hybrid grid adjustment. The results from double-leveling measurements in Poland were used as test data, and [...] Read more.
This study compared two approaches to integrating leveling and GNSS data to develop relative vertical movements of the Earth’s crust. Novel approaches were tested using transformation and hybrid grid adjustment. The results from double-leveling measurements in Poland were used as test data, and GNSS measurements developed using the PPP technique were used as Supplementary Data. The least squares method was used for the adjustment, and the isometric, conformal and affine methods were used for the transformation, with and without Hausbrandt correction. So-called pseudo-nodal points, i.e., points identified as common in both networks, whose weight was determined according to the assumptions of scale-free network theory, were used as integration points. Both integration methods have similar results and are suitable for integrating leveling and GNSS data to determine the relative vertical movements of the Earth’s crust. The average unit error m0 of the transformation was 0.1 mm/yr and the average error after adjustment of the hybrid network was 0.1 mm/yr. The use of the Hausbrandt correction does not significantly improve the transformation results. A 12-parameter affine transformation is recommended as the transformation method. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

18 pages, 926 KiB  
Systematic Review
The Impact of Strength Changes on Active Function Following Botulinum Neurotoxin-A (BoNT-A): A Systematic Review
by Renée Gill, Megan Banky, Zonghan Yang, Pablo Medina Mena, Chi Ching Angie Woo, Adam Bryant, John Olver, Elizabeth Moore and Gavin Williams
Toxins 2025, 17(8), 362; https://doi.org/10.3390/toxins17080362 (registering DOI) - 23 Jul 2025
Abstract
Botulinum neurotoxin-A (BoNT-A) injections are effective in reducing focal limb spasticity; however, their impact on strength and active function needs to be established. This review was a secondary analysis aimed at evaluating changes to active function in the context of muscle strength changes [...] Read more.
Botulinum neurotoxin-A (BoNT-A) injections are effective in reducing focal limb spasticity; however, their impact on strength and active function needs to be established. This review was a secondary analysis aimed at evaluating changes to active function in the context of muscle strength changes following BoNT-A intramuscular injection for adult upper and lower limb spasticity. The original review searched eight databases (CINAHL, Cochrane Central Register of Controlled Trials (CENTRAL), Embase, Google Scholar, MEDLINE, PEDro, PubMed, Web of Science) and was conducted with methodology that followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines as described in section 6.2 of Gill et al. For this secondary analysis, no databases were searched; only further data were extracted. The current and preceding review were registered in the Prospective Register of Systematic Reviews (PROSPERO: CRD42022315241). Twenty studies were screened for inclusion, and three studies were excluded because active function was not assessed in all participants. Seventeen studies (677 participants) met the inclusion criteria for analysis. Quality was examined using the PEDro scale and modified Downs and Black checklist and rated as fair to good. Pre- and post-BoNT-A injection strength (agonist, antagonist, and global), active function (activity), participation, and quality-of-life outcomes at short-, mid-, and long-term time points were extracted and analysed. Significant heterogeneity and limited responsiveness in strength and active function outcome measures limited the ability to determine whether changes in strength mediate an effect on active function. Further, variability in BoNT-A type and dose, adjunctive therapies provided, and variability in reporting limited analyses. Overall, no clear relationship existed between the change in muscle strength and active function following BoNT-A injections to the upper and lower limbs for focal spasticity in adult-onset neurological conditions. Full article
Show Figures

Figure 1

27 pages, 3823 KiB  
Article
A CAD-Based Method for 3D Scanning Path Planning and Pose Control
by Jing Li, Pengfei Su, Ligang Qu, Guangming Lv and Wenhui Qian
Aerospace 2025, 12(8), 654; https://doi.org/10.3390/aerospace12080654 - 23 Jul 2025
Abstract
To address the technical bottlenecks of low path planning efficiency and insufficient point cloud coverage in the automated 3D scanning of complex structural components, this study proposes an offline method for the generation and optimization of scanning paths based on CAD models. Discrete [...] Read more.
To address the technical bottlenecks of low path planning efficiency and insufficient point cloud coverage in the automated 3D scanning of complex structural components, this study proposes an offline method for the generation and optimization of scanning paths based on CAD models. Discrete sampling of the model’s surface is achieved through the construction of an oriented bounding box (OBB) and a linear object–triangular mesh intersection algorithm, thereby obtaining a discrete point set of the model. Incorporating a standard vector analysis of the discrete points and the kinematic constraints of the scanning system, a scanner pose parameter calculation model is established. An improved nearest neighbor search algorithm is employed to generate a globally optimized scanning path, and an adaptive B-spline interpolation algorithm is applied to path smoothing. A joint MATLAB (R2023b)—RobotStudio (6.08) simulation platform is developed to facilitate the entire process, from model pre-processing and path planning to path verification. The experimental results demonstrate that compared with the traditional manual teaching methods, the proposed approach achieves a 25.4% improvement in scanning efficiency and an 18.6% increase in point cloud coverage when measuring typical complex structural components. This study offers an intelligent solution for the efficient and accurate measurement of large-scale complex parts and holds significant potential for broad engineering applications. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

14 pages, 379 KiB  
Article
Overconfidence and Investment Loss Tolerance: A Large-Scale Survey Analysis of Japanese Investors
by Honoka Nabeshima, Mostafa Saidur Rahim Khan and Yoshihiko Kadoya
Risks 2025, 13(8), 142; https://doi.org/10.3390/risks13080142 - 23 Jul 2025
Abstract
Accepting a certain degree of investment loss risk is essential for long-term portfolio management. However, overconfidence bias within financial literacy can prompt excessively risky behavior and amplify susceptibility to other cognitive biases. These tendencies can undermine investment loss tolerance beyond the baseline level [...] Read more.
Accepting a certain degree of investment loss risk is essential for long-term portfolio management. However, overconfidence bias within financial literacy can prompt excessively risky behavior and amplify susceptibility to other cognitive biases. These tendencies can undermine investment loss tolerance beyond the baseline level shaped by sociodemographic, economic, psychological, and cultural factors. This study empirically examines the association between overconfidence and investment loss tolerance, which is measured by the point at which respondents indicate they would sell their investments in a hypothetical loss scenario. Using a large-scale dataset of 161,765 active investors from one of Japan’s largest online securities firms, we conduct ordered probit and ordered logit regression analyses, controlling for a range of sociodemographic, economic, and psychological variables. Our findings reveal that overconfidence is statistically significantly and negatively associated with investment loss tolerance, indicating that overconfident investors are more prone to prematurely liquidating assets during market downturns. This behavior reflects an impulse to avoid even modest losses. The findings suggest several possible practical strategies to mitigate the detrimental effects of overconfidence on long-term investment behavior. Full article
18 pages, 4910 KiB  
Article
Experiment and Numerical Study on the Flexural Behavior of a 30 m Pre-Tensioned Concrete T-Beam with Polygonal Tendons
by Bo Yang, Chunlei Zhang, Hai Yan, Ding-Hao Yu, Yaohui Xue, Gang Li, Mingguang Wei, Jinglin Tao and Huiteng Pei
Buildings 2025, 15(15), 2595; https://doi.org/10.3390/buildings15152595 - 22 Jul 2025
Abstract
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical [...] Read more.
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical simulation research on a 30 m pre-tensioned, prestressed concrete T-beam with polygonal tendons practically used in engineering. The full-scale experiment applied symmetrical four-point bending to create a pure bending region and used embedded strain gauges, surface sensors, and optical 3D motion capture systems to monitor the beam’s internal strain, surface strain distribution, and three-dimensional displacement patterns during loading. The experiment observed that the test beam underwent elastic, crack development, and failure phases. The design’s service-load bending moment induced a deflection of 18.67 mm (below the 47.13 mm limit). Visible cracking initiated under a bending moment of 7916.85 kN·m, which exceeded the theoretical cracking moment of 5928.81 kN·m calculated from the design parameters. Upon yielding of the bottom steel reinforcement, the maximum of the crack width reached 1.00 mm, the deflection in mid-span measured 148.61 mm, and the residual deflection after unloading was 10.68 mm. These results confirmed that the beam satisfied design code requirements for serviceability stiffness and crack control, exhibiting favorable elastic recovery characteristics. Numerical simulations using ABAQUS further verified the structural performance of the T-beam. The finite element model accurately captured the beam’s mechanical response and verified its satisfactory ductility, highlighting the applicability of this beam type in bridge engineering. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

18 pages, 774 KiB  
Article
Bayesian Inertia Estimation via Parallel MCMC Hammer in Power Systems
by Weidong Zhong, Chun Li, Minghua Chu, Yuanhong Che, Shuyang Zhou, Zhi Wu and Kai Liu
Energies 2025, 18(15), 3905; https://doi.org/10.3390/en18153905 - 22 Jul 2025
Abstract
The stability of modern power systems has become critically dependent on precise inertia estimation of synchronous generators, particularly as renewable energy integration fundamentally transforms grid dynamics. Increasing penetration of converter-interfaced renewable resources reduces system inertia, heightening the grid’s susceptibility to transient disturbances and [...] Read more.
The stability of modern power systems has become critically dependent on precise inertia estimation of synchronous generators, particularly as renewable energy integration fundamentally transforms grid dynamics. Increasing penetration of converter-interfaced renewable resources reduces system inertia, heightening the grid’s susceptibility to transient disturbances and creating significant technical challenges in maintaining operational reliability. This paper addresses these challenges through a novel Bayesian inference framework that synergistically integrates PMU data with an advanced MCMC sampling technique, specifically employing the Affine-Invariant Ensemble Sampler. The proposed methodology establishes a probabilistic estimation paradigm that systematically combines prior engineering knowledge with real-time measurements, while the Affine-Invariant Ensemble Sampler mechanism overcomes high-dimensional computational barriers through its unique ensemble-based exploration strategy featuring stretch moves and parallel walker coordination. The framework’s ability to provide full posterior distributions of inertia parameters, rather than single-point estimates, helps for stability assessment in renewable-dominated grids. Simulation results on the IEEE 39-bus and 68-bus benchmark systems validate the effectiveness and scalability of the proposed method, with inertia estimation errors consistently maintained below 1% across all generators. Moreover, the parallelized implementation of the algorithm significantly outperforms the conventional M-H method in computational efficiency. Specifically, the proposed approach reduces execution time by approximately 52% in the 39-bus system and by 57% in the 68-bus system, demonstrating its suitability for real-time and large-scale power system applications. Full article
Show Figures

Figure 1

7 pages, 1190 KiB  
Proceeding Paper
Influence of Selective Security Check on Heterogeneous Passengers at Metro Stations
by Zhou Mo, Maricar Zafir and Gueta Lounell Bahoy
Eng. Proc. 2025, 102(1), 3; https://doi.org/10.3390/engproc2025102003 - 22 Jul 2025
Viewed by 35
Abstract
Security checks (SCs) at metro stations are regarded as an effective measure to address the heightened security risks associated with high ridership. Introducing SCs without exacerbating congestion requires a thorough understanding of their impact on passenger flow. Most existing studies were conducted where [...] Read more.
Security checks (SCs) at metro stations are regarded as an effective measure to address the heightened security risks associated with high ridership. Introducing SCs without exacerbating congestion requires a thorough understanding of their impact on passenger flow. Most existing studies were conducted where SCs are mandatory and fixed at certain locations. This study presents a method for advising the scale and placement for SCs under a more relaxed security setting. Using agent-based simulation with heterogeneous profiles for both inbound and outbound passenger flow, existing bottlenecks are first identified. By varying different percentages of passengers for SCs and locations to deploy SCs, we observe the influence on existing bottlenecks and suggest a suitable configuration. In our experiments, key bottlenecks are identified before tap-in fare gantries. When deploying SCs near tap-in fare gantries as seen in current practices, a screening percentage of beyond 10% could exacerbate existing bottlenecks and also create new bottlenecks at SC waiting areas. Relocating the SC to a point beyond the fare gantries helps alleviate congestion. This method provides a reference for station managers and transport authorities for balancing security and congestion. Full article
Show Figures

Figure 1

25 pages, 4994 KiB  
Article
Dynamic Slope Stability Assessment Under Blast-Induced Ground Vibrations in Open-Pit Mines: A Pseudo-Static Limit Equilibrium Approach
by Sami Ullah, Gaofeng Ren, Yongxiang Ge, Muhammad Burhan Memon, Eric Munene Kinyua and Theoneste Ndayiragije
Sustainability 2025, 17(14), 6642; https://doi.org/10.3390/su17146642 - 21 Jul 2025
Viewed by 281
Abstract
Blasting is one of the most widely used and cost-effective techniques for rock excavation and fragmentation in open-pit mining, particularly for large-scale operations. However, repeated or poorly controlled blasting can generate excessive ground vibrations that threaten slope stability by causing structural damage, fracturing [...] Read more.
Blasting is one of the most widely used and cost-effective techniques for rock excavation and fragmentation in open-pit mining, particularly for large-scale operations. However, repeated or poorly controlled blasting can generate excessive ground vibrations that threaten slope stability by causing structural damage, fracturing of the rock mass, and potential failure. Evaluating the effects of blast-induced vibrations is essential to ensure safe and sustainable mining operations. This study investigates the impact of blasting-induced vibrations on slope stability at the Saindak Copper-Gold Open-Pit Mine in Pakistan. A comprehensive dataset was compiled, including field-monitored ground vibration measurements—specifically peak particle velocity (PPV) and key blast design parameters such as spacing (S), burden (B), stemming length (SL), maximum charge per delay (MCPD), and distance from the blast point (D). Geomechanical properties of slope-forming rock units were validated through laboratory testing. Slope stability was analyzed using pseudo-static limit equilibrium methods (LEMs) based on the Mohr–Coulomb failure criterion, employing four approaches: Fellenius, Janbu, Bishop, and Spencer. Pearson and Spearman correlation analyses quantified the influence of blasting parameters on slope behavior, and sensitivity analysis determined the cumulative distribution of slope failure and dynamic response under increasing seismic loads. FoS values were calculated for both east and west pit slopes under static and dynamic conditions. Among all methods, Spencer consistently yielded the highest FoS values. Under static conditions, FoS was 1.502 for the east slope and 1.254 for the west. Under dynamic loading, FoS declined to 1.308 and 1.102, reductions of 12.9% and 11.3%, respectively, as calculated using the Spencer method. The east slope exhibited greater stability due to its gentler angle. Correlation analysis revealed that burden had a significant negative impact (r = −0.81) on stability. Sensitivity analysis showed that stability deteriorates notably when PPV exceeds 10.9 mm/s. Although daily blasting did not critically compromise stability, the west slope showed greater vulnerability, underscoring the need for stricter control of blasting energy to mitigate vibration-induced instability and promote long-term operational sustainability. Full article
Show Figures

Graphical abstract

22 pages, 9247 KiB  
Article
Enhancing Restoration in Urban Waterfront Spaces: Environmental Features, Visual Behavior, and Design Implications
by Shiqin Zhou, Chang Lin and Quanle Huang
Buildings 2025, 15(14), 2567; https://doi.org/10.3390/buildings15142567 - 21 Jul 2025
Viewed by 154
Abstract
Urbanization poses mental health risks for urban dwellers, whereas natural environments offer mental health benefits by providing restorative experiences through visual stimuli. While urban waterfront spaces are recognized for their mental restorative potential, the specific environmental features and individual visual behaviors that drive [...] Read more.
Urbanization poses mental health risks for urban dwellers, whereas natural environments offer mental health benefits by providing restorative experiences through visual stimuli. While urban waterfront spaces are recognized for their mental restorative potential, the specific environmental features and individual visual behaviors that drive these benefits remain inadequately understood. Grounded in restorative environments theory, this study investigates how these factors jointly influence restoration. Employing a controlled laboratory experiment, subjects viewed real-life images of nine representative spatial locations from the waterfront space of Guangzhou Long Bund. Data collected during the multimodal experiments included subjective scales data (SRRS), physiological measurement data (SCR; LF/HF), and eye-tracking data. Key findings revealed the following: (1) The element visibility rate and visual characteristics of plant and building elements significantly influence restorative benefits. (2) Spatial configuration attributes (degree of enclosure, spatial hierarchy, and depth perception) regulate restorative benefits. (3) Visual behavior patterns (attributes of fixation points, fixation duration, and moderate dispersion of fixations) are significantly associated with restoration benefits. These findings advance the understanding of the mechanisms linking environmental stimuli, visual behavior, and psychological restorative benefits. They translate into evidence-based design principles for urban waterfront spaces. This study provides a refined perspective and empirical foundation for enhancing the restorative benefits of urban waterfront spaces through design. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

11 pages, 386 KiB  
Article
Benchmarking AI Chatbots for Maternal Lactation Support: A Cross-Platform Evaluation of Quality, Readability, and Clinical Accuracy
by İlke Özer Aslan and Mustafa Törehan Aslan
Healthcare 2025, 13(14), 1756; https://doi.org/10.3390/healthcare13141756 - 20 Jul 2025
Viewed by 198
Abstract
Background and Objective: Large language model (LLM)–based chatbots are increasingly utilized by postpartum individuals seeking guidance on breastfeeding. However, the chatbots’ content quality, readability, and alignment with clinical guidelines remain uncertain. This study was conducted to evaluate and compare the quality, readability, and [...] Read more.
Background and Objective: Large language model (LLM)–based chatbots are increasingly utilized by postpartum individuals seeking guidance on breastfeeding. However, the chatbots’ content quality, readability, and alignment with clinical guidelines remain uncertain. This study was conducted to evaluate and compare the quality, readability, and factual accuracy of responses generated by three publicly accessible AI chatbots—ChatGPT-4o Pro, Gemini 2.5 Pro, and Copilot Pro—when prompted with common maternal questions related to breast-milk supply. Methods: Twenty frequently asked breastfeeding-related questions were submitted to each chatbot in separate sessions. The responses were paraphrased to enable standardized scoring and were then evaluated using three validated tools: ensuring quality information for patients (EQIP), the simple measure of gobbledygook (SMOG), and the global quality scale (GQS). Factual accuracy was benchmarked against WHO, ACOG, CDC, and NICE guidelines using a three-point rubric. Additional user experience metrics included response time, character count, content density, and structural formatting. Statistical comparisons were performed using the Kruskal–Wallis and Wilcoxon rank-sum tests with Bonferroni correction. Results: ChatGPT-4o Pro achieved the highest overall performance across all primary outcomes: EQIP score (85.7 ± 2.4%), SMOG score (9.78 ± 0.22), and GQS rating (4.55 ± 0.50), followed by Gemini 2.5 Pro and Copilot Pro (p < 0.001 for all comparisons). ChatGPT-4o Pro also demonstrated the highest factual alignment with clinical guidelines (95%), while Copilot showed more frequent omissions or simplifications. Differences in response time and formatting quality were statistically significant, although not always clinically meaningful. Conclusions: ChatGPT-4o Pro outperforms other chatbots in delivering structured, readable, and guideline-concordant breastfeeding information. However, substantial variability persists across the platforms, and none should be considered a substitute for professional guidance. Importantly, the phenomenon of AI hallucinations—where chatbots may generate factually incorrect or fabricated information—remains a critical risk that must be addressed to ensure safe integration into maternal health communication. Future efforts should focus on improving the transparency, accuracy, and multilingual reliability of AI chatbots to ensure their safe integration into maternal health communications. Full article
Show Figures

Figure 1

18 pages, 2710 KiB  
Article
Enriching Urban Life with AI and Uncovering Creative Solutions: Enhancing Livability in Saudi Cities
by Mohammed A. Albadrani
Sustainability 2025, 17(14), 6603; https://doi.org/10.3390/su17146603 - 19 Jul 2025
Viewed by 291
Abstract
This paper examines how artificial intelligence (AI) can be strategically deployed to enhance urban planning and environmental livability in Riyadh by generating data-driven, people-centric design interventions. Unlike previous studies that concentrate primarily on visualization, this research proposes an integrative appraisal framework that combines [...] Read more.
This paper examines how artificial intelligence (AI) can be strategically deployed to enhance urban planning and environmental livability in Riyadh by generating data-driven, people-centric design interventions. Unlike previous studies that concentrate primarily on visualization, this research proposes an integrative appraisal framework that combines AI-generated design with site-specific environmental data and native vegetation typologies. This study was conducted across key jurisdictional areas including the Northern Ring Road, King Abdullah Road, Al Rabwa, Al-Malaz, Al-Suwaidi, Al-Batha, and King Fahd Road. Using AI tools, urban scenarios were developed to incorporate expanded pedestrian pathways (up to 3.5 m), dedicated bicycle lanes (up to 3.0 m), and ecologically adaptive green buffer zones featuring native drought-resistant species such as Date Palm, Acacia, and Sidr. The quantitative analysis of post-intervention outcomes revealed surface temperature reductions of 3.2–4.5 °C and significant improvements in urban esthetics, walkability, and perceived safety—measured on a five-point Likert scale with 80–100% increases in user satisfaction. Species selection was validated for ecological adaptability, minimal maintenance needs, and compatibility with Riyadh’s sandy soils. This study directly supports the Kingdom of Saudi Arabia’s Vision 2030 by demonstrating how emerging technologies like AI can drive smart, sustainable urban transformation. It aligns with Vision 2030’s urban development goals under the Quality-of-Life Program and environmental sustainability pillar, promoting healthier, more connected cities with elevated livability standards. The research not only delivers practical design recommendations for planners seeking to embed sustainability and digital innovation in Saudi urbanism but also addresses real-world constraints such as budgetary limitations and infrastructure integration. Full article
(This article belongs to the Special Issue Smart Cities for Sustainable Development)
Show Figures

Figure 1

17 pages, 4334 KiB  
Article
Wafer-Level Fabrication of Radiofrequency Devices Featuring 2D Materials Integration
by Vitor Silva, Ivo Colmiais, Hugo Dinis, Jérôme Borme, Pedro Alpuim and Paulo M. Mendes
Nanomaterials 2025, 15(14), 1119; https://doi.org/10.3390/nano15141119 - 18 Jul 2025
Viewed by 159
Abstract
Two-dimensional (2D) materials have been proposed for use in a multitude of applications, with graphene being one of the most well-known 2D materials. Despite their potential to contribute to innovative solutions, the fabrication of such devices still faces significant challenges. One of the [...] Read more.
Two-dimensional (2D) materials have been proposed for use in a multitude of applications, with graphene being one of the most well-known 2D materials. Despite their potential to contribute to innovative solutions, the fabrication of such devices still faces significant challenges. One of the key challenges is the fabrication at a wafer-level scale, a fundamental step for allowing reliable and reproducible fabrication of a large volume of devices with predictable properties. Overcoming this barrier will allow further integration with sensors and actuators, as well as enabling the fabrication of complex circuits based on 2D materials. This work presents the fabrication steps for a process that allows the on-wafer fabrication of active and passive radiofrequency (RF) devices enabled by graphene. Two fabrication processes are presented. In the first one, graphene is transferred to a back gate surface using critical point drying to prevent cracks in the graphene. In the second process, graphene is transferred to a flat surface planarized by ion milling, with the gate being buried beneath the graphene. The fabrication employs a damascene-like process, ensuring a flat surface that preserves the graphene lattice. RF transistors, passive RF components, and antennas designed for backscatter applications are fabricated and measured, illustrating the versatility and potential of the proposed method for 2D material-based RF devices. The integration of graphene on devices is also demonstrated in an antenna. This aimed to demonstrate that graphene can also be used as a passive device. Through this device, it is possible to measure different backscatter responses according to the applied graphene gating voltage, demonstrating the possibility of wireless sensor development. With the proposed fabrication processes, a flat graphene with good quality is achieved, leading to the fabrication of RF active devices (graphene transistors) with intrinsic fT and fmax of 14 GHz and 80 GHz, respectively. Excellent yield and reproducibility are achieved through these methods. Furthermore, since the graphene membranes are grown by Chemical Vapor Deposition (CVD), it is expected that this process can also be applied to other 2D materials. Full article
(This article belongs to the Special Issue Advanced 2D Materials for Emerging Application)
Show Figures

Figure 1

9 pages, 215 KiB  
Article
Psychotic Symptoms in Cataract Patients Without Overt Psychosis Are Ameliorated Following Successful Cataract Surgery
by Georgios D. Floros, Ioanna Mylona and Stylianos Kandarakis
Diseases 2025, 13(7), 224; https://doi.org/10.3390/diseases13070224 - 18 Jul 2025
Viewed by 151
Abstract
Background: Cataract is the leading cause of severe, non-traumatic vision loss worldwide, leading to multiple adverse outcomes in mental health, including depression, anxiety, and cognitive decline; however, the relationship to psychotic symptoms remains unclear. While congenital vision loss appears protective against psychosis, acquired [...] Read more.
Background: Cataract is the leading cause of severe, non-traumatic vision loss worldwide, leading to multiple adverse outcomes in mental health, including depression, anxiety, and cognitive decline; however, the relationship to psychotic symptoms remains unclear. While congenital vision loss appears protective against psychosis, acquired vision loss or acute deprivation are inducing psychotic symptoms. Methods: This study of 200 consecutive cataract patients, with severe vision loss, compares Paranoid Ideation and Psychoticism symptoms pre surgery, measured with the SCL-90-R scale, to those symptoms that persisted two months post-surgery. Results: The results confirm the hypothesis that cataract surgery is associated with a reduction in those symptoms (Wilcoxon Z = 5.425, p < 0.001 for Paranoid Ideation and Wilcoxon Z = 6.478, p < 0.001 for Psychoticism). Higher improvement in those variables was associated with higher improvement in visual acuity while controlling for age, gender and stressful life events during the past six months. Conclusions: Those results point to the importance of addressing loss of visual function especially in patients with pre-existing psychotic symptoms or signs of cognitive decline. Full article
11 pages, 266 KiB  
Article
Impact of the COVID-19 Pandemic on Functionality and Fall Risk in Institutionalized Geriatric Patients: A Longitudinal Observational Study
by Javier Torralba Estelles, Jorge Velert Belenguer, Elena Martinez Mendoza and Javier Ferrer Torregrosa
Life 2025, 15(7), 1130; https://doi.org/10.3390/life15071130 - 18 Jul 2025
Viewed by 186
Abstract
Background: The global impact of the COVID-19 pandemic has significantly influenced elderly functionality, particularly in terms of balance, gait, and independence in daily activities. This study sought to evaluate how these aspects have changed over the course of the health crisis. Methods: We [...] Read more.
Background: The global impact of the COVID-19 pandemic has significantly influenced elderly functionality, particularly in terms of balance, gait, and independence in daily activities. This study sought to evaluate how these aspects have changed over the course of the health crisis. Methods: We employed the Tinetti scale for assessing balance and gait, and the Barthel Index for measuring functional independence, conducting a comparative analysis of scores before and after the onset of the pandemic in a sample of elderly individuals. Results: Our findings indicated an increase in Tinetti scores, suggesting some improvement in balance and mobility, albeit with marked variability across participants. On the other hand, Barthel scores showed a significant decline, pointing to a reduction in functional independence. Conclusions: These results suggest that the impact of COVID-19 on elderly functionality is not uniform, highlighting the need for personalized rehabilitation strategies. Such strategies should not only focus on physical recovery but also consider the psychological and social repercussions of the pandemic to fully address the diverse needs of this vulnerable population. Full article
Show Figures

Figure 1

19 pages, 3923 KiB  
Article
Automated Aneurysm Boundary Detection and Volume Estimation Using Deep Learning
by Alireza Bagheri Rajeoni, Breanna Pederson, Susan M. Lessner and Homayoun Valafar
Diagnostics 2025, 15(14), 1804; https://doi.org/10.3390/diagnostics15141804 - 17 Jul 2025
Viewed by 219
Abstract
Background/Objective: Precise aneurysm volume measurement offers a transformative edge for risk assessment and treatment planning in clinical settings. Currently, clinical assessments rely heavily on manual review of medical imaging, a process that is time-consuming and prone to inter-observer variability. The widely accepted standard [...] Read more.
Background/Objective: Precise aneurysm volume measurement offers a transformative edge for risk assessment and treatment planning in clinical settings. Currently, clinical assessments rely heavily on manual review of medical imaging, a process that is time-consuming and prone to inter-observer variability. The widely accepted standard of care primarily focuses on measuring aneurysm diameter at its widest point, providing a limited perspective on aneurysm morphology and lacking efficient methods to measure aneurysm volumes. Yet, volume measurement can offer deeper insight into aneurysm progression and severity. In this study, we propose an automated approach that leverages the strengths of pre-trained neural networks and expert systems to delineate aneurysm boundaries and compute volumes on an unannotated dataset from 60 patients. The dataset includes slice-level start/end annotations for aneurysm but no pixel-wise aorta segmentations. Method: Our method utilizes a pre-trained UNet to automatically locate the aorta, employs SAM2 to track the aorta through vascular irregularities such as aneurysms down to the iliac bifurcation, and finally uses a Long Short-Term Memory (LSTM) network or expert system to identify the beginning and end points of the aneurysm within the aorta. Results: Despite no manual aorta segmentation, our approach achieves promising accuracy, predicting the aneurysm start point with an R2 score of 71%, the end point with an R2 score of 76%, and the volume with an R2 score of 92%. Conclusions: This technique has the potential to facilitate large-scale aneurysm analysis and improve clinical decision-making by reducing dependence on annotated datasets. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

Back to TopTop